• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 24
  • 9
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 32
  • 30
  • 24
  • 20
  • 16
  • 16
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Synthesis and electrochemical modulation of the actuator properties of poly(phenazine-2,3-diimino (pyrrol-2-yl)).

Botha, Shanielle Veronique. January 2008 (has links)
<p>The focus of this study is to synthesize a novel hinged polymer actuator. The linking molecule (hinge) is phenazine with interconnected dipyrrole units.</p>
52

POLYMER MICELLES FOR TUNABLE DRUG RELEASE AND ENHANCED ANTITUMOR EFFICACY

Ponta, Andrei G 01 January 2013 (has links)
Cancer remains a leading cause of death in the United States. The most common treatment options include chemotherapy, but poor solubility, adverse side effects and differential drug sensitivity hamper clinical applications. Current chemotherapy generally aims to deliver drugs at the limit of toxicity, assuming that higher dosage increases efficacy, with little attention paid to potential benefits of tunable release. Growing evidence suggests that releasing drugs at a constant rate will be as effective as a single bolus dose. To test this hypothesis, it is critical to develop drug delivery systems that fine-tune drug release and elucidate the impact of tunable drug release rates on chemotherapeutic efficacy. Block copolymer micelles, spherical nanoassemblies with a core-shell structure, are widely used in recent research. Micelles for this study were engineered to release a model drug (doxorubicin: DOX) at differential rates under acidic conditions, corresponding to tumor tissue (pH < 7). Three specific aims were pursued: to develop drug carriers capable of tuning drug release rates; to determine activity of developed carriers in vitro; and to elucidate effects of tunable drug release rates in vivo. Block copolymers with covalently linked DOX were synthesized and self-associated, forming micelles. Drug binding linkers (glycine, aminobenzoate, or hydrazide) were used to tune release of DOX. Micelles were characterized to determine physicochemical properties such as particle size, drug entrapment yields, and drug release parameters. Characterization revealed that drug release profiles were modulated by interchanging drug binding linkers. Micelles were evaluated in vitro to elucidate the effect of tunable drug release. Micelles delivered drugs at a slower, prolonged rate compared to free DOX. Cytotoxicity and cellular internalization analysis revealed that by slowing release rates, micelles kill cells more efficiently. Biodistribution studies showed that micelles decrease DOX accumulation in peripheral tissue while increasing the maximum tolerated dose. Antitumor activity studies verified that micelles with slower release rates better suppressed tumor growth. This further confirms that release rates play a key role in chemotherapeutic efficacy. Therefore, this thesis provides better insights into the effects of tunable drug release in tumors, leading the way for improved chemotherapy treatments in the future.
53

The in vitro and in vivo pharmacokinetic parameters of polylactic-co-glycolic acid nanoparticles encapsulating anti-tuberculosis drugs / L.L.I.J. Booysen

Booysen, Laetitia Lucretia Ismarelda Josephine January 2012 (has links)
Tuberculosis (TB) is an infectious, deadly disease, caused by Mycobacterium tuberculosis (M.tb). In 2010, there were 8,8 million incident cases of TB globally. South Africa currently has the third highest TB incident cases worldwide. In an attempt to address the challenges facing TB chemotherapy, among which frequent dosing and long duration of therapy resulting in poor patient compliance, a novel poly(DL-lactic-co-glycolic) acid (PLGA) nanoparticulate drug delivery system (DDS) encapsulating anti-TB drugs was developed. It is hypothesised that this nanoparticulate DDS will address the challenges mentioned by enabling decreased dosing frequency, shortening duration of therapy and minimising adverse side effects. Therefore, favourable modification of pharmacodynamic (PD) and pharmacokinetic (PK) properties of the conventional anti-TB drugs was demonstrated. Furthermore, the nanoparticles will provide a platform for drug delivery to macrophages that serve as hosts for M.tb. The study design was based on determining specific physicochemical properties of the nanoparticulate DDS to elucidate the hypothesis. Spray-dried PLGA nanoparticles were prepared using the double emulsion solvent evaporation technique. In vivo analysis of macrophage uptake and possible immunological response in mice were evaluated. In vitro protein-binding assays of PLGA nanoparticles encapsulating anti-TB drugs isoniazid (INH) and rifampicin (RIF) were performed with subsequent in vivo tissue distribution assays to support protein-binding data generated. Finally, PK/PD analyses were conducted to evaluate the effect of nanoencapsulation on the anti-TB drugs. These involved in vitro assays to determine if sufficient drug was released from the nanoparticles to exhibit minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). Furthermore, in vivo drug distribution and drug release kinetics assays of encapsulated RIF, INH, pyrazinamide (PZA) and ethambutol (ETB) in a mouse model were performed. The results confirmed that the PLGA nanoparticles (<250 nm, low positive zeta potential) were taken up by macrophages in vivo with no significant immunological effect. Furthermore the nanoparticles were present in the brain, heart, kidneys, lungs, liver and spleen for up to 7 days following once-off oral dosing at 13.23± 0.11%, 16.81± 0.11%, 54.89± 0.95%, 15.61± 1.15%, 48.48± 2.28% and 5.73± 0.21%, respectively. This was further confirmed by drug analysis demonstrating the presence of INH, RIF and ETB at different time points up to 7 days in the lungs, kidneys, liver and spleen. However, PZA was not detected. Nanoencapsulated RIF and INH exhibited MICs and MBCs in vitro over 14 days and these drugs were also observed in plasma for up to 7 days post once-off oral dosing. ETB and PZA were observed up to 3 days. From the results generated, it can be concluded that the nanoparticles were taken up by macrophages without eliciting an immune response. This provides a platform for drug delivery to specific sites. Furthermore, the nanoparticulate DDS exhibited sustained drug release in vitro and in vivo over a number of days above the MIC for the drugs analysed. Sustained drug distribution was also observed. It can therefore be concluded that the hypothesised reduction in dose frequency and duration of therapy for this DDS is a possibility / Thesis (PhD (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013
54

The in vitro and in vivo pharmacokinetic parameters of polylactic-co-glycolic acid nanoparticles encapsulating anti-tuberculosis drugs / L.L.I.J. Booysen

Booysen, Laetitia Lucretia Ismarelda Josephine January 2012 (has links)
Tuberculosis (TB) is an infectious, deadly disease, caused by Mycobacterium tuberculosis (M.tb). In 2010, there were 8,8 million incident cases of TB globally. South Africa currently has the third highest TB incident cases worldwide. In an attempt to address the challenges facing TB chemotherapy, among which frequent dosing and long duration of therapy resulting in poor patient compliance, a novel poly(DL-lactic-co-glycolic) acid (PLGA) nanoparticulate drug delivery system (DDS) encapsulating anti-TB drugs was developed. It is hypothesised that this nanoparticulate DDS will address the challenges mentioned by enabling decreased dosing frequency, shortening duration of therapy and minimising adverse side effects. Therefore, favourable modification of pharmacodynamic (PD) and pharmacokinetic (PK) properties of the conventional anti-TB drugs was demonstrated. Furthermore, the nanoparticles will provide a platform for drug delivery to macrophages that serve as hosts for M.tb. The study design was based on determining specific physicochemical properties of the nanoparticulate DDS to elucidate the hypothesis. Spray-dried PLGA nanoparticles were prepared using the double emulsion solvent evaporation technique. In vivo analysis of macrophage uptake and possible immunological response in mice were evaluated. In vitro protein-binding assays of PLGA nanoparticles encapsulating anti-TB drugs isoniazid (INH) and rifampicin (RIF) were performed with subsequent in vivo tissue distribution assays to support protein-binding data generated. Finally, PK/PD analyses were conducted to evaluate the effect of nanoencapsulation on the anti-TB drugs. These involved in vitro assays to determine if sufficient drug was released from the nanoparticles to exhibit minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). Furthermore, in vivo drug distribution and drug release kinetics assays of encapsulated RIF, INH, pyrazinamide (PZA) and ethambutol (ETB) in a mouse model were performed. The results confirmed that the PLGA nanoparticles (<250 nm, low positive zeta potential) were taken up by macrophages in vivo with no significant immunological effect. Furthermore the nanoparticles were present in the brain, heart, kidneys, lungs, liver and spleen for up to 7 days following once-off oral dosing at 13.23± 0.11%, 16.81± 0.11%, 54.89± 0.95%, 15.61± 1.15%, 48.48± 2.28% and 5.73± 0.21%, respectively. This was further confirmed by drug analysis demonstrating the presence of INH, RIF and ETB at different time points up to 7 days in the lungs, kidneys, liver and spleen. However, PZA was not detected. Nanoencapsulated RIF and INH exhibited MICs and MBCs in vitro over 14 days and these drugs were also observed in plasma for up to 7 days post once-off oral dosing. ETB and PZA were observed up to 3 days. From the results generated, it can be concluded that the nanoparticles were taken up by macrophages without eliciting an immune response. This provides a platform for drug delivery to specific sites. Furthermore, the nanoparticulate DDS exhibited sustained drug release in vitro and in vivo over a number of days above the MIC for the drugs analysed. Sustained drug distribution was also observed. It can therefore be concluded that the hypothesised reduction in dose frequency and duration of therapy for this DDS is a possibility / Thesis (PhD (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013
55

Synthesis and electrochemical modulation of the actuator properties of poly(phenazine-2,3-diimino (pyrrol-2-yl))

Botha, Shanielle Veronique January 2008 (has links)
Magister Scientiae - MSc / The focus of this study is to synthesize a novel hinged polymer actuator. The linking molecule (hinge) is phenazine with interconnected dipyrrole units. / South Africa
56

Desenvolvimento de redes metalo-orgânicas a base de ciclodextrina para liberação controlada de fármaco / Development of metal-organic framework based on cyclodextrin for drug release

Abuçafy, Marina Paiva [UNESP] 30 May 2016 (has links)
Submitted by MARINA PAIVA ABUCAFY null (marina.abucafy@gmail.com) on 2016-06-28T01:55:31Z No. of bitstreams: 1 dissertacao_27_06_16_corrigida.pdf: 3474917 bytes, checksum: 405eb7947595098d4116f5f388b038cd (MD5) / Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo: O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija esta informação e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2016-06-29T14:46:10Z (GMT) / Submitted by MARINA PAIVA ABUCAFY null (marina.abucafy@gmail.com) on 2016-07-05T13:34:54Z No. of bitstreams: 1 dissertacao_marina.pdf: 3546765 bytes, checksum: cbf086b9c8ef98e5961d1869ae54063b (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-07-06T19:42:38Z (GMT) No. of bitstreams: 1 abucafy_mp_me_arafcf.pdf: 3546765 bytes, checksum: cbf086b9c8ef98e5961d1869ae54063b (MD5) / Made available in DSpace on 2016-07-06T19:42:38Z (GMT). No. of bitstreams: 1 abucafy_mp_me_arafcf.pdf: 3546765 bytes, checksum: cbf086b9c8ef98e5961d1869ae54063b (MD5) Previous issue date: 2016-05-30 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O avanço no desenvolvimento de novos sistemas carreadores de fármacos tem contribuído na melhoria da qualidade de vida no que diz respeito a diminuir os efeitos colaterais dos fármacos e aumentar a sobrevida dos pacientes. Visando superar as limitações dos carreadores já explorados pela literatura, busca-se desenvolver novos materiais carreadores que apresentem maior capacidade de encapsulamento de fármaco. Entre esses novos materiais existem as redes metalo- orgânicas (MOFs), que são constituídas por ligantes orgânicos e centros metálicos que se unem formando redes cristalinas e altamente porosas. Assim, o foco desse trabalho foi sintetizar e caracterizar as MOFs a base de ciclodextrina, e diferentes metais como potássio (γ-KCD), sódio (γ-NaCD) e ferro (γ-FeCD), além de avaliar a capacidade de liberação de fármaco dessas materiais. As MOFs foram sintetizadas seguindo uma metodologia descrita na literatura, com algumas modificações: a ciclodextrina e o sal de metal foram solubilizados em água e em seguida colocados em difusão em metanol, após a formação dos cristais, os mesmos foram ativados com diclorometano. Os difratogramas de raios- X (DRX) mostraram a cristalinidade do material e a presença de picos característicos das MOFs a base de ciclodextrina, relatado na literatura. As análises térmicas (TG e DSC) confirmam a formação das redes através da ligação entre a ciclodextrina e o metal. As micrografias da microscopia eletrônica de varredura (MEV) mostram que as diferentes geometrias das estruturas formadas, como cúbicas para γ-KCD e γ-NaCD e forma de bastões para γ-FeCD, além de que após a ativação é possível evidenciar a presença de poros. O fármaco modelo, diclofenaco de sódio, foi incorporado nas MOFs, o que foi confirmado através da espectroscopia vibracional no infravermelho (IV), e os resultados mostram que o material apresenta alta eficiência de encapsulação, superior a 60%. Os perfis de liberação obtidos demonstraram um efeito de controle da liberação do fármaco em PBS, sugerindo que a liberação do fármaco ocorre devido à combinação de dois ou mais processos, como a difusão do fármaco e erosão da rede metalo-orgânica. Desta maneira, é possível afirmar que as MOFs desenvolvidas são biocompatíveis, apresentam grande capacidade de encapsular fármaco além de apresentarem comportamento de liberação controlada. / The development of new drug carrier systems has contributed to improving the quality of life with respect to lessen the side effects of drugs and increase patient survival. Aiming to overcome the limitations of carriers already explored in the literature, we seek to develop new carrier materials that have higher drug encapsulation capacity. Among these new materials are the organic metallo networks (MOFs), which are formed by organic ligands and metal centers that combine to form crystalline and highly porous network. Thus, the focus of this work was to synthesize and characterize MOFs cyclodextrin basis, different metals such as potassium (γ-KCD), sodium (γ-NACD) and iron (γ-FECD), and to evaluate the release capacity of these drug materials. The MOFs were synthesized following a method described in the literature with some modifications: the cyclodextrin and the metal salt were solubilized in water and then placed in methanol diffusion after formation of the crystals, they were activated with dichloromethane. The -ray diffraction (XRD) showed the crystallinity and the presence of characteristic peaks of MOFs cyclodextrin base, reported in the literature. The thermal analysis (TG and DSC) confirmed the formation of networks by linking the cyclodextrin and the metal. The micrographs of scanning electron microscopy (SEM) show that different geometries of structures formed as cubical for γ-KCD and γ-NACD and form of sticks for γ-FECD, and that after activation is possible to demonstrate the presence of pores. The model drug, sodium diclofenac, was incorporated in MOFs, which was confirmed by vibrational infrared spectroscopy (IR), and the results show that the material has a high encapsulation efficiency greater than 60%. The obtained release profiles showed a drug release control effect in PBS, suggesting that drug release occurs due to the combination of two or more processes, such as diffusion of the drug and erosion of the metal-organic framework. In this way, we can say that the developed MOFs are biocompatible, have great ability to encapsulate the drug in addition to having controlled release behavior. / FAPESP: 2014/10888-1
57

Hidroxiapatita mesoporosa pura e modificada organicamente com grupos nitrogenados síntese, caracterização e uso como carreadora de fármacos / Pure Mesoporous Hydroxyapatite and Modified Organically with Nitrogen-containing Groups - Synthesis, Characterization and Use as Drug Delivery Materials

Silva, Oberto Grangeiro da 23 October 2010 (has links)
Made available in DSpace on 2015-05-14T13:21:07Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3294045 bytes, checksum: 7c607c275b5a8128ac7f6746b18d8ec1 (MD5) Previous issue date: 2010-10-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Mesoporous materials present a highly ordered porous arrangement with narrow pore size distribution and high specific surface area, which are interesting features for adsorption and release of bioactive molecules. Another important feature of these solids is the presence of free hydroxyl groups on the pore walls that can react with functional organic moieties. Mesoporous solids have been synthesized by using specific molecules as templates which had to controlled polymerization in reactions. Thus, the present thesis describes the synthesis of mesoporous hydroxyapatite by using casein as a novel template. The mesoporous solids were functionalized with 3-aminepropyl-, 3-propylethylenediamine-, 3-propyldiethylenetriaminetrimethoxysilanes. The precursor and the modified phosphates derived from the silanization reactions were characterized by N2 adsorption, elemental analysis, X-ray diffraction, infrared spectroscopy, solid state 31P and 13C NMR, thermogravimetry and scanning electron microscopy (SEM). Both regular and mesoporous hydroxyapatites were studied on their ability to uptake and release bobine soroalbumine (BSA) from aqueous solutions. BSA was chosem as model guest compound. The nitrogen adsorption isotherms showed that structural aspects of the mesoporous hydroxyapatite are controlled by tuning experimental parameters, such as the calcination temperature, surfactant concentration, and pH. These isotherms also showed that casein is a promising biotemplate for synthesizing mesoporous calcium phosphates with improved values of specific surface area, such as 106 m2 g-1, which are higher than those found in the literature for analogous materials. Additionally, the template extraction was carried out during the washing process with water only, which avoided the need of spending time and energy with the calcinations step, and confirmed casein as an excellent template/surfactant in the synthesis of mesostructured materials. The BSA release kinetics decreased considerably as the silane amount increased on the silica surface. The organofunctionalized solids showed a lower BSA release rate, which decreased as the organic length chain increased. Thus, the amount of the organic groups, which contains nitrogen basic centers and interacts with BSA, controls the release process. The isotherms for releasing BSA showed a two step profile, with a fast release at the beginning, followed by a slower release rate, which fit the diffusion model proposed by Higuchi. / Materiais mesoporosos apresentam um arranjo de poros ordenados e uma distribuição de poros muito estreita aliada a altas áreas superficiais, que são características estruturais interessantes para adsorção e liberação de moléculas bioativas. Outra característica relevante desses sólidos é a presença dos grupos hidroxilas livres nas paredes dos poros que podem reagir com grupos orgânicos funcionais. Os sólidos mesoporosos têm sidos sintetizados pelo uso de esceficas moléculas atuando como direcionadores na polimerização. Neste contexto, o presente trabalho descreve a síntese de hidroxiapatita mesoporosa utilizando caseína como um novo direcionador. As matrizes mesoporosas foram funcionalizadas covalentemente com aminopropil-, propiletilenodiamino-, propildietilenotriaminotrimetoxissilano. Os fosfatos precursores e derivados das reações de silanização foram caracterizados pelas técnicas de adsoção de N2, análise elementar, difração de Raios-X, espectroscopia na região do infravermelho, RMN CP/MAS de 31P e 13C, termogravimetria e microscopia eletrônica de varredura (MEV). Os sólidos precursores e modifcados foram aplicados para estudos de emissão da soroalbumina bovina (BSA) em solução aquosa. BSA foi escolhida como molécula modelo. As isotermas obtidas através da adsorção de N2 demonstraram que as características estruturais da hidroxipatita mesoporosa podem ser controladas modificando parâmetros, tais como temperatura de calcinação, pH de síntese e concentração do surfactante. Estas isotermas também indicam que a caseína é um promissor biosurfactante na síntese de fosfatos de cálcio mesoporosos, obtendo áreas superficiais de 106 m2.g-1, cujo valor é superior aos dados disponíveis na literatura. Os resultados comprovaram que a extração do surfactante foi realizada durante o processo de lavagem dos sólidos, este fato credencia a caseína como um excelente biosurfactante na síntese de materiais mesoestruturados. A modificação superficial da hidroxiapatita mesoporosa com os agentes sililantes nitrogenados diminuiu consideravelmente a cinética de liberação da BSA. Os sólidos organicamente funcionalizados apresentaram uma taxa de liberação mais lenta, que diminuindo à medida que a cadeia orgânica do agente sililante aumentou. Isto mostra que os grupos orgânicos presentes neste sólido agem como uma barreira temporária que evita a rápida liberação da BSA. As isotermas de liberação de BSA mostraram perfis de liberação em duas etapas, uma liberação rápida inicial seguida por uma mais lenta, o que caracteriza que estes materiais se adequaram ao modelo de liberação através do mecanismo de difusão proposto por Higuchi.
58

Efeito de resinas experimentais contendo inibidores de proteases da matriz sobre gelatinases e colagenases / Effect of experimental resins containing protease inhibitors on gelatinases and collagenase

Bruno Lara Zarella 26 March 2013 (has links)
A evolução das resinas compostas fez com que esses materiais passassem a ter uma durabilidade maior e características estéticas muito boas, mas o risco de cárie recorrente é ainda um problema a ser resolvido. Na tentativa de solucionar esse problema, estudos vêm sendo conduzidos na tentativa de se formularem resinas compostas contendo agentes antibacterianos, como é o caso da incorporação de clorexidina (CHX). Outro fato que impede a longevidade deste material é a degradação de matriz de colágeno por proteases ativadas por pH ácido. Para tentar contornar esse problema, a adição de clorexidina, assim como Epigallocatechin gallate (EGCg), clássicos antibacterianos e inibidores de proteases da matriz , como as metaloproteinases da matriz (MMP) a resinas, poderia melhorar a eficácia destes materiais como substitutos de dentina em procedimentos restauradores, aumentando a longevidade do tratamento restaurador, mediante preservação das propriedades mecânicas do material. Assim, o objetivo desse estudo é avaliar o poder de inibição de resinas experimentais contendo inibidores conhecidos de proteases da matriz sobre gelatinases e colagenase. Para isso, copolímeros experimentais foram preparados combinando Bis-GMA com o diluente TEGDMA (70/30 mol%). Com exceção do copolímero placebo (sem drogas), EGCg ou CHX foram incorporados a 1% em peso isoladamente ou em combinação, a 0,5% em peso cada. Amostras contendo EGCg, CHX ou EGCg e CHX concentradas 10X foram obtidas do armazenamento de espécimes polimerizados da resina experimental em água deionizada (1 mL) após o período de 24h a 37°C e sua posterior concentração. O efeito da ação dos inibidores foi checado por zimografia e confirmado por um ensaio enzimático específico para colagenases e gelatinases. Os dados passaram por teste de homogeneidade (Bartlett) e normalidade (Kolmogorov-Smirnov) e foram avaliados por ANOVA a 2 critérios, seguido pelo teste de Bonferroni para comparações individuais (p<0,05). Os resultados do presente estudo, mostraram que, in vitro, a liberação de EGCg e CHX incorporados em resinas é capaz de reduzir a atividade gelatinolítica das MMPs -2 e -9, bem como a atividade da colagenase bacteriana, sugerindo um efeito potencial no aumento da longevidade de restaurações de resinas. Com isso, podemos afirmar que a liberação de ativos de resinas experimentais é possível e que esses ativos são capazes de inibir as MMPs, assim sugerindo um novo substituto para dentina em procedimentos restauradores. / The evolution of composite resins made these materials to have a greater durability and very good esthetics characteristics, but the risk of recurrent caries is still a problem to be solved. In the attempt to solve this problem, studies are being conducted with the purpose to formulate composite resins containing antibacterial agents, such as chlorhexidine (CHX). Another fact that prevents the longevity of this material is the degradation of the collagen matrix by the proteases activated by acidic pH. In order to solve this problem, the addition of chlorhexidine and/or Epigallocatechin gallate (EGCg), classical antibacterial agents and inhibitors of matrix proteases, such as matrix metalloproteinases (MMP) in resins, could improve the efficacy of these materials as dentin substitutes in restorative procedures, increasing the longevity of the restorative treatment, while preserving the mechanical properties of the material. Thus, the aim of this study is to evaluate the ability of experimental resins containing known matrix protease inhibitors on the inhibition of gelatinases and collagenase. For this purpose, experimental copolymers were prepared combining Bis-GMA with the diluent TEGDMA (70/30 mol%). Except for the placebo copolymer (drug free), EGCg or CHX were incorporated at 1% in weight, isolated or in combination (0.5% in weight each). Samples containing EGCg, CHX or EGCg and CHX concentrated 10X were obtained after storage of polymerized specimens of the experimental resin in deionized water (1 mL) after the period of 24 h, at 37°C and after that were concentra. The effect of the action of the inhibitors was checked by zymography and confirmed by an enzymatic test specific for collagenases and gelatinases. The data passed in the tests of homogeneity (Bartlett test) and normality (Kolmogorov-Smirnov test), and were evaluated by 2-way ANOVA, followed by Bonferroni test for individual comparisons (p<0.05). The results of this study showed that the in vitro release of EGCG and CHX incorporated in resins was able to reduce the gelatinolytic activity of MMPs-2 and -9 and bacterial collagenase activity, suggesting a potential effect in increasing the longevity of resin restorations. It can be concluded that the release of drugs from experimental resins is possible and that these drugs are able to inhibit MMPs, thereby suggesting a new substitute for dentin in restorative procedures.
59

Polymeric controlled release film coatings / Films d'enrobage polymérique pour des formes galéniques solides à libération contrôlée

Fahier, Julie 25 October 2016 (has links)
Les mini-granules enrobées offrent un grand potentiel pour la libération contrôlée de médicament par voie orale. Cependant, les mécanismes de libération impliqués ne sont pas toujours élucidés et compris. Ainsi, l’impact de certains paramètres de formulation peut être surprenant. Par exemple, il a été démontré dans ce travail :- La libération du propranolol HCl à partir de mini-granules enrobées avec du Kollicoat SR est plus lente si les mini-granules sont composées de noyaux de sucre comparé à des noyaux de cellulose microcristalline (CMC).Généralement, la tendance inverse est observée, car les noyaux de sucre ont une activité osmotique attirant plus rapidement l’eau à l’intérieur du système et entrainant ainsi, une dissolution et diffusion de la substance active. Ce résultat inattendu est dû à une association de 2 phénomènes : (i) l’effet plastifiant dû au sucre sur le film de Kollicoat SR et (ii) la diminution de la solubilité de cette SA dans le milieu de dissolution en présence de sucre dissous.De plus, le Kollicoat SR 30 D [dispersion aqueuse de poly(vinyl pyrrolidone)] offre des possibilités intéressantes de formulation par sa haute flexibilité et ses propriétés mécaniques stables. En revanche, les mini-granules composées de noyaux de sucre ont tendance à gonfler de par le cumul de l’activité osmotique du noyau et de la SA jusqu’à l’apparition de « cracks », révélés par des images obtenues par micro tomographie à rayons X.- Lorsqu’on augmente la quantité en propranolol HCl dans le système, la cinétique de libération est augmentée, particulièrement avec les mini-granules composées de noyaux de CMC.L’opposé est souvent constaté car accroitre la quantité de SA nécessite un plus grand apport en eau afin de pouvoir tout dissoudre. Les mini-granules à base de CMC présentent probablement des « cracks » malgré un faible gonflement du système, et sont accentués par l’augmentation de la concentration en propranolol HCl.En conclusion, des nouvelles connaissances sur les mécanismes de libération à partir de mini-granules enrobées avec du Kollicoat SR ont été apportées et l’importance du type de SA et la nature du noyau composant le système ont été élucidées.- Dans une deuxième partie, des mini-granules enrobées avec un mélange de polymère (Aquacoat ECD et Eudragit NM 30 D) ont été formulées dans le but de libérer la diprophylline, SA modèle, par diffusion à travers le film de polymère et de pouvoir modéliser sa cinétique à partir de modèles mathématiques. / Polymer coated pellets offer a great potential for control drug delivery system. Nevertheless, the underlying drug release mechanisms can be complex and are not fully understood. Thus, the impact of formulation parameters can be surprising. For example, it has been demonstrated during this thesis that:- The release of propranolol HCl was slower from sugar-based pellets coated with Kollicoat SR compared to microcrystalline cellulose (MCC)-based pellets.Generally, the opposite was observed because the sugar cores are osmotically active attracting more and more water into the system leading to a fast dissolution and diffusion of the drug, especially with high water-soluble drug. This unexpected result is due to a combination of two phenomena: (i) The plasticizing effect of sugar for the film coating and (ii) Decrease in drug solubility in the release medium due to the presence of co-dissolved sugar.In addition, Kollicoat SR 30 D [an aqueous dispersion of poly(vinyl acetate) also containing small amounts of poly(vinyl pyrrolidone) and sodium lauryl sulfate] is a very interesting polymer owing to its high flexibility and stable mechanical properties. However, sugar-based pellets tend to swell by the osmotic pressure created by the high water-soluble API and the sugar until crack formation, clearly visible on the images obtained by X-ray micro tomography.- Propranolol HCl release in phosphate buffer pH 7.4 increases by increasing the drug loading into the system, especially from MCC-based pellets.The opposite was often observed since the amount of water within the drug reservoir might not be sufficient to dissolve all drug. MCC-based pellets likely presented also cracks despite a low swelling of the system, accentuated by the increase of propranolol HCl concentration.To conclude, new insights on the underlying drug release mechanisms from Kollicoat SR coated pellets were provided. The importance of the type of drug and the nature of starter cores were elucidated.- In the second part, diprophylline loaded pellets coated with a polymer blend composed of Aquacoat ECD and Eudragit NM were prepared in order to control the drug release only by diffusion through the intact polymeric film and to predict the drug kinetics using mathematical models.
60

Microneedle assisted percutaneous delivery of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel

Nayak, Atul January 2016 (has links)
Local anaesthetic drugs are usually administered as symptom relieving drug formulations for the treatment of pain in superficial skin extremities. The anaesthesia is delivered into skin tissues at the site of pain because of nociceptive receptors. Concerns that exist regarding local anaesthetic drug formulations are low drug encapsulation efficiency, polydispersity of colloidal formulations, chemical interactions of released local anaesthetic drug with skin proteins and bulk viscoelastic properties. Complimenting drug formulation characteristics are the desirable rates of controlled release of drug molecules from chosen formulations pertaining to favourable in vitro skin permeation kinetics are imperative pharmaceutics based research areas because skin percutaneous delivery has distinct barrier property restrictions for passive diffusion (PD) of active molecules. Lidocaine is currently the active anaesthetic molecule of choice in local anaesthesia by clinicians because of minimum toxicity and good potency. It is a low molecular weight drug comprising of electron donating and electron withdrawing functional groups with the capacity to interact by hydrogen bonding and electrostatic interactions with several drug formulation vehicles. In this work, a naturally occurring bi-polymeric formulation was achieved with lidocaine NaCMC:gelatine hydrogel. Lidocaine NaCMC:gelatine ratio of 1:2.3 was the most favourable formulation because of faster skin permeation kinetics. Lidocaine NaCMC:gelatine 1:2.7 provided the highest drug encapsulation efficiency. This resulted in high, sustained permeation rates after adaptation of the microneedle (MN) poke and patch technique, past the stratum corneum layer of skin for quick target delivery in attaining a maximum permeation flux of near 6.0 μg/cm2/h in the hypodermis layer. Mass balance of in vitro studies using an indirect approach to quantify lidocaine permeation showed significant lidocaine permeation in skin. Subsequent vertical and horizontal (depth averaged) in vitro studies using similar MN techniques resulted in crossing minimum therapeutic level across a 10 mm radius from the epicentre of the skin sample at major reduced lag times of minutes for vertical permeation and within 0.5 hours for horizontal permeation. Furthermore, the spreadability of lidocaine NaCMC:gelatine hydrogel shows favourability in the control of droplet spreading on MN treated skin.

Page generated in 0.0681 seconds