• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 74
  • 6
  • Tagged with
  • 156
  • 126
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The roles of protein phosphatase 2A in nuclear envelope reformation after mitosis in drosophila

Mehsen, Haytham 12 1900 (has links)
Pendant le bris de l'enveloppe nucléaire, la kinase dépendante des cyclines liée à la cycline B (CDK1-cycline B) et d'autres kinases phosphorylent des protéines nucléaires conduisant au désassemblage des complexes de protéines de l'enveloppe nucléaire. Les protéines nucléaires phosphorylées sont ensuite déphosphorylées par un groupe de phosphatases en sortie mitotique. La protéine phosphatase 2A en complexe avec la sous-unité régulatrice B55 (PP2A-B55) est connue pour être la principale phosphatase à déphosphoryler les protéines critiques à la fin de la mitose. Cependant, les substrats nucléaires déphosphorylés par PP2A-B55 à la sortie mitotique sont peu connus. En utilisant des cellules de drosophile en culture, nous avons démontré que PP2A-B55 est nécessaire pour le recrutement de protéines de l'envelope nucléaire telles que BAF, la protéine de lamina nucléaire Lamin B et la nucléoporine Nup107. De plus, nous avons trouvé que les œufs de femelles des drosophiles hétérozygotes pour une mutation dans les gènes codant pour la Lamine B et Tws (B55 chez la drosophile) n’éclosent pas. Ces œufs présentent divers défauts au stade de la méiose et des divisions nucléaires de l’embryon syncytial. De plus, des tests in vitro et d'autres analyses biochimiques indiquent que PP2A-Tws se lie et déphosphoryle BAF. J'ai d'autres résultats qui suggèrent un rôle de la protéine Ankle2 dans la régulation du recrutement de BAF pour réassembler les noyaux à la sortie mitotique. Mes résultats suggèrent également que Ankle2 en complexe avec PP2A est responsable de la bonne progression mitotique. Mes résultats mettent en évidence l'utilité de la drosophile comme système modèle dans l'étude de différents aspects du cycle cellulaire. Ils démontrent également / During nuclear envelope breakdown, the cyclin-dependent kinase 1 bound to Cyclin B (CDK1-Cyclin B) and other kinases phosphorylate a number of nuclear proteins leading to the disassembly of nuclear envelope protein complexes. Phosphorylated nuclear proteins are then dephosphorylated by a group of phosphatases at mitotic exit. The protein phosphatase 2A in complex with the regulatory subunit B55 (PP2A-B55) is known to be the major phosphatase to dephosphorylate critical proteins at the end of mitosis. However, little was known about the nuclear substrates dephosphorylated by PP2A-B55 at mitotic exit. Using Drosophila cells in culture, we demonstrated that PP2A-B55 is required for the recruitment of nuclear envelope proteins such as BAF, the nuclear lamina protein Lamin B, and the nucleoporin Nup107. Also, eggs from Drosophila females heterozygous for a mutation in genes coding for Lamin B and Tws (B55 in Drosophila), didn’t hatch. These eggs showed various defects during the nuclear division stage and meiosis. Moreover, in vitro assays and other biochemical analyses indicate that PP2A-B55 binds and dephosphorylates BAF. I have other results that suggest a role of the protein Ankle2 in regulating BAF recruitment to reassembling nuclei at mitotic exit. My results also suggest that Ankle2 in complex with PP2A is responsible for the proper mitotic progression. Our results highlight the importance of Drosophila in investigating different aspects of the cell cycle. It also demonstrates a role of PP2A in the nuclear envelope reformation at the end of mitosis.
112

Role of odorant-binding proteins in Drosophila melanogaster chemosensory perception / Rôles des protéines de liaison aux odorants dans la chimioperception chez Drosophila melanogaster

Rihani, Karen 17 October 2019 (has links)
La perception des signaux chimiques de l’environnement est un processus nécessaire aux interactions sociales entre les animaux. La Drosophile détecte les molécules odorantes et sapides grâce à ses systèmes gustatif et olfactif impliquant plusieurs familles multigèniques de chimiorécepteurs. Ainsi, ces composés chimiques pénétrant dans l'organe sensoriel (sensille) doivent être solubilisés avant d'être transportés à travers la lymphe sensillaire hydrophile baignant les dendrites des neurones chimiosensoriels. Ces événements périrecepteurs font intervenir plusieurs familles de protéines solubles parmi lesquelles se trouvent les odorant-binding proteins (OBPs). Si les OBPs ont été initialement identifiées dans les sensilles olfactives, certaines sont également exprimées dans les sensilles gustatives. La fonction physiologique des OBPs est encore peu connue mais certaines études révèlent que ces protéines agissent comme transporteurs de molécules lipophiles. Les affinités relativement faibles des OBPs pour les odorants ainsi que leur abondance dans la lymphe sensillaire suggèrent que ces protéines peuvent se lier, solubiliser et transporter des molécules hydrophobes jusqu’aux chimiorécepteurs en traversant la lymphe sensillaire hydrophile. De nouveaux rôles ont été attribués aux OBPs, et en particulier leur capacité à «tamponner» des changements soudains de concentrations d'odorants et leur implication dans la détection de l’humidité. Récemment, l’OBP49a exprimée dans les sensilles gustatives, a été montrée comme étant impliquée dans la détection de certains composés amers. Comme le rôle pérircepteur des OBPs reste encore très peu compris, l'objectif de mon projet de thèse a consisté à clarifier l'implication de certaines OBPs dans l'odorat et le goût chez Drosophila melanogaster. Ma thèse a d’abord consisté à mesurer le rôle des OBPs dans la perception des composés alimentaires chez les adultes D. melanogaster. Les OBPs exprimées dans les appendices gustatifs ont été identifiées par q-PCR et produites en utilisant un système d'expression hétérologue, la levure. Les propriétés de liaison des OBPs recombinantes purifiées ont ensuite été testées pour leur capacité à lier de nombreux ligands potentiels. L’OBP19b est capable de lier certains acides aminés. La cartographie des sensilles et des cellules exprimant l’OBP19b révèle que cette protéine est uniquement exprimée dans certaines cellules accessoires de sensilles précises du labellum. L’OBP19b a été aussi localisée dans le tube digestif et dans certains organes reproducteurs. La comparaison des réponses comportementales et électrophysiologiques sensillaires des mouches témoins et des mouches transgéniques a confirmé que l’OBP19b est impliquée dans la détection de certains acides aminés. De plus, la comparaison des séquences protéique a révélé sa relativement haute conservation au sein des espèces de Drosophilidae et même entre Diptères, ce qui suggère qu’elle joue un rôle crucial vis-à-vis de la recherche de nutriments chez ce groupe d’espèces. J’ai ensuite étudié le rôle de l’OBP28a dans l’olfaction. Cette OBP, l’une des plus abondante dans les antennes de Drosophile, a été montrée importante pour tamponner les variations soudaines de concentrations d'odorants. Des études structurales, génétiques, biochimiques, comportementales et électrophysiologiques ont été réalisées en collaboration avec les membres de l’équipe. L’OBP28a a d'abord été exprimée puis purifiée et sa structure 3D a été résolue. L'étude de ses propriétés de liaison a révélé la capacité de l'OBP28a à se lier à des composés floraux tels que la β-ionone. Les mesures comportementales et électrophysiologiques ont confirmé son rôle physiologique dans la détection de la β-ionone. En conclusion, ma thèse de doctorat met en évidence les rôles nouveaux de deux OBPs dans la chimioréception: l’OBP28a est impliquée dans le détection de molécules florales alors que l’OBP19b est nécessaire pour détecter certains acides aminés. / Chemoperception is used by animals to detect nutritive food and avoid toxic compounds. It also allows animals to identify suitable ecological niche and mating partners. Like many other insects, Drosophila melanogaster possesses a very sensitive chemosensory ability and can detect and discriminate a wide panel of semiochemicals. Chemosensory detection is mostly mediated by olfactory and gustatory systems involving several multigene chemoreceptor families. Volatile and non-volatile chemical compounds entering the sensory organ (sensillum) must be solubilized before being transported through the hydrophilic sensillum lymph bathing the dendrites of chemosensory neurons. These perireceptor events involve a family of soluble proteins named odorant-binding proteins (OBPs). Despite the fact that OBPs were initially found in olfactory sensilla, some OBPs are also expressed in gustatory sensilla. While their physiological roles in olfaction and gustation remain unclear, many studies suggest that OBPs transport lipophilic chemicals. The relatively low affinity of OBPs for odorants and their high abundance in the sensillum lymph both suggest that OBPs can bind, solubilize and transport hydrophobic stimuli to the chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted “transporter role” hypothesis, OBPs have also been proposed to buffer sudden changes in odorant levels and to be involved in hygroreception. The role of OBP49a was recently shown in taste: this OBP, expressed in the gustatory system, is required to detect some bitter compounds. However, the role of OBPs in perireceptor events remains largely unknown. The main goal of my thesis project consisted to investigate the involvement of OBPs in the smell and taste sensory modalities using a multi-faceted approach in Drosophila melanogaster.My first research axis consisted to better understand the role of OBPs in the perception of food compounds by using both in vitro and in vivo approaches of OBPs expressed in the gustatory appendages of D. melanogaster adults. After identifying by q-PCR the OBPs expressed in gustatory appendages, we produced them using a heterologous yeast expression system. Then, the binding properties of the recombinant purified OBP were investigated. Our binding assay screen revealed that the taste-expressed OBP19b is able to bind some amino acids. The expression of OBP19b was mapped in specific accessory cells in a subset of proboscis sensilla. This OBP was also expressed in the digestive tract and in some internal reproductive organs. The comparison of behavioural and single-taste sensilla responses between transgenic variants and control flies supported our finding that OBP19b is indeed involved in the detection of some amino acids. Finally, the comparison between various dipteran insects of the OBP19b-like protein coding sequence indicates the relatively high conservation of this protein suggesting its critical role in food search.The second research axis of my PhD thesis focused on the olfactory role of OBP28a. OBP28a was previously shown to be highly expressed in the Drosophila antennae and proposed to buffer quantitative odour variations. To better understand the physiological role of this OBP, and in collaboration with different members of the team, we used structural, genetic, biochemical, behavioural and electrophysiological methods to better understand the role of this OBP. OBP28a was first heterologously expressed and purified. The folding of OBP28a was then determined and the protein was crystallized. The study of the binding properties of OBP28a revealed that it can bind floral compounds such as β-ionone. Behavioural and electrophysiological recordings supported the physiological role of OBP28a in β-ionone detection. In summary, this PhD thesis reveals novel roles of two OBPs in perireceptor chemoreception: OBP28a in the detection of floral compounds and OBP19b in the detection of some amino acids.
113

Photoentrainment of the Drosophila circadian clock through visual system / Synchronisation de l'horloge circadienne chez la Drosophile par le système visuel

Alejevski, Faredin 25 June 2018 (has links)
La rotation de la Terre oblige les organismes vivants à s’adapter aux modifications cycliques de l’environnement, et tout particulièrement aux changements de lumière et de température. Des unicellulaires à l’Homme, la plupart des espèces ont développé des horloges circadiennes, qui leur permettent d’anticiper les transitions jour-nuit. La lumière constitue le signal majeur pour la synchronisation de l’horloge. En cycles jour-nuit, les drosophiles présentent un profil d’activité locomotrice bimodal, avec un premier pic autour de l’aube et le deuxième au crépuscule. Chez cet insecte, la perception de la lumière est assurée à la fois par un système complexe, constitué des yeux composés, des ocelles et de l’eyelet d’Hofbauer-Buchner. Ces organes contiennent des photorécepteurs (PRs) exprimant six protéines photosensibles différentes, les rhodopsines (Rh1 à Rh6). Une septième rhodopsine (Rh7) a été décrite dans quelques neurones de l’horloge cérébrale. La lumière est également perçue directement dans la plupart des neurones d’horloge grâce à une protéine photosensible, le cryptochrome (Cry). Les différentes études du rôle de la lumière sur l’entraînement de l’horloge ont essentiellement porté sur la voie cry-dépendante, en utilisant de courts flashs lumineux pour recaler l’horloge cérébrale. Notre étude s’est intéressée à l’entraînement de l’horloge via les rhodopsines. Quels types de photorécepteur sont impliqués ? Après l’activation de la cascade de phototransduction et la libération de l’histamine par les photorécepteurs, quels neurones, exprimant les récepteurs à l’histamine Ort et Hiscl1, participent à l’entraînement de l’horloge circadienne ? Une première partie présente l’étude de l’implication des 6 rhodopsines dans l’entraînement circadien. Tout d’abord, nous avons mis en évidence la fonction de photorécepteurs spécifiques (exprimant Rh1 ou Rh6) dans la voie NorpA-dépendante (Saint-Charles et al. J Comp Neurol 2016). Nous avons ensuite généré des lignées de drosophiles n’exprimant aucune ou qu’une seule rhodopsine. Sans rhodopsine ni Cry les mouches sont incapables de se synchroniser sur les cycles jour-nuit, quelle que soit l’intensité lumineuse. En lumière faible, l’input pour l’entraînement vient principalement des photorécepteurs exprimant Rh1 et Rh6. En forte lumière, chacune des 6 rhodopsines des différents photorécepteurs est capable d’entrainer l’horloge, Rh1, Rh5 et Rh6 étant les plus efficaces ( Alejevski et al., in prep). Une deuxième partie présente la caractérisation des voies neuronales connectant directement ou indirectement les PRs à l’horloge cérébrale. L’horloge circadienne de mouches mutantes, à la fois pour le cryptochrome et les 2 récepteurs à l’histamine, est « aveugle » alors que les mutantes pour Cry mais possédant l’un ou l’autre récepteur à l’histamine sont capables de se synchroniser sur les cycles de lumière. La ré-expression chez les mutants de Ort ou Hiscl1 dans les neurones d’horloge ne restaure pas l’entraînement, suggérant ainsi l’absence de connexions directes entre les PRs histaminergiques et les neurones d’horloge. Nos expériences de sauvetage comportemental mettent en évidence des connexions fonctionnelles entre certains interneurones Ort des lobes optiques et les neurones d’horloge. En revanche et de façon inattendue, nous n’observons d’entraînement circadien que lorsque nous ré-exprimons Hiscl1 dans les seuls PRs Rh6. Nos résultats révèlent que les photorécepteurs interviennent dans l’entraînement à la fois comme photorécepteurs et comme interneurones, cibles d’input histaminergique, rappelant ainsi le double rôle des cellules ganglionnaires de la rétine exprimant la mélanopsine chez les mammifères (Alejevski et al. Nat Commun, in revision). / The rotation of the earth forces living organisms to adapt to its cyclic environment, in particular light and temperature changes. From unicellular organisms to humans, almost all species have evolved circadian clocks, which allow them to anticipate day-night transitions and use light as the most powerful synchronizing cue. In light-dark cycles, D. melanogaster flies display a bimodal locomotor activity with peaks around dawn and dusk. To perceive light, Drosophila has evolved a complex visual system, composed of compound eyes, ocelli and Hofbauer-Buchner eyelet. These organs contain photoreceptors (PRs) expressing six different light receptors named rhodopsins (Rh1 to Rh6). In addition, one rhodopsin (Rh7) is found in some of the clock neurons in the brain. Most of the clock cells also express another type of light receptor, Cryptochrome (Cry). Most studies about clock entrainment by light have focused on the Cry-dependent light input, which allows short light pulses to reset the brain clock. The present thesis focuses on the entrainment of the brain clock through rhodopsins. In photoreceptors, rhodopsins capture photons and activate a transduction cascade, where a key player is the phospholipase C (PLC) encoded by norpA. Mutants deficient for Cry and NorpA do not synchronize at low light intensity but still entrain with high light, indicating that an unknown NorpA-independent pathway is also used by the clock. Light induces a depolarization of the PRs, which release histamine as a neurotransmitter, but their role in circadian entrainment is unknown. Which type of rhodopsine-expressing photoreceptors are implicated? After the phototransduction cascade activation and the release of histamine from the photoreceptors, which downstream neurons expressing the histamine-gated chloride channels Ort and Hiscl1 (whose function has been studied in the visual behavior) are involved in the circadian entrainment? The first part of the thesis was to study the function of the 6 PR rhodopsins in circadian entrainment. I first contributed to studying the function of the specific photoreceptors in the NorpA-dependent pathway (Saint-Charles et al. J Comp Neurol 2016). Then, we generated genotypes having either none or only one of the six PR rhodopsins. Mutants with no Cry and none of the 6 PR rhodopsins could not synchronize with light-dark (LD) cycles (low light or high light). In low light, Rh1 and Rh6 were the main light input for entrainment. In high-light, each one of the 6 PR rhodopsins can provide entrainment, with Rh1, Rh5 and Rh6 being the most efficient (Alejevski et al., in prep).The second part of the work was to identify the neuronal pathways that connect the PRs to the brain circadian clock. Flies deficient for Cry and the two histamine receptors are circadianly blind, whereas Cry mutants having either Ort or Hiscl1 are able to entrain. Thus, each one of the two receptors supports circadian entrainment. Rescuing Ort or Hiscl1 in the clock cells could not restore entrainment, indicating that there is no direct histaminergic connection between PRs and clock neurons. Our rescue experiments revealed several pathways in otic lobes that rely on Ort-expressing interneurons to entrain the clock. In contrast and unexpectedly, we observed that the expression of Hiscl1 in PRs but not in interneurons was involved in circadian entrainment. In fact, only Hiscl1 expression in Rh6 PRs mediates entrainment. Our work thus reveals Rh6-expressing PRs as both photoreceptors and histamine-receiving interneurons in the rhodopsin-dependent entrainment pathway, which recalls the role of melanopsin-expressing retinal ganglion cells in the mammalian retina (Alejevski et al. Nat Commun, in revision).
114

Etude de la biologie des clusters de piRNAs chez Drosophila melanogaster en utilisant comme modèle le locus flamenco / Biology of a piRNA cluster in Drosophila Melanogaster : flamenco as a model

Mouniée, Nolwenn 16 July 2019 (has links)
Les éléments transposables (ETs) sont des séquences d'ADN mobiles retrouvées dans les génomes de toutes les espèces où ils ont été recherchés. Moteurs de l'évolution, ces éléments mobiles, présents en de nombreuses copies dans les génomes, ont joué un rôle majeur dans la dynamique des génomes en engendrant des mutations et des réarrangements chromosomiques.Néanmoins, étant des constituants majeurs des génomes, ils doivent être finement régulés dans le but de préserver l'intégrité génomique, et ainsi de conserver l'équilibre entre variabilité et stabilité des génomes. Afin de protéger l'information génétique de l'hôte transmise à la descendance, la régulation des ETs au niveau des gonades est effectuée par la voie des piRNAs, voie d'ARN interférent conservée chez les animaux. Bien qu'elle soit relativement bien décrite chez la drosophile et la souris, certaines étapes de cette voie restent encore incomprises. Durant ma thèse, j’ai exploré différents aspects de la biologie des clusters de piRNAs, en prenant comme modèle d’étude le locus flamenco. Le cluster de piRNAs flamenco est le producteur majeur de piRNAs dans les cellules folliculaires des ovaires de Drosophila melanogaster. Tout d'abord, j'ai analysé les fenêtres spatio-temporelles de l’expression du cluster de piRNAs flamenco tout au long du développement de la drosophile,de l'embryon à l'âge adulte. Ensuite, j'ai recherché, in vivo, la séquence des transcrits de flamenco qui serait suffisante pour induire l'adressage d'un transcrit chimérique à la voie de maturation des piRNAs. J'ai également exploré l'impact de certains facteurs sur la prise en charge de transcrits artificiels par la voie des piRNAs. Enfin, je me suis intéressée à la régulation génique que pourraient effectuer les piRNAs provenant de flamenco dans les ovaires de drosophile en recherchant, par des approches bioinformatiques et de biologie moléculaire, les gènes potentiellement reconnus, et par conséquent, régulés par les piRNAs de flamenco. L'ensemble de ces axes de recherche in vivo permettront d'avancer dans la compréhension de la biologie des clusters de piRNAs ainsi que sur les mécanismes moléculaires mis en jeu lors de la biogenèse des piRNAs chez la drosophile. / Transposable elements (TEs) are defined such as mobile DNA sequences found in genomes ofall species where they were searched. As evolutionary drivers, these mobile elements, presentin many copies in genomes, have played a major role in the genome dynamics by generatingmutations and chromosomal rearrangements. Nevertheless, being major genome constituents,they must be finely regulated in order to preserve the genomic integrity, and thus, to maintainthe balance between variability and stability of genomes. In order to protect the geneticinformation of the host transmitted to the offspring, the gonadal TE regulation is carried outby the piRNAs pathway, an interfering RNA pathway conserved in animals. Although this isrelatively well described in Drosophila and in mouse, some steps of piRNA pathway are stillmisunderstood. During my thesis, I explored various aspects of piRNA cluster biology, usingthe flamenco locus as a model. This piRNA cluster is the main piRNA producer in thefollicular cells of Drosophila melanogaster ovaries. First, I analyzed the spatio-temporalwindows of flamenco piRNA cluster expression throughout the Drosophila development,from embryo to adulthood. Then, I searched, in vivo, the flamenco transcript sequence thatwould be sufficient to induce the addressing of a chimeric transcript to the piRNA processingpathway. I also explored the impact of some factors on the management of artificialtranscripts by piRNAs. Finally, I was interested in the gene regulation that flamenco-derivedpiRNAs could make in Drosophila ovaries by searching, through bioinformatics andmolecular biology approaches, the potentially recognized genes, and therefore, regulated byflamenco piRNAs. All of these in vivo research axes will advance in the understanding of thebiology of piRNA clusters as well as the molecular mechanisms involved in the piRNAbiogenesis in Drosophila.
115

Fonctions des déubiquitinases dans l'inflammation et l'autophagie. Régulation de la voie du TNF-R1 des mammifères par USP36 et crible génétique pour l'identification des déubiquitinases impliquées dans l'autophagie chez la drosophile / Functions of deubiquitinating enzymes in inflammation and autophagy : Regulation of the mammalian TNF-R1 pathway by USP36 and genetic screening to identify deubiquitinating enzymes involved in autophagy in Drosophila

Jacomin, Anne-Claire 28 February 2014 (has links)
La survie des êtres vivants repose sur leur capacité d'adaptation à leur environnement et au maintien de l'homéostasie cellulaire. Au cours de mon doctorat, je me suis intéressée à deux de ces aspects : d'abord à la réponse immunitaire innée et inflammatoire par l'étude des voies associées aux facteurs de transcription NF-kB et ensuite à l'autophagie, qui consiste en la capacité d'une cellule à dégrader certains composants cellulaires ou des pathogènes intracellulaires. La rapidité d'activation/inactivation de ces processus cellulaires est permise par des modifications post-traductionnelles de certains acteurs parmi lesquelles l'ubiquitination des protéines, qui consiste en la liaison covalente de mono- ou polymères d'ubiquitines sur des protéines, et qui apparaît désormais comme un mécanisme majeur. Dans ce contexte, mes travaux ont consisté d'une part, en la mise en évidence de la fonction de la déubiquitinase USP36 dans la régulation de la voie immunitaire NF-B associée au récepteur 1 au TNFa (TNF-R1) en cellules humaines en culture. J'ai montré par des approches de biologie cellulaire et de biochimie qu'USP36 est un régulateur négatif spécifique de cette voie et est constitutivement associée au récepteur, contribuant ainsi à la régulation de l'ubiquitination de RIP1, un composant essentiel de la voie du TNF-R1. De cette étude, nous avons conclu qu'USP36 est un acteur clé de la voie du TNF-R1 permettant la répression de la voie en absence d'activation et favorisant un retour à l'état stationnaire en réponse à une stimulation au TNFa. D'autre part, mes travaux ont consisté en la réalisation d'un crible génétique in vivo chez la Drosophile pour l'identification de déubiquitinases impliquées dans la régulation de l'autophagie. J'ai identifié UBPY et USP12 dont la perte de fonction affecte à la fois la progression de l'autophagie et de l'endocytose. A partir de l'étude de ces enzymes, nous avons pu établir qu'une voie endocytaire intacte est requise pour le bon fonctionnement de l'autophagie. / The survival of living organisms is based on their ability to adapt to their environment and to maintain their cellular integrity. During my PhD, I was interested in two of these aspects: first, the innate immunity and inflammatory response through the study of the NF-kB-associated pathways, and then in autophagy, consisting in the ability of a cell to degrade some cellular components or intracellular pathogens. The rapid activation/inactivation of these cellular processes is permitted by the post-translational modifications of some components. Among these changes, protein ubiquitination, consisting in the covalent binding of ubiquitin mono- or polymers on target proteins, appears to be an essential mechanism. In this context, my work consisted on one hand, in showing the function of the deubiquitinating enzyme USP36 in the regulation of the immune pathway depending on the TNFa-associated receptor 1 (TNF -R1) pathway in cultured human cells. Using cellular and biochemical approaches, I showed that USP36 is a specific negative regulator of this pathway, constitutively associated with the receptor and which contributes to the regulation of the ubiquitination status of RIP1, which plays a major role in signal transduction. From this study, we conclude that USP36 is a key component of the TNF-R1 pathway, allowing for the repression of this pathway without stimulation and promoting the return to the steady-state after TNFa; treatment. On the other hand, I performed a genetic screen in vivo in Drosophila for the identification of deubiquitinating enzymes involved in regulating autophagy. I identified UBPY and USP12, whose loss-of-function affects both progression of autophagy and endocytosis. Further investigations allowed us to establish that an intact endocytic pathway is required for productive autophagy.
116

Rôle de la voie de signalisation Insuline dans le couplage des informations nutritionnelles et développementales au cours de l'ovogenèse chez la drosophile

Jouandin, Patrick 06 December 2013 (has links) (PDF)
Au cours de l'ovogenèse, les stades vitellogéniques nécessitent une énergie considérable, et leur formation doit être ajustée en fonction d'autres besoins physiologiques. En utilisant la drosophile comme modèle, j'ai montré que la signalisation Insuline régule une transition du cycle cellulaire, mitose/ endocyle (M/E), une étape critique qui contrôle l'entrée des follicules en vitellogenèse. Mes travaux montrent que la transition M/E porte le rôle d'un point de contrôle nutritionnel. La carence protéique induit un blocage de cette transition au travers d'une interaction entre FoxO, Cut et Notch, empêchant une perte d'énergie. Ce blocage reste réversible, autorisant la reprise de l'ovogenèse sous retour à une alimentation normale. Ce travail montre qu'un point de contrôle nutritionnel au cours de l'ovogenèse permet de coupler des signaux métaboliques et développementaux pour protéger les tissus des dommages liés à la carence. D'autre part, j'ai montré que la signalisation Insuline contrôle la migration d'une cohorte de cellules d'origine épithéliale pour assurer la fertilité de l'ovocyte. L'insuline participe à la formation d'extensions cytoplasmiques riches en actine. Lors de ce processus, la signalisation Insuline contrôle notamment l'expression de chickadee, qui code pour la Profiline, une protéine nécessaire pour la polymérisation de l'actine qui permet la motilité des cellules. L'ensemble de ce travail montre que des tissus somatiques assurent l'homéostasie de l'ovogenèse malgré des conditions de nutritions fluctuantes. Ces travaux posent les bases de l'étude de nouveaux aspects de l'ovogenèse, potentiellement conservés chez les mammifères.
117

Caractérisation du décalage du cadre de lecture de la protéine ataxine-3

Therrien, Martine 11 1900 (has links)
Les expansions du codon CAG (polyQ) sont impliquées dans neuf maladies neurodégénératives. Notre groupe a démontré que, lors de la traduction de la protéine ataxine-3 (Atx3) mutée qui est impliquée dans l’ataxie spinocérébelleuse de type 3 (SCA3), un changement du cadre de lecture vers un cadre décalé -1 (GCA) se produit. La traduction dans ce nouveau cadre de lecture entraine la production de polyalanine et ceci amplifierait la toxicité des polyQ. Le changement de cadre de lecture (ccl) ribosomique peut se produire des virus aux mammifères mais peu de choses sont connues sur son impact chez l’humain. Afin d’étudier ce phénomène dans la protéine Atx3 avec expansion de polyQ, nous avons établi un modèle de Drosophile transgénique et testé si c’était l’ARNm ou la protéine mutée qui était toxique. Nous avons aussi employé un essai de toeprinting (TP) afin d’identifier l’emplacement précis où les ribosomes changent de cadre de lecture sur l’ARNm. Nos résultats indiquent que la toxicité est due à la présence de polyalanines faisant suite au ccl et que l’ARNm en soi n’est pas la cause directe de la toxicité. De plus, nous avons observé que les ribosomes s’arrêtent au 48ième codon glutamine et que cet arrêt est spécifique aux polyQ. L’arrêt des ribosomes a d’ailleurs aussi été observé dans d’autres maladies avec expansions de polyQ. Puisque ces maladies ont des caractéristiques communes, un blocage de ce ccl pourrait atténuer les symptômes des patients SCA3 et d’autres maladies à expansions de polyQ / Coding CAG repeat disorders have been associated with nine neurodegenerative disorders. Our group has previously shown that during the translation of mutant ataxine-3 (Atx3), the protein involved in Spinocerebellar Ataxia type 3 (SCA3), a ribosomal frameshift occurs and leads to the reading of a GCA frame rather than a CAG frame. This new reading frame causes the production of polyalanine in the polyglutamine peptide which increases its toxicity. Ribosomal frameshifts are known to occur in all organisms but little is known about this phenomenon in human. To study ribosomal frameshift along the ATXN3 transcript, we generated a transgenic Drosophila model in which we looked at the toxicity of the mRNA. Also, we developed a toeprinting assay to precisely evaluate where the change of reading frame occurs along the mRNA. Our results suggest that the toxicity observed in our Drosophila model results from the production of polyalanine and not from the presence of the mRNA per se. Moreover, the change in reading frame seems to occur at the 48th CAG codon and this pausing of the ribosome also occurs in other polyQ tracts. Because CAG repeat disorders share many characteristics, an alteration of the frameshift could alleviate symptoms of SCA3 patients as well as of many other diseases with coding CAG repeats.
118

Expression et évolution du phénotype étendu dans une association parasitoïde-virus / Expression and evolution of the extended phenotype in a parasitoid-virus association

Martinez, Julien 20 December 2011 (has links)
L’expression du phénotype des organismes dépend en partie d’organismes symbiotiques avec qui ils sont en interaction étroite. Selon le mode de transmission du symbiote, ce dernier va être en conflit d’intérêt plus ou moins intense avec l’hôte pour l’expression du phénotype, conduisant parfois le symbiote à évoluer vers la manipulation du phénotype de l’hôte. Nous avons tenté d’identifier différents facteurs génétiques et environnementaux influençant l’expression et l’évolution de la manipulation chez l’insecte parasitoïde de larves de drosophiles, Leptopilina boulardi, et son virus manipulateur du comportement, LbFV. Ce virus bénéficie d’une transmission mixte, verticale et horizontale, cette dernière étant favorisée par l’induction de superparasitisme induite par le virus. L’étude de la contribution du génotype du parasitoïde dans l’expression de la manipulation a révélé la présence de gènes de résistance partielle à la manipulation. Le potentiel évolutif de cette résistance a ensuite été évalué par des expériences d’évolution expérimentale. Nous avons également montré que LbFV augmente la virulence du parasitoïde envers les larves de drosophiles, révélant ainsi une évolution vers une forme de mutualisme sur ce trait. Par ailleurs, le travail montre qu’un même parasitoïde peut être non seulement infecté par plusieurs souches du virus LbFV mais également infecté par un virus à ARN, décrit pour la première fois dans cette thèse. La transmission verticale, la prévalence élevée et les forts effets phénotypiques de ce virus soulignent de nouveau l’importance des virus dans l’expression du phénotype en population naturelle. / The expression of the phenotype of an individual depends partly on the presence of symbiotic organisms with which it engages in intimate interactions. According to the symbiont’s mode of transmission, the conflict of interest between the host and its symbiont for the expression of the phenotype can be more or less stronger, sometimes leading to the evolution of manipulation of the host phenotype by the symbiont. We attempted to identify different genetic and environmental factors influencing the expression and the evolution of manipulation in the Drosophila parasitoid wasp, Leptopilina boulardi, and its behavior manipulating virus, LbFV. The virus undergoes both vertical and horizontal transmission, the latter being favoured by the induction of superparasitism behaviour by the virus. The study of the contribution of the parasitoid genotype to the expression of the manipulation revealed a polymorphism in the resistance to the manipulation. The evolutionary potential of this resistance was then investigated using a protocol of experimental evolution. We also demonstrated that LbFV increases the virulence of the parasitoid towards its Drosophila host, revealing a form of mutualistic interaction on this trait. Additionally, we showed that an individual parasitoid can be coinfected by several LbFV strains but also by an RNA virus, described for the first time in this thesis. The vertical transmission, the high prevalence and the strong phenotypic effects of this new virus further highlights the importance of viruses in the expression of the phenotype in natural populations.
119

Microscope à illumination structurée par micro-miroirs pour l’étude in-vivo du cerveau de la drosophile / Micromirror structured illumination microscope for in-vivo drosophila brain imaging

Masson, Aurore 16 October 2013 (has links)
Le développement des senseurs protéiques et des outils optogénétiques au cours des dernières années a donné une place particulière à la microscopie pour l’étude des processus moléculaires in-vivo. L’équipe « Nano-optique et physiologie intégrée » développe des montages optiques originaux pour exploiter ces nouveaux outils chez le petit animal vivant en collaboration avec des neurobiologistes. Nous nous intéressons en particulier à l’organisation cellulaire et à l’activité des réseaux neuronaux impliqués dans la mémorisation associative olfactive de la drosophile. En amont, mon travail de thèse a été de mettre en place un microscope grand champ, basé sur le principe de la microscopie à HiLo, permettant l’acquisition rapide de sections optiques et la reconstruction tridimensionnelle de réseaux neuronaux. Après avoir prouvé la pertinence de l’approche choisie lorsqu’elle est associée aux outils génétiques permettant un marquage sélectif des neurones, le cœur de mon travail fut le développement d’un montage original permettant d’atteindre les objectifs de résolution spatiale et de vitesse. Son originalité se situe dans l’utilisation de la technologie des matrices de micro-miroirs (DLP) pour structurer l’illumination. Ce système de micro-miroirs pilotables peut moduler le faisceau d’une source LED haute puissance à haute cadence. Dans une seconde partie, j’ai caractérisé ce microscope et réalisé de premières expériences in-vivo avec les développements spécifiques nécessaires à ces expériences. En particulier, en utilisant un rapporteur protéique calcique fluorescent, GCamP3, j’ai montré que l’on pouvait suivre, dans des régions ciblées du cerveau, la réponse à des stimulations physiologiques à cadence vidéo. / In the last decades, optogenetic and protein reporter development have given a special place to optical microscopy for in-vivo investigation of biological molecular processes. Our team, “Nano-optics and integrated physiology”, develops optical set-ups to take advantage of these tools on small living animals, in collaboration with neurobiologists. We are particularly interested both in the cellular organization and neural activity involved in the olfactory memory formation in drosophila. Upstream to these investigations, my PhD research aimed at developing a new implementation for wide-field microscopy based on the HiLo concept. The new design took advantage of the micro-mirror array technology (DLP) to structure the illumination. This system can modulate the beam made by a high power LED illumination with high acquisition rates. I characterized this microscope and realized preliminary in-vivo experiments with specific developments made for physiological experiments under the microscope. Thus, I demonstrated both high spatial resolution imaging and a tenfold increase of speed with respect to confocal microscopy. I reached acquisition rates compatible with 3D monitoring of specific neural networks.
120

Modularity and Plasticity of olfactory learning and memory in Drosophila / Modularité et plasticité de l’apprentissage et mémoire olfactive chez Drosophila melanogaster

Lagasse, Fabrice 16 December 2011 (has links)
La cognition se réfère aux mécanismes par lequel l’animal perçoit, apprend, mémorise et agit selon les informations auquel il est confronte dans son environnement. Les animaux on chacun leur propre monde sensoriel et il est primordial qu’ils s’y adaptent en développant des compétences spécialisées en fonction des informations sensorielles qui lui sont le plus utile. Il en est de même des informations qu’il est utile de stocker afin de pouvoir les utiliser ultérieurement. Les mécanismes sous-jacents à ces processus d’adaptation comportementale sont lies à la plasticité du système. Comment cette plasticité permet la mise en place de modules adaptatif reste actuellement une question sans complète explication. Le thème de cette thèse porte sur la plasticité et la modularité des capacités d’apprentissage et de mémoire olfactive chez Drosophila melanogaster. Dans la nature, la drosophile est confrontée à des environnements sensoriels complexes comprenant plusieurs stimuli sensoriels qu’elle doit associées à des renforcements négatifs ou positifs selon les conditions. En laboratoire il est possible de reproduire ce genre d’événement et j’ai ainsi pu tester le niveau d’adaptation des drosophiles à différent niveaux de traitement de l’information. Je démontre dans ce manuscrit que l’adaptation se produit à différents niveaux que ce soit la perception de l’information, les mécanismes de stockage des informations pertinentes et aussi la mise a jour de mémoires qui ne sont plus utiles. Ces processus ont révèle l’existence de modules cognitifs plus ou moins spécialisés qui permettent a l’animal de s’adapter spécifiquement a son milieu. De plus, la réalisation d’une sélection artificielle sur les compétences à stocker les informations révèle l’implication de l’évolution dans la mise en place de ces modules. / Cognition refers to the mechanisms by which animals acquire, store, process and act on information from the environment and this include perception, learning, memory and decision making. Animals have their own perceptual world and adaptation seems to be crucial in order to survive by developing specialized ability in regard of the relevance of each sensory information. The process of storage is another mechanism important for adaptation because learned information can be retained from one occasion to the next. The underlying mechanisms of behavioral adaptation are based on the learning and phenotypic plasticity. How this plasticity induces the formation of these adaptive specialized modules still remains unsolved. The general aim of this PhD hold on the modularity and plasticity of olfactory learning and memory ability in Drosophila melanogaster. Drosophila is always confronted to complex environments with generally more than one stimulus that need to be associated with positive or negative reinforcements. In laboratory, it is possible to reproduce that kind of behavior in various protocols of associative learning. I tested adaptation processes at different level of information processing. I demonstrate in this manuscript that adaptation occurs at each level: perception of complex stimuli, storage of relevant information and also update of memory trace not relevant anymore. This processes revealed the existence of adaptive modules more or less specialized that allows the animal to adapt to its specific environment. Moreover, artificial selection on specific memory ability demonstrates the implication of evolution in the modularity of animal cognition.

Page generated in 0.0359 seconds