• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 7
  • 4
  • 3
  • Tagged with
  • 35
  • 14
  • 13
  • 11
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of 3,8-dicarbethoxyamino-2,4,7,9- tetrafluorophenanthridine and 3,8-dicarbethoxyamino-2,4,7,9- tetrafluorobenzo(c)cinnoline

Voelk, Eric K. January 1987 (has links)
No description available.
2

Validation and Uncertainty Quantification of Doublet Lattice Flight Loads using Flight Test Data

Olson, Nicholai Kenneth Keeney 19 July 2018 (has links)
This paper presents a framework for tuning, validating, and quantifying uncertainties for flight loads. The flight loads are computed using a Nastran doublet lattice model and are validated using measured data from a flight loads survey for a Cessna Model 525B business jet equipped with Tamarack® Aerospace Group’s active winglet modification, ATLAS® (Active Technology Load Alleviation System). ATLAS® allows for significant aerodynamic improvements to be realized by reducing loads to below the values of the original, unmodified airplane. Flight loads are measured using calibrated strain gages and are used to tune and validate a Nastran doublet-lattice flight loads model. Methods used to tune and validate the model include uncertainty quantification of the Nastran model form and lead to an uncertainty quantified model which can be used to estimate flight loads at any given flight condition within the operating envelope of the airplane. The methods presented herein improve the efficiency of the loads process and reduce conservatism in design loads through improved prediction techniques. Regression techniques and uncertainty quantification methods are presented to more accurately assess the complexities in comparing models to flight test results. / Master of Science / This paper presents a process for correlating analytical airplane loads models to flight test data and validating the results. The flight loads are computed using Nastran, a structural modeling tool coupled with an aerodynamic loads solver. The flight loads models are correlated to flight test data and are validated using measured data from a flight loads survey for a Cessna Model 525B business jet equipped with Tamarack ® Aerospace Group’s active winglet modification, ATLAS ® (Active Technology Load Alleviation System). ATLAS ® allows for significant aerodynamic improvements and efficiency gains to be realized by reducing loads to below the values of the original, unmodified airplane. Flight loads are measured using a series of strain gage sensors mounted on the wing. These sensors are calibrated to measure aerodynamic loads and are used to tune and validate the Nastran flight loads model. Methods used to tune and validate the model include quantification of error and uncertainties in the model. These efforts lead to a substantially increased understanding of the model limitations and uncertainties, which is especially valuable at the corners of the operating envelope of the airplane. The methods presented herein improve the efficiency of the loads process and reduce conservatism in design loads through improved prediction techniques. The results provide a greater amount of guidance for decision making throughout the design and certification of a load alleviation system and similar airplane aerodynamic improvements.
3

Les eaux géothermiques du gisement Khankala ˸ formation, utilisation, prévisions / Geothermal waters of the Khankala deposit ˸ formation, use, forecasts

Farkhutdinov, Anvar 23 December 2016 (has links)
Récemment, une attention considérable a été accordée dans le monde à l'utilisation des sources d'énergie renouvelables. Parmi celles-ci, les eaux géothermales sont d'une grande importance en raison de la sécurité écologique et de l'efficacité économique de leur utilisation. La Russie possède un fort potentiel de ressources confirmées en eau géothermale, mais aujourd'hui, seule une faible proportion est utilisée. L'un des territoires les plus prometteurs pour les eaux géothermales est la République Tchétchène, qui se trouve à la 3ème place parmi les régions russes pour les réserves opérationnelles approuvées de gisements d'eaux géothermales, parmi lesquelles la plus importante est le gisement de Khankala.Le développement durable des ressources en eaux géothermales exige une approche intégrée. L'analyse géostatistique et l'estimation, ainsi que la modélisation mathématique, peuvent jouer un rôle important dans la résolution des problèmes d'exploitation des eaux géothermales. La carte structurale estimée de la couche la plus productive (la couche XIII) et une carte 3-D de la distribution de la température dans le gisement de Khankala ont été créées en utilisant le krigeage universel. Les résultats ont montré l'importance du facteur structuraltectonique et du mouvement des eaux souterraines dans la formation du régime de température du territoire. La modélisation de l'exploitation des gisements géothermiques de Khankala a permis de prévoirl’évolution de la température, de fournir des recommandations sur l'emplacement des puits d'injection et la distance entre les impacts à la couche productive, et d'explorer d'autres scénarios d'exploitation comme l'utilisation périodique de couches par doublets.Le développement de l'utilisation des eaux géothermales présente des avantages incontestables: respect de l'environnement et renouvelabilité. Afin de développer ce domaine en République Tchétchène, le soutien de l'Etat est nécessaire. L'absence d'un cadre législatif adapté et de systèmes spéciaux d'assurance pose des problèmes. L'utilisation des eaux géothermales des quatorze gisements explorés en République Tchétchène peut constituer une contribution significative à la production locale d'énergie et à la stabilité économique de la région, tout en apportant des avantages environnementaux par le remplacement partiel des combustibles traditionnels.Le travail présenté ici est une contribution au projet de station géothermique de Khankala qui a été lancé avec succès au début de 2016. La station géothermique de Khankala représente une nouvelle étape dans l'utilisation des eaux géothermales dans le Caucase du Nord car il s’agit du seul exemple russe de station géothermique avec une boucle fermée de puits de production et d'injection (“doublet”) et 100% de réinjection du fluide utilisé dans le réservoir. / Recently, considerable attention in the world is given to the use of renewable energy sources. Among them geothermal waters are of great importance due to ecological safety and economic efficiency of their use. Russia has confirmed high potential of geothermal water resources, but today only a small proportion is used. One of the most promising areas for geothermal waters is the Chechen Republic, which is at the 3rd place among the Russian regions for approved operational reserves of geothermal waters deposits, the largest of which is the Khankala deposit.Achievement of the sustainability in geothermal waters resource development requires an integrated approach and an important role in solving the problems of exploitation of thermal waters is played by geostatistical analysis and estimation, as well as mathematical modelling. The adjusted structural map of the most productive layer (layer XIII) and a 3-D map of temperature distribution within the Khankala deposit were created using universal kriging. Results approved the importance of the structural-tectonic factor and movement of groundwater in the formation of the temperature regime of the territory. Modelling of the Khankala geothermal waters deposit exploitation allowed to make prognosis of temperature changes, to provide recommendations on injection-production wells location and distance between down holes and to explore possible further exploitation scenarios such as periodic use of different layers by doublet systems.The development of geothermal waters use has undoubted advantages – environmental friendliness and renewability. In order to develop this domain in the Chechen Republic the state support is needed. Issues are the lack of a special legislative framework and special insurance systems. Use of geothermal waters of the 14 explored deposits in Chechen Republic can be a significant contribution to local energy production and economic stability of the region while bringing the environmental benefits of traditional fuels partial replacement.The present work was a contribution to the Khankala geothermal station project, which was successfully launched in the beginning of the 2016. The Khankala geothermal station represents a new stage in use of geothermal waters in the Northern Caucasus as it is the only Russian example of geothermal station with closed loop of production and injection wells (“doublet”) with 100% reinjection of used fluid back into reservoir.
4

Direct and Indirect Searches for New Physics beyond Standard Model

Zhang, Huanian, Zhang, Huanian January 2016 (has links)
The search for new physics beyond the Standard Model can follow one of two tracks: direct searches for new particles at the collider or indirect probes for new physics from precision measurements. In the direct searches for third generation squarks in SUSY at the LHC, the common practice has been to assume a 100% decay branching fraction for a given search channel. In realistic MSSM scenarios, there is often more than one signicant decay mode present, which signicantly weakens the current search limits on third generation squarks at the LHC. On the other hand, the combination of multiple decay modes as well as the new open decay modes offer alternative discovery channels for third generation squarks searches. In this work, we present the third generation squarks decay and the collider signatures in a few representative mass parameter scenarios. We then analyze the reach of the stop/sbottom signal for the pair production in QCD at the 14 TeV LHC with 300 fb⁻¹ integrated luminosity and of the 100 TeV future collider with 3000 fb⁻¹ integrated luminosity in a few representative scenarios. In the scenario of Bino LSP with Wino NLSP, we investigate stop/sbottom pair production at the LHC with one stop/sbottom decaying via t̃ --> t𝑥[0 1], t𝑥[0 2]/b̃ --> b𝑥[0 1], b𝑥[0 2], and the other one decaying via t̃ --> b𝑥[± 1]/b̃ -->t𝑥[± 1]. With the gaugino subsequent decaying to gauge bosons or a Higgs boson 𝑥[0 2] --> 𝑍𝑥[0 1], h𝑥[0 1] and 𝑥[± 1]--> 𝑊±𝑥[0 1], leading to 𝑏𝑏𝑏𝑏𝑗𝑗𝓁 Ɇᴛ final states for the Higgs channel and 𝑏𝑏𝑗𝑗𝑗𝑗𝓁𝓁Ɇᴛ final states for the 𝑍 channel, we study the reach of those signals at the 14 TeV LHC with 300 fb⁻¹ integrated luminosity. Because the sbottom and stop signals in the same SUSY parameter scenario have indistinguishable final states, they are combined to obtain optimal sensitivity, which is about 150 GeV better than the individual reaches of the sbottom or stop. In the scenario of Bino LSP with Higgsino NLSP. The light stop pair production at the 14 TeV LHC, with stops decaying via t̃₁ --> t𝑥[0 2]/𝑥[0 3] and the neutralino subsequently decaying to a gauge boson or a Higgs boson 𝑥[0 2]/𝑥[0 3] --> 𝑥[0 1]h/𝑍, leads to tt̄hh Ɇᴛ, tt̄h𝑍 Ɇᴛ or tt̄𝑍𝑍 Ɇᴛ final states. The above decay channels give rise to final states containing one or more leptons, therefore our search strategy is to divide the signal regions based on the multiplicity of leptons. We find that the one lepton signal region of channel tt̄h𝑍 Ɇᴛ has the best reach sensitivity of light stop searches at the 14 TeV LHC with 300 fb⁻¹ integrated luminosity. We then combine all the signal regions for a given decay channel or combine all the decay channels for a given signal region to maximize the reach sensitivity of the stop search. For the light stop pair production at the √s = 100 TeV future machine with 3000 fb⁻¹ integrated luminosity, we find that a stop with a mass up to 6 TeV can be discovered at 5𝜎 signicance, while a mass up to 6.8 TeV can be excluded at 95% C.L. for the combined results of all three channels. In the indirect probes for new physics, we utilize the 𝑍-pole Oblique Parameters 𝑆,𝑇, 𝑈 and Higgs precision measurements complementarily in the framework of the Two Higgs Doublet Model at current and future colliders. The 𝑆, 𝑇 , 𝑈 is not that sensitive to the rotation angle 𝛽-𝛼, while the Higgs precision measurements set strong constrains on 𝛽-𝛼. Also the 𝑇 is very sensitive to the mass difference of Higgs bosons, leading to the mass of charged Higgs (H±) aligning either along with the mass of neutral Higgs 𝐻 or 𝐴. As for the Higgs precision measurements, we consider the tree level corrections to Higgs coupling constants as well as the radiative corrections to Higgs coupling constants at one loop level for the future collider. The combination of 𝑍-pole precision measurements and Higgs precision measurements complementarily set strong constraints on the parameter space of the 2HDM, especially in the future 𝑒⁺𝑒⁻ circular collider compared to the current collider due to much cleaner backgrounds and higher luminosity.
5

Hidden Higgses and Dark Matter at Current and Future Colliders

Pyarelal, Adarsh, Pyarelal, Adarsh January 2017 (has links)
Despite its indisputable successes, the Standard Model of particle physics (SM) is widely considered to be an effective low-energy approximation to an underlying theory that describes physics at higher energy scales. While there are many candidates for such a theory, nearly all of them predict the existence of additional particles beyond those of the Standard Model. In this work, we present three analyses aimed at discovering new particles at current and future particle colliders. The first two analyses are designed to probe extended scalar sectors, which often arise in theories beyond the Standard Model (BSM). The structure of these extended scalar sectors can be described by a physically well-motivated class of models, known collectively as Two- Higgs Doublet Models (2HDMs). The scalar mass spectrum of 2HDMs is comprised of two CP-even states h and H, a CP-odd state A, and a pair of charged states H± . Traditional searches for these states at particle colliders focus on finding them via their decays to SM particles. However, there are compelling scenarios in which these heavy scalars decay through exotic modes to non-SM final states. In certain regions of parameter space, these exotic modes can even dominate the conven- tional decay modes to SM final states, and thus provide a complementary avenue for discovering new Higgs bosons. The first analysis presented aims to discover charged Higgs bosons H± via top decay at the LHC. We find that the exotic decay modes outperform the conventional decay modes for regions of parameter space with low values of the 2HDM parameter tan β. The second analysis aims to systematically cover all the exotic decay scenarios that are consistent with theoretical and experimental con- straints, at both the 14 TeV LHC and a future 100 TeV hadron collider. We find that the preliminary results are promising - we are able to ex- clude a large swathe of 2HDM parameter space, up to scalar masses of 3.5 TeV, for a wide range of values of tan β, at a 100 TeV collider. In addition to these two analyses, we also present a third, aimed at discovering pair produced higgsinos that decay to binos at a 100 TeV collider. Higgsinos and binos are new fermion states that arise in the Minimal Supersymmetric Standard Model (MSSM). This heavily- studied model is the minimal phenomenologically viable incorporation of supersymmetry - a symmetry that connects fermions and bosons - into the Standard Model. In the scenario we consider, the bino is the lightest supersymmetric partner, which makes it a good candidate for dark matter. Using razor variables and boosted decision trees, we are able to exclude Higgsinos up to 1.8 TeV for binos up to 1.3 TeV.
6

Development of Computational Tools for Single-Cell Discovery

DePasquale, Erica January 2020 (has links)
No description available.
7

Non-migrating tides in the Martian thermosphere

Kumar, Aishwarya S. 02 August 2018 (has links)
Previous studies have identified longitudinal structures associated with non-migrating tides in observations of the upper neutral atmosphere of Mars. MAVEN’s Imaging Ultraviolet Spectrometer (IUVS) observations of the upper atmosphere reveal variations in density with longitude at altitudes of 130 – 200 km, and can be used to identify non-migrating tides. These observations cover higher latitudes and allow for studying the local time variations of tides. The analysis presented here shows that the longitudinal structure attributed to non-migrating tides is dominated by wavenumber 2 and wavenumber 3 harmonics during the periods studied. Comparison with the Neutral Ion and Gas Mass spectrometer (NGIMS) shows a good agreement in wave amplitudes observed for the first two cases studied. The temperatures and 𝑂/𝐶𝑂# ratios from the IUVS L2 data files revealed an anti-correlation with the densities which confirms the theoretical interpretation from the linear wave theory. / Master of Science / There are waves internal to all fluids in our surroundings and daily lives, such as sound waves. Waves in the atmosphere are also fluid in nature. In planetary atmospheres, the scale sizes of some of these waves become comparable to the size of the planet itself. The waves interact with the structure of the surface of Mars to form a certain type of wave called “Non-migrating tides”. These waves have been observed in multiple previous studies in the upper atmosphere of Mars (~130 km and above). These waves cause the atomic and molecular content of the upper atmosphere to be displaced in a particular manner to form a unique structure. The structures formed are observed on a scale that covers the entire planet. It is by studying these structures in the upper atmosphere that it is possible to characterize the waves that control them and thereby understand their nature and impact. Understanding how these waves vary helps spacecraft to gain better control over mechanisms required to swing them into the desired orbit (location). This study uses the observations from an instrument aboard the MAVEN mission and compares it to the observations from another instrument aboard the same mission. The results of this study demonstrate that these “Non-migrating” tides play a vital role in controlling the behavior of the upper atmosphere.
8

Direct and Indirect Searches for New Physics at the Electroweak Scale

Miao, Xinyu January 2011 (has links)
The Standard Model (SM) of particle physics is widely taken as an elegant effective theory of nature at the electroweak scale, with new physics expected at higher energy. Collider searches and other experimental inputs play a vital role in our hunt for the unknown physics, offering great insights along the way and eventually establishing the extension to the SM. Here we present our studies on prospects of direct and indirect searches for three types of models beyond the SM. The Inert Doublet Model (IDM) extends the SM electroweak sector by an extra Higgs doublet with a Z₂-symmetry. We first examine the IDM dilepton signal at the LHC with a center-of-mass energy of 14 TeV and find it exceeding SM backgrounds at 3σ–12σ significance level, with 100 fb⁻¹ integrated luminosity. We further show that it is possible to obtain the IDM trilepton signal at the 5σ significance level, with an integrated luminosity of 300 fb⁻¹. The Left-Right Twin Higgs (LRTH) model solves the little Hierarchy problem by taking the SM Higgs as a pseudo-Goldstone boson from the spontaneous breaking of a global symmetry. We focus on the discovery potential of the heavy top quark partner in the LRTH model at the LHC. With a luminosity of 30 fb⁻¹ at the early stage of the LHC operation, we conclude that the heavy top partner could be observed at a significance level above 5σ. Supersymmetric extensions of the SM enable cancellations among loop corrections to the Higgs mass from bosonic and fermionic degrees of freedom, leading to a solution to the well-known Hierarchy problem. However, the supersymmetry has to be broken by certain mechanism. We present an exploration of the B-physics observables and electroweak precision data in three distinct soft supersymmetry-breaking scenarios. Projection for future sensitivities of the precision data is also explored.
9

Creation, Verification, and Validation of a Panel Code for the Analysis of Ship Propellers in a Steady, Uniform Wake

Jennings, Stephen Gregory 05 August 2010 (has links)
This report describes the governing equation and boundary conditions for a marine propeller operating in a uniform flow field of inviscid and irrotational fluid. A method is presented by which the velocity and pressure on the blade surface of the propeller can be numerically simulated, using hyperboloidal, constant strength source and doublet panels. Accuracy of the numerical method is verified through comparison with analytically known results and the ability of the numerical simulation to predict the thrust and torque on a propeller in open water is assessed through comparison with published experimental results. The thrust and torque results for the propeller are near the experimental measurements but do not converge to a common value as the panel size decreases.
10

The Effect of Wing Damage on Aeroelastic Behavior

Conyers, Howard J. January 2009 (has links)
<p>Theoretical and experimental studies are conducted in the field of aeroelasticity. Specifically, two rectangular and one cropped delta wings with a hole are analyzed in this dissertation for their aeroelastic behavior.</p><p>The plate-like wings are modeled using the finite element method for the structural theory. Each wing is assumed to behave as a linearly elastic and isotropic, thin plate. These assumptions are those of small-deflection theory of bending which states that the plane sections initially normal to the midsurface remain plane and normal to that surface after bending. The wings are modeled in low speed flows according to potential flow theory. The potential flow is governed by the aerodynamic potential equation, a linear partial differential equation. The aerodynamic potential equation is solved using a distribution of doublets that relates pressure to downwash in the doublet lattice method. A hole in a wing-like structure is independently investigated theoretically and experimentally for its structural and aerodynamic behavior.</p><p>The aeroelastic model couples the structural and aerodynamic models using Lagrange's equations. The flutter boundary is predicted using the V-g method. Linear theoretical models are capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests. Along with flutter prediction, a brief survey on gust response and the addition of stores(missile or fuel tanks) are examined.</p> / Dissertation

Page generated in 0.0356 seconds