• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 13
  • 10
  • 7
  • 5
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 49
  • 31
  • 28
  • 25
  • 24
  • 19
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

An armored truck cab design : Case study: investigation of selected steel grades

Pellegrini, Filippo January 2020 (has links)
This study aimed at defining useful guidelines for the design of an armored truck cab. Particularly, the quality and performance of ballistic steel were defined, considering not too high demanding requirements. Two steel grades, corresponding to hardness of 500 HB and 600 HB, and three different suppliers were selected. After dividing the truck cab into main areas, a FEM simulation was performed. The investigated model considered a specific standardized threat to impact against a double layer steel protection. Due to the high strain rates involved, the formation of adiabatic shear bands has been observed. However, the main purpose of the model was to find an ultimate thickness protection layout of armored steel plates. Thereby, the thicknesses to be attributed to the various components of the main areas could be estimated. Two alternatives were therefore hypothesized: the first considering the critical thickness case of penetration, and the second, an oversized version, supposed to be more resistant to penetration. It was thus possible to estimate the weight of the truck cab for the two above mentioned alternatives, and verify such hypothesized weight complied with the assigned requirement. A possible cutting operation was then considered in order to optimize the use of the steel plates. An estimation of the pre-series production costs of was finally derived. / Denna studie gjorde det möjligt att definiera användbara indikatorer och följa en möjlig multitasking-strategi för utformningen av en bepansrad lastbilshytt. Fallstudien syftade till att definiera kvalitet och prestanda av stål, vilket är ett av de vanligaste materialen för skydd, främst i de fall där kraven inte är så stora. Två stålkvaliteter motsvarande hårdhetsvärdena 500 HB och 600 HB valdes från var och en av tre materialleverantörer. Efter att ha delat upp truckhytten i några huvudområden startades en FEM-simulering med programvara från Impetus Afea. Modellen behandlade ett specifikt hot som var större än det önskade kravet på ett dubbelskiktsskydd. På grund av de inblandade höga deformationshastigheterna har bildningen av adiabatiska skjuvband observerats. Huvudsyftet med modellen var emellertid att hitta en ultimat skyddslayout för tjockleken, så att de tjocklekar som skulle tillskrivas de olika komponenterna i huvudområdena kunde härledas. Två alternativ antogs därför, det ena med tanke på den ultimata tjockleken och den andra med tanke på en skyddslayout som antas vara mer motståndskraftig mot penetrering. Det var således möjligt att uppskatta hyttens vikt för de två alternativen och kontrollera att den uppfyllde de fastställda kraven. Därefter övervägdes en möjlig skäroperation för att optimera användandet av de tillgängliga stålplattorna.
112

A computational model for the diffusion coefficients of DNA with applications

Li, Jun, 1977- 07 October 2010 (has links)
The sequence-dependent curvature and flexibility of DNA is critical for many biochemically important processes. However, few experimental methods are available for directly probing these properties at the base-pair level. One promising way to predict these properties as a function of sequence is to model DNA with a set of base-pair parameters that describe the local stacking of the different possible base-pair step combinations. In this dissertation research, we develop and study a computational model for predicting the diffusion coefficients of short, relatively rigid DNA fragments from the sequence and the base-pair parameters. We focus on diffusion coefficients because various experimental methods have been developed to measure them. Moreover, these coefficients can also be computed numerically from the Stokes equations based on the three-dimensional shape of the macromolecule. By comparing the predicted diffusion coefficients with experimental measurements, we can potentially obtain refined estimates of various base-pair parameters for DNA. Our proposed model consists of three sub-models. First, we consider the geometric model of DNA, which is sequence-dependent and controlled by a set of base-pair parameters. We introduce a set of new base-pair parameters, which are convenient for computation and lead to a precise geometric interpretation. Initial estimates for these parameters are adapted from crystallographic data. With these parameters, we can translate a DNA sequence into a curved tube of uniform radius with hemispherical end caps, which approximates the effective hydrated surface of the molecule. Second, we consider the solvent model, which captures the hydrodynamic properties of DNA based on its geometric shape. We show that the Stokes equations are the leading-order, time-averaged equations in the particle body frame assuming that the Reynolds number is small. We propose an efficient boundary element method with a priori error estimates for the solution of the exterior Stokes equations. Lastly, we consider the diffusion model, which relates our computed results from the solvent model to relevant measurements from various experimental methods. We study the diffusive dynamics of rigid particles of arbitrary shape which often involves arbitrary cross- and self-coupling between translational and rotational degrees of freedom. We use scaling and perturbation analysis to characterize the dynamics at time scales relevant to different classic experimental methods and identify the corresponding diffusion coefficients. In the end, we give rigorous proofs for the convergence of our numerical scheme and show numerical evidence to support the validity of our proposed models by making comparisons with experimental data. / text
113

Charge transport dynamics in electrochemistry

Dickinson, Edmund John Farrer January 2011 (has links)
Electrolytic solutions contain mobile ions that can pass current, and are essential components of any solution-phase electrochemical system. The Nernst–Planck–Poisson equations describe the electrodynamics and transport dynamics of electrolytic solutions. This thesis applies modern numerical and mathematical techniques in order to solve these equations, and hence determine the behaviour of electrochemical systems involving charge transport. The following systems are studied: a liquid junction where a concentration gradient causes charge transport; an ideally polarisable electrode where an applied potential difference causes charge transport; and an electrochemical cell where electrolysis causes charge transport. The nanometre Debye length and nanosecond Debye time scales are shown to control charge separation in electrolytic solutions. At equilibrium, charge separation is confined to within a Debye length scale of a charged electrode surface. Non-equilibrium charge separation is compensated in solution on a Debye time scale following a perturbation, whereafter electroneutrality dictates charge transport. The mechanism for the recovery of electroneutrality involves both migration and diffusion, and is non-linear for larger electrical potentials. Charge separation is an extremely important consideration on length scales comparable to the Debye length. The predicted features of capacitive charging and electrolysis at nanoelectrodes are shown to differ qualitatively from the behaviour of larger electrodes. Nanoscale charge separation can influence the behaviour of a larger system if it limits the overall rate of mass transport or electron transfer. This thesis advocates the use of numerical methods to solve the Nernst–Planck–Poisson equations, in order to avoid the simplifying approximations required by traditional analytical methods. As this thesis demonstrates, this methodology can reveal the behaviour of increasingly elaborate electrochemical systems, while illustrating the self-consistency and generality of fundamental theories concerning charge transport.
114

Zum Einfluss elektrochemischer Doppelschichten auf den Stofftransport in nanoskaligen Elektrolytsystemen:

Kubeil, Clemens 28 February 2017 (has links) (PDF)
Es besteht enormes Interesse den Stofftransport in nanoskaligen Systemen zu verstehen und selektiv zu steuern, um analytische und synthetische Anwendungen zu entwickeln, aber auch um die physiologischen Prozesse lebender Zellen zu entschlüsseln. Im Rahmen dieser Arbeit wurde der Einfluss der elektrochemischen Doppelschicht an ausgewählten nanoskaligen Elektrolytsystemen untersucht. Die Gleichrichtung von Ionenströmen (engl. Ionic Current Rectification ICR) in Nanoporen mit einer Oberflächenladung äußert sich in einer gekrümmten Strom-Spannungs-Kurve. Die Überlappung von innerem und äußerem Potential ist dabei hinsichtlich der Ionenverteilung und somit der Porenleitfähigkeit einander verstärkend oder gegenläufig. Auf Grundlage dieses Mechanismus wurde die Gleichrichtung bei einem sehr großen Verhältnis von Porenöffnung zu Debye-Länge erklärt. Ferner wurde mittels der eingeführten relativen Leitfähigkeit κ´ die verschiedenen Leitfähigkeitszustände in Abhängigkeit der Elektrolytkonzentration und Temperatur sichtbar gemacht und Implikationen für Sensoranwendungen wie z.B. dem resistiven Pulszähler zur Partikelanalyse abgeleitet. Es wurde ein numerisches Modell basierend auf dem Poisson-Nernst-Planck-Gleichungssystem entwickelt, um die Translokation eines Nanopartikels durch eine konische Nanopore bei einer geringen Leitsalzkonzentration zu beschreiben. Neben dem klassischen Volumenausschluss-Effekt tritt zusätzlich ein Gleichrichtungseffekt (ICR-Effekt) in der Pore auf. Eine Analyse zur Entflechtung von Partikelgröße und Partikelladung aus der Pulshöhe und Pulsform wurde erfolgreich durchgeführt. Wie der Stofftransport durch eine Oberflächenladung auf dem umgebenden Material einer Nanoelektrode beeinflusst wird, wurde anhand des voltammetrischen Verhaltens diskutiert. An sehr kleinen Elektroden (< 10 nm) ist demnach der Einfluss der elektrochemischen Doppelschicht auf die Strom-Spannungs-Kurve besonders groß und kann auch bei Vorliegen eines hohen Leitsalzüberschusses nicht vernachlässigt werden. In leitsalzfreien Elektrolyten sind die gefundenen Effekte so deutlich, dass sie auch an größeren Elektroden experimentell zweifelsfrei festgestellt worden sind. / There is an enormous interest in understanding and selectively controlling the material transport in nanoscale systems to develop analytical and synthetic applications, but also to decipher the physiological processes of living cells. Within this thesis, the influence of the electrochemical double layer on selected nanoscale electrolyte systems was studied. Ionic Current Rectification (ICR) in nanopores carrying a surface charge manifests itself in a non-linear current-voltage-curve. The overlap of interior and exterior potential is cumulative or opposing with regard to the ion distribution and therefore the pore conductivity. Based on this mechanism, ICR for very large ratios of pore size and Debye length was explained. Furthermore, the different conducting states as a function of electrolyte concentration and temperature were visualized by introducing the relative conductivity κ´ and hence implications for sensor applications such as the resistive pulse sensor have been deduced. A numerical model based on the Poisson-Nernst-Planck-equations was developed to describe the translocation of a nanoparticle through a conical nanopore at a low electrolyte concentration. An additional rectification effect (ICR effect) occurs in the pore beside the conventional volume exclusion effect. An analysis was successfully performed to deconstruct the particle size and particle charge from the pulse height and shape. The material transport is affected by a surface charge on the shrouding material of nanoelectrodes as it was discussed by means of the voltammetric behaviour. The influence of the electrochemical double layer on the current-voltage-curve is particularly large at very small electrodes (< 10 nm) and cannot be neglected even at a high excess of supporting electrolyte. The observed effects were pronounced in unsupported electrolytes, so that they could be clearly detected experimentally at even larger electrodes.
115

Étude multiphysique du transfert de chlorures dans les bétons insaturés : prédiction de l’initiation de la corrosion des aciers / Abstract multiphysical study of the chlorides transfer in unsaturated eco-concretes : application in the prediction of the corrosion of steels

Nguyen, Phu Tho 10 January 2014 (has links)
La corrosion des aciers dans les ouvrages en béton armé due aux chlorures est l’une des principales causes de dégradation des constructions notamment en façade maritime. La prédiction de la durée de vie des constructions vis-à-vis de cette pathologie, nécessite la compréhension des principaux mécanismes liés au transfert de chlorures surtout dans les matériaux insaturés (soumis au marnage ou au brouillard salin). Pour améliorer les travaux qui existent dans la littérature sur le sujet, les principaux objectifs de cette thèse sont : la caractérisation expérimentale du phénomène de double couche électrique (DCE) et l’étude de son influence sur le transfert ionique, l’étude des effets de la température et de l’hystérésis (sorption-désorption) sur le profil de chlorures, l’étude du couplage entre corrosion des aciers et transfert des chlorures. Pour atteindre ces objectifs, le travail est divisé en quatre parties. La première est consacrée à l’approche théorique du problème pour établir les équations permettant de décrire le couplage entre transferts ionique et hygrothermique dans les matériaux insaturés. La prise en compte de la DCE est également explicitée. La deuxième partie est expérimentale, elle est réalisée sur des éco-bétons fabriqués à base de laitier et de cendres volantes. Elle consiste à quantifier les paramètres d’entrée du modèle identifiés lors de la première partie. Il s’agit : de la porosité, de la perméabilité aux gaz, du coefficient de diffusion d’ions chlorures, de la distribution porale, des isothermes d’interactions chimiques et des isothermes de sorption-désorption et du potentiel Zeta caractérisant la DCE. Dans la troisième partie, les équations de transfert traduisant le modèle sont résolues numériquement. L’étude de sensibilité du modèle vis à vis de la DCE, de la température, de la perméabilité à l’eau est réalisée. Une confrontation des résultats du modèle (profil de chlorures) avec des résultats expérimentaux obtenus en situation de marnage a permis de montrer l’intérêt de considérer l’hystérésis des courbes de sorption-désorption. Quant à l’effet de la DCE il se manifeste pour potentiel Zeta dépassant 25mV. La dernière partie concerne l’étude du couplage entre transfert de chlorures et corrosion des aciers. Les estimations de la durée d’incubation, de la perte de section d’acier, les temps requis pour l’apparition des premières fissures et l’éclatement du béton d’enrobage ont été réalisées. Nous avons montré que l’utilisation de la loi de Fick peut sous-estimer ces grandeurs. / The corrosion of steels in the reinforced concrete structures caused by chlorides is one of the main causes of degradation of the constructions in particular in maritime facade. The prediction of the service life of the constructions towards this pathology requires the understanding of the main mechanisms relating to the chlorides transport especially in the unsaturated materials submitted to the tide or to the salt spray. To improve the works of the literature, the main objectives should be accomplished are : to study the experimental characterization of the electrical double layer (EDL) and to study its influence on the ionic transport ; to research on the temperature effect and the hysteresis effect on the chloride profile ; to examine chloride transfer coupled with corrosion of reinforcement. To reach these objectives, the work is divided into four parts. The first one is dedicated to the theoretical approach of the problem to establish the equations allowing describing the coupling between ionic and hydrothermal transfer to the unsaturated materials. The consideration of the EDL is also clarified. The second part is experiment. It is realized on eco-concretes made on base of slag and fly ash. It consists in quantifying the inputs of the model identified during the first part such as: porosity, gas permeability, chloride diffusion coefficients, pore size distribution, chemical interactions, isotherms of sorption-desorption and the Zeta potential characterizing the EDL. In the third part, the transfer equations translating to the model are numerically resolved. The study of model sensibility according to EDL, the temperature, the water permeability is performed. A comparison between the numerical results (chloride profile) obtained with the model with experimental ones obtained in the case of tidal zone allowed shows the interest to consider the hysteresis effects. Also, it is shown that the EDL effect is significant beyond Zeta potential of 25mV. The last part concerns the study of the coupling between chloride transfer and corrosion of steels. The estimations of the duration of incubation, the loss of section of steel, the times required to cover cracking were examined. The result showed that the use of the law of Fick can underestimate these parameters.
116

Investigação teórica da quimisssorção do ânion metanossulfonato em eletrodos de platina (111) e (100) via método semi-empírico

Folkuenig, Engelbert de Souza 10 May 2010 (has links)
Made available in DSpace on 2017-07-24T19:38:03Z (GMT). No. of bitstreams: 1 Engelbert de Souza Folkuenig.pdf: 8804704 bytes, checksum: 956aed781c64725afe3d6dc23b53947c (MD5) Previous issue date: 2010-05-10 / Several electrochemical processes, such as electrocatalysis of organic substrates, make use of mediators. One of the mediators is the most commonly used anion methanesulfonate, CH3SO3, which has several advantages for such use, and chemical stability considered one of them. However, experimental studies indicate the possibility of this compound suffer the adsorption and decomposition on platinum electrodes. To get an understanding at the molecular level these processes, computer simulations were performed with the aid of the semi-empirical PM6. The cluster approach was used in the modeling of platinum surfaces with crystallographic orientations (111) and (100). The symmetries of most stable adsorption calculated for the anion in these areas correspond to the experimental data: C3V symmetry in (111) surface and C1 in (100) surface. To simulate the potential applied to the electrode, external electric fields with a positive sign and perpendicular to the surface of the clusters were applied. Changes in the lengths and angles of bonds adsorbed anion, as well as its values of dipole moment were observed. The infrared spectra of the systems anion-clusters were calculated and the values for the Stark tunning rate (Δstark) of mode δs CH3 were compared with the experimental value. Both for the free anion and for systems where the anion is adsorbed, it was found that the values of Δstark assumed negative values (indicating that the frequency of the vibrational mode δs CH3 diminished with increasing external eletric field), opposite to the experimental positive value (frequency mode δs CH3 increases with the increase in potential). Only with the addition of water molecules in the systems studied, in order to simulate the aqueous solvent is that the values of Δstark started to assume a positive value. The comparison showed the importance of the presence of water molecules in the simulation of an electrochemical system and prompted a detailed analysis of the frontier orbitals involved in this process. It was found that the dipole-dipole coupling between water molecules and the adsorbed anion is responsible for the Stark effect, while the electrostatic interactions between various molecules adsorbed anion affect the intensity of the absorption band mode δs CH3 in the spectra calculated. In (100) surfaces, the joint action of external field and water molecules, lead the anion molecule to adopt the adsorption geometries more inclined to systems without water molecules, indicating that this may be an important factor in explaining the greater reactivity of the anion on the surface. / Vários processos eletroquímicos, como por exemplo a eletrocatálise de substratos orgânicos, fazem uso de mediadores. Um dos mediadores mais utilizados é o ânion metanossulfonato, CH3SO3¯, que apresenta várias vantagens para tal uso, sendo a estabilidade química considerada uma delas. No entanto, estudos experimentais apontam para a possibilidade desse ânion sofrer processos de adsorção e decomposição em eletrodos de platina. Para se obter uma compreensão em nível molecular desses processos, simulações computacionais foram efetuadas com auxílio do método semi-empírico PM6. A aproximação de cluster foi utilizada na modelagem de superfícies de platina com orientações cristalográficas (111) e (100). As simetrias de adsorção mais estáveis calculadas para o ânion nessas superfícies correspondem aos dados experimentais: simetria C3v em superfície (111) e C1 em superfície (100). Para simular o potencial aplicado ao eletrodo, campos elétricos externos de sinal positivo e perpendiculares à superfície dos clusters foram aplicados. Alterações nos comprimentos e ângulos de ligações do ânion adsorvido, bem como em seus valores de momento dipolar foram observados. Os espectros de infravermelho dos sistemas ânion-clusters foram calculados e os valores para a taxa de variação Stark (Δstark) do modo δs CH3 foram comparados com o valor experimental. Tanto para o ânion livre quanto para os sistemas onde o ânion se encontra adsorvido, verificou-se que os valores de Δstark assumiam valores negativos (indicando que a frequência vibracional do modo δs CH3 diminuía com o aumento da intensidade do campo externo), ao contrário do valor experimental, positivo (frequência do modo δs CH3 aumenta com o aumento do potencial). Apenas com a adição de moléculas de água aos sistemas estudados, de modo a simular o solvente aquoso, é que os valores de Δstark passaram a assumir um valor positivo. Essa comparação revelou a importância da presença de moléculas de água na simulação de um sistema eletroquímico e motivou uma análise pormenorizada dos orbitais de fronteira envolvidos nesse processo. Verificou-se que a interação dipolo-dipolo entre as moléculas de água e o ânion adsorvido é o responsável pelo efeito Stark, enquanto as interações eletrostáticas entre várias moléculas do ânion adsorvidas afetam a intensidade da banda de absorção do modo δs CH3 nos espectros calculados. Nas superfícies (100), a ação conjunta do campo externo e das moléculas de água, levam a molécula do ânion a adotar geometrias de adsorção mais inclinadas em relação aos sistemas sem as moléculas de água, indicando que este pode ser um fator importante para explicar a maior reatividade do ânion sobre esse tipo de superfície.
117

Alternating current electrocoagulation (AC/EC) of fine particulate suspensions

Ifill, Roy O. 06 1900 (has links)
Poor settling of solids increases land requirement for tailings containment and imposes severe constraints on the water balance. Consequent to these considerations, the alternating current electrocoagulation (AC/EC) technique emerged as a candidate for enhancing the settling behaviour of suspensions in the mineral, coal and oil sands industries. Hence, a fundamental study of AC/EC was undertaken with aluminum electrodes. Ground silica (d50 = 20 m), which formed a stable suspension, served as the model tailings solid at 5.0 wt % in water. The AC/EC process consisted of two developmental stages: coagulation, marked by pH decrease in the silica suspension; and floc growth, characterized by pH increase from the minimum (i.e., the end of coagulation). AC/EC enhanced the initial settling rate of silica by over three orders of magnitude, and exhibited remarkable flexibility by virtue of the wide range of process parameters that could be optimized. For example, AC/EC can be operated in either the indirect or direct mode. The settling behaviour of bentonite (estimated d50 < 1 m) was more enhanced by indirect AC/EC, while that of silica benefited more from direct AC/EC. Any condition that increased aluminum dosage (e.g., current, retention time), increased the initial settling rate of silica. Over the feed water pH range of 3.0 to 9.1, AC/EC was effective in enhancing the settling behaviour of silica. AC/EC was also effective over a wide range of temperatures (23 to 85C). High electrical energy demand by AC/EC was observed throughout this study. Its optimization was beyond the scope of this work. Dilution of a sample of Syncrude mature fine tailings (MFT) to 4.6 wt % solids sustained a stable suspension. Settling occurred after AC/EC treatment, a crystal-clear supernatant resulted and bitumen was recovered as froth. Entrained solids were easily spray-washed from the froth with water. The settling behaviour of a Luscar Sterco fine coal tailings sample was not augmented by AC/EC, possibly due to contamination by the companys own electrocoagulation operation. After having been stored dry for more than a year, electrocoagulated silica was an effective coagulant for as-received silica and Syncrude MFT. / Chemical Engineering
118

Aplicación de los principios del tensegrity a las constucciones textiles atirantadas.

Peña Viñamil, Diana Maritza 17 September 2012 (has links)
The purpose of this document is to study the application of Tensegrity principles on tensile textile constructions. This work studies the basic concept of Tensegrity unit, its classification according a previous researcher (Anthony Pugh) and the author’s contribution, focused on new generations of forms. Through the geometry and computer software, another typology and a constructive simple method is developed, bearing in mind, some aspects as important as system pretension to find its balance / El propósito de esta tesis es el estudio de la aplicación de los principios del tensegrity a las construcciones textiles atirantadas. El estudio del concepto básico de la unidad tensegrity, sus clasificaciones según investigadores anteriores (Anthony Pugh) y el aporte personal de nuevas generaciones de forma por medio de la geometría y programas informáticos, otra tipología y un método constructivo sencillo de realizar teniendo en cuenta aspectos tan importantes como la pretensión del sistema para buscar el equilibrio del mismo. La contribución clave de este prototipo en el campo de las estructuras ligeras es que es la primera vez que un anillo tensegrity ha sido utilizado en lugar de un anillo de compresión, para generar un domo completamente en tensegrity. Además se reemplazaron los tensores de los tensegritis tradicionales por membranas.
119

Influence Of Joint Compliance On The Behaviour Of Space Structures

Pradyumna, M 11 1900 (has links)
Space structures are inevitable while covering large spans. Space structures are skeletal structures, which are lighter for the same stiffness when compared with RCC roofs. Till now, space structures, like any other metal structures have been designed assuming the joints as rigid, although there have been several publications about semi rigid joints. Of course, the publications mostly deal with 2D structures and there are very few reports on 3D structures. Space structures, by their nature fall into the latter category. The joints in a space structure are popularly called as "nodes". Generally, nodes, which ensure concentricity of member axes, are either solid or hollow. These are either cast or forged. There are other proprietary types, which do not come under the above classification, and have not been considered in this thesis. Hollow nodes are obviously more economical than solid nodes, but also more flexible. While it is prudent to prefer hollow nodes, it is equally necessary to assess their flexibility, because of its influence on the behaviour of the structure. The hollow spherical node is very popular because of its simplicity and adaptability to various forms of space frames. Double layer grids, which are the most popular forms for roofing applications, are being increasingly implemented. While the hollow spherical node is well suited for double layer grids, an evolutionary development has been what is called as the hollow octahedral node (this node is simply referred to as the 'Octa ' node in this thesis). Chapter 1 introduces space frames and double layer grids in particular, with the advantages of using double-layer grids. Jointing systems available around the world are briefed and the node connector used in the present study is introduced with a brief write-up on its advantages and disadvantages. This chapter also explores the available literature and, the scope and objectives of the thesis are mentioned. Chapter 2 introduces 3D finite element models of the hollow spherical and octahedral nodes. The stiffness matrixes of these nodes have been derived by conducting analyses on the computer for six sizes each of the Octa and spherical nodes. Using the stiffness matrix of the node, a new method of incorporating this into the regular analysis of a space truss has been developed. The new method proposed yields realistic values for the forces in the members and takes into account the elastic deflections in the node under the action of member forces. Implementation of the proposed method has been carried out by writing a custom program using state-of-the-art object oriented programming techniques. A sample problem has been analyzed using this program to demonstrate the effect of including joint flexibility. The effect of flexibility of nodes on the effective length of compression members in double-layer grids has been evaluated. The effect of compliance on the dynamic characteristics of a space frame has also been evaluated for the sample space frame with flexible joints. The analysis program has been modified to evaluate the natural frequencies of the system using rigid or flexible nodes. The study of the Octanode and spherical node under the action of uniaxial compression and tension dominates the contents of Chapter 3. The two types of nodes have been analyzed using commercially available finite element software considering material nonlinearity. The stress patterns from the analyses have been examined thoroughly. Two consistent methods for fixing the load at yield in both uniaxial compression and tension have been proposed using the load-displacement curve. Yield loads for all the nodes have been evaluated using both the methods and the results agree well between the two methods. Three material yield values have been selected for each of the node size for evaluating the yield values viz. 240,320 and 415 MPa. The members of a double layer grid are connected to the nodes by bolts and holes are drilled in the nodes for this purpose. The bolthole patterns differ between two popular types of double-layer grids. Both these bolthole patterns have been modeled separately in the above exercise and the results for these two have been shown to be approximately the same. The effect of varying diameters of the boltholes on the response of the nodes has been examined. Relationships between the yield load, diameter, thickness and material yield have been developed using the method of least squares. The differences in the behaviour of the nodes under uniaxial compression and tension have been discussed. Ramberg Osgood type of relationships have been worked out for all the load-displacement curves obtained from the analyses. The simulation of non-linear behaviour of nodes with cracks with plastic crack closing forces have been carried out with useful insights into the behaviour of the two types of nodes in uniaxial compression and tension. Chapter 4 is devoted largely for studying the two types of nodes under the influence of biaxial load combinations. The combinations studied are dual compression, dual tension and compression-tension. In all cases equal loads are applied along two orthogonal; directions in the horizontal plane. Stress patterns have been examined for each type of load combination and yield values for each case have been obtained using one of the methods proposed in chapter 3. These have been compared with the corresponding uniaxial values in both compression and tension. Some useful inferences have been possible by studying the behaviour of the nodes under the various biaxial load combinations. In each case, relationships between the biaxial yield load, uniaxial yield load, diameter of node, thickness of node and material yield of node have been obtained using the method of least squares. The nodes have been analyzed under some selected Multi-axial loading and combinations of load which cause yield based on the second method proposed in Chapter 3 have been obtained and tabulated. However, a proper and thorough study of the nodes under multi-axial loading proved to be beyond the scope of this thesis. Chapter 5 contains the contributions made towards developing new methods and algorithms for obtaining the several results of chapters 2, 3 and 4, using object oriented programming (OOP) techniques. The contributions have been in Object Pascal, the underlying language of Delphi, a popular RAD tool developed by Borland/Inprise of USA. Several new modules have been developed to reliably handle the large amounts of data generated by the hundreds of analyses detailed in chapters 2,3 and 4. The ease with which new methods were possible to be incorporated into existing software using OOP has been demonstrated, with source code examples. Comparisons with other types of tools available and die advantages of using OOP have also been demonstrated using the experience during the preparation of this thesis. A strong case for OOP as an indispensable tool for the researcher has been made. Chapter 6: Several important conclusions and suggestions for future work have been made. Appendix 1 contains a brief note on the Method of Least Squares. Appendix 2 contains a small write-up on Delphi and OOP. Concepts of OOP have been briefly described and comparisons between three popular OOP languages have been attempted. A brief description of the features in Delphi's Object Pascal has also been provided. Appendix 3 contains the listing of Unit Arrays, which is a general purpose unit developed to make handling of large arrays easy. Several matrix calculations have been implemented which make the unit extremely useful for programmers. Appendix 4 contains the full listing of program FormK, which has been developed for chapter 2 to derive the fall stiffness matrix of a space frame node. The program picks up results from several analyses, forms a few columns of the stiffness matrix and then fills up the rest using the cyclic symmetry present in the space frame node. This program is given in full, with the intention that other researchers may find it useful to use it as-is or use after making small alterations to suit their circumstances. OOP is known for fast, reliable and easy ways of implementing modifications to existing code. Appendix 5 provides the full listing of the Object Pascal program for extracting Eigenvalues of a space truss with rigid joints or flexible joints. The incorporation of flexibility of the joints proposed in chapter 2 has been implemented. Descriptions of the program's implementations have been provided in chapter 5. Bibliography contains the alphabetical list of references.
120

Alternating current electrocoagulation (AC/EC) of fine particulate suspensions

Ifill, Roy O. Unknown Date
No description available.

Page generated in 0.0534 seconds