Spelling suggestions: "subject:"erloading"" "subject:"exploading""
171 |
Multiaxial Fatigue and Deformation Including Non-proportional Hardening and Variable Amplitude Loading EffectsShamsaei, Nima 03 September 2010 (has links)
No description available.
|
172 |
A Finite Difference Approach to Modeling High Velocity/Variable Loads using the Timoshenko Beam ModelStaley, Alan Joseph 05 May 2011 (has links)
Electromagnetic launchers (railguns) are set to replace traditional large caliber ship mounted cannons in the near future. The success of the railgun depends heavily upon a comprehensive understanding of beam behavior during periods of heavy dynamic loading. It is hypothesized that the combination of velocity transition effects, electromagnetic loading, and other non-linear or design specific effects contribute to areas of high stresses/strains over the length of the rail/beam during launch.
This paper outlines the use of the Timoshenko beam model, a model which builds upon the traditional Bernoulli-Euler beam theory with the addition of shear deformation and rotary inertia effects, a necessity for high wave velocities. Real-world experimental setups are simplified and approximated by a series of linear springs and dampers for model prediction and validation.
The Timoshenko beam model is solved using finite difference (FD) methods for the approximation of spatial derivatives and MATLAB ordinary differential equation (ODE) solvers. The model shows good convergence and precision over a large range of system parameters including load velocities, foundation stiffness values, and beam dimensions. Comparison to experimental strain data has validated model accuracy to an acceptable level. Accuracy is further enhanced with the inclusion of damping and non-linear or piecewise effects used to mimic experimental observations. The MATLAB software package presents a valid preliminary analysis tool for railgun beam and foundation design while offering advantages in ease of use, computation time, and system requirements when compared to traditional FEA tools. / Master of Science
|
173 |
Analysis of a Rotary Ultrasonic Motor for Application in Force-Feel SystemsMurphy, Devon Patrick 26 September 2008 (has links)
A qualitative analysis of a rotary traveling wave-type ultrasonic motor (USM) used to supply feedback forces in force-feel systems is carried out. Prior to simulation, the subsystems and contact mechanics needed to define the motor's equations of motion are discussed along with the pitfalls of modeling a USM. A mathematical model is assembled and simulated in MATLAB Simulink. Accompanying the dynamic model, a new reduced model is presented from which predictions of USM performance can be made without a complicated dynamic model. Outputs from the reduced model are compared with those of the dynamic model to show the differences in the transient solution, agreement in the steady state solution, and above all that it is an efficient tool for approximating a motor's steady state response as a function of varying the motor parameters. In addition, the reduced model provides the means of exploring the USMs response to additive loading, loads acting in the direction of motor motion, where only resistive loads, those opposite to the motor rotation, had been considered previously. Fundamental differences between force-feel systems comprising standard DC brushless motors as the feedback actuators and the proposed system using the USM are explained by referencing the USM contact mechanics. Outputs from USM model simulations are explored, and methods by which the motor can be implemented in the force-feel system are derived and proven through simulation. The results show that USMs, while capable of providing feedback forces in feel systems, are far from ideal for the task. The speed and position of the motor can be controlled through varying stator excitation parameters, but the transient motor output torque cannot; it is solely a function of the motor load, whether additive or resistive. / Master of Science
|
174 |
Characterisation of time-dependent mechanical behaviour of trabecular bone and its constituentsXie, Shuqiao January 2018 (has links)
Trabecular bone is a porous composite material which consists of a mineral phase (mainly hydroxyapatite), organic phase (mostly type I collagen) and water assembled into a complex, hierarchical structure. In biomechanical modelling, its mechanical response to loads is generally assumed to be instantaneous, i.e. it is treated as a time-independent material. It is, however, recognised that the response of trabecular bone to loads is time-dependent. Study of this time-dependent behaviour is important in several contexts such as: to understand energy dissipation ability of bone; to understand the age-related non-traumatic fractures; to predict implant loosening due to cyclic loading; to understand progressive vertebral deformity; and for pre-clinical evaluation of total joint replacement. To investigate time-dependent behaviour, bovine trabecular bone samples were subjected to compressive loading, creep, unloading and recovery at multiple load levels (corresponding to apparent strain of 2,000-25,000 με). The results show that: the time-dependent behaviour of trabecular bone comprises of both recoverable and irrecoverable strains; the strain response is nonlinearly related to applied load levels; and the response is associated with bone volume fraction. It was found that bone with low porosity demonstrates elastic stiffening followed by elastic softening, while elastic softening is demonstrated by porous bone at relatively low loads. Linear, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic constitutive models were developed to predict trabecular bone's time-dependent behaviour. Nonlinear viscoelastic constitutive model was found to predict the recovery behaviour well, while nonlinear viscoelastic-viscoplastic model predicts the full creep-recovery behaviour reasonably well. Depending on the requirements all these models can be used to incorporate time-dependent behaviour in finite element models. To evaluate the contribution of the key constituents of trabecular bone and its microstructure, tests were conducted on demineralised and deproteinised samples. Reversed cyclic loading experiments (tension to compression) were conducted on demineralised trabecular bone samples. It was found that demineralised bone exhibits asymmetric mechanical response - elastic stiffening in tension and softening in compression. This tension to compression transition was found to be smooth. Tensile multiple-load-creep-unload-recovery experiments on demineralised trabecular samples show irrecoverable strain (or residual strain) even at the low stress levels. Demineralised trabecular bone samples demonstrate elastic stiffening with increasing load levels in tension, and their time-dependent behaviour is nonlinear with respect to applied loads . Nonlinear viscoelastic constitutive model was developed which can predict its recovery behaviour well. Experiments on deproteinised samples showed that their modulus and strength are reasonably well related to bone volume fraction. The study considers an application of time-dependent behaviour of trabecular bone. Time-dependent properties are assigned to trabecular bone in a bone-screw system, in which the screw is subjected to cyclic loading. It is found that separation between bone and the screw at the interface can increase with increasing number of cycles which can accentuate loosening. The relative larger deformation occurs when this system to be loaded at the higher loading frequency. The deformation at the bone-screw interface is related to trabecular bone's bone volume fraction; screws in a more porous bone are at a higher risk of loosening.
|
175 |
Storey-Based Stability Analysis for Multi-Storey Unbraced Frames Subjected to Variable LoadingWang, Xiaohong 27 June 2008 (has links)
For decades, structural engineers have been using various conventional design approaches for assessing the strength and stability of framed structures for various loads. Today, engineers are still designing without some critical information to insure that their stability assessment yields a safe design for the life of the structure with consideration for extreme loads. Presented in this thesis is new critical information provided from the study of stability analysis and design of steel framed structures accounting for extreme loads associated to load patterns that may be experienced during their lifetime. It is conducted in five main parts. A literature survey is first carried out reviewing the previous research of analyzing frame stability including the consideration of initial geometric imperfections, and also evaluating research of the analysis and design of the increased usage of cold-formed steel (CFS) storage racks. Secondly, the elastic buckling loads for single-storey unbraced steel frames subjected to variable loading is extended to multi-storey unbraced steel frames. The formulations and procedures are developed for the multi-storey unbraced steel frames subjected to variable loading using the storey-based buckling method. Numerical examples are presented as comparisons to the conventional proportional loading approach and to demonstrate the effect of connection rigidity on the maximum and minimum frame-buckling loads. Thirdly, the lateral stiffness of axially loaded columns in unbraced frames accounting for initial geometric imperfections is derived based on the storey-based buckling. A practical method of evaluating column effective length factor with explicit accounting for the initial geometric imperfections is developed and examined using numerical examples. The fourth part is an investigation of the stability for multi-storey unbraced steel frames under variable loading with accounting for initial geometric imperfections. Finally, the stability of CFS storage racks is studied. The effective length factor of CFS storage racks with accounting for the semi-rigid nature of the beam-to-column connections of such structures are evaluated based on experimental data. A parametric study on maximum and minimum frame-buckling loads with or without accounting for initial geometric imperfections is conducted.
The proposed stability analysis of multi-storey unbraced frames subjected to variable loading takes into consideration the volatility of live loads during the life span of structures and frame buckling characteristics of the frames under any possible load pattern. From the proposed method, the maximum and minimum frame-buckling loads together with their associated load patterns provides critical information to clearly define the stability capacities of frames under extreme loads. This critical information in concern for the stability of structures is generally not available through a conventional proportional loading analysis. This study of work ends with an appropriate set of conclusions.
|
176 |
Storey-Based Stability Analysis for Multi-Storey Unbraced Frames Subjected to Variable LoadingWang, Xiaohong 27 June 2008 (has links)
For decades, structural engineers have been using various conventional design approaches for assessing the strength and stability of framed structures for various loads. Today, engineers are still designing without some critical information to insure that their stability assessment yields a safe design for the life of the structure with consideration for extreme loads. Presented in this thesis is new critical information provided from the study of stability analysis and design of steel framed structures accounting for extreme loads associated to load patterns that may be experienced during their lifetime. It is conducted in five main parts. A literature survey is first carried out reviewing the previous research of analyzing frame stability including the consideration of initial geometric imperfections, and also evaluating research of the analysis and design of the increased usage of cold-formed steel (CFS) storage racks. Secondly, the elastic buckling loads for single-storey unbraced steel frames subjected to variable loading is extended to multi-storey unbraced steel frames. The formulations and procedures are developed for the multi-storey unbraced steel frames subjected to variable loading using the storey-based buckling method. Numerical examples are presented as comparisons to the conventional proportional loading approach and to demonstrate the effect of connection rigidity on the maximum and minimum frame-buckling loads. Thirdly, the lateral stiffness of axially loaded columns in unbraced frames accounting for initial geometric imperfections is derived based on the storey-based buckling. A practical method of evaluating column effective length factor with explicit accounting for the initial geometric imperfections is developed and examined using numerical examples. The fourth part is an investigation of the stability for multi-storey unbraced steel frames under variable loading with accounting for initial geometric imperfections. Finally, the stability of CFS storage racks is studied. The effective length factor of CFS storage racks with accounting for the semi-rigid nature of the beam-to-column connections of such structures are evaluated based on experimental data. A parametric study on maximum and minimum frame-buckling loads with or without accounting for initial geometric imperfections is conducted.
The proposed stability analysis of multi-storey unbraced frames subjected to variable loading takes into consideration the volatility of live loads during the life span of structures and frame buckling characteristics of the frames under any possible load pattern. From the proposed method, the maximum and minimum frame-buckling loads together with their associated load patterns provides critical information to clearly define the stability capacities of frames under extreme loads. This critical information in concern for the stability of structures is generally not available through a conventional proportional loading analysis. This study of work ends with an appropriate set of conclusions.
|
177 |
Modelling multi-directional behaviour of piles using energy principlesLevy, Nina Hannah January 2007 (has links)
The loads applied to pile foundations installed offshore vary greatly from those encountered onshore, with more substantial lateral and torsional loads. For combined axial and lateral loading the current design practice involves applying an axial load to a deep foundation and assessing the pile behaviour and then considering a lateral load separately. For the problem of an altering directions of lateral loads (e.g. due to changes in the wind directions acting on offshore wind turbines) a clear design procedure is not available. There is thus a need for a clearly established methodology to effectively introduce the interaction between the four different loading directions (two lateral, one axial and one torsional). In this thesis, a model is presented that introduces a series of Winkler elasto-plastic elements coupled between the different directions via local interaction yield surfaces along the pile. The energy based method that is used allows the soil-pile system to be defined explicitly using two equations: the energy potential and the dissipation potential. One of the most interesting applications of this model is to piles subjected to a change in lateral loading direction, where the loading history can significantly influence the pile behaviour. This effect was verified by a series of experimental tests, undertaken using the Geotechnical Centrifuge at UWA. The same theory was then applied to cyclic loading in two dimensions, leading to some very useful conclusions regarding shakedown behaviour. A theoretically based relationship was applied to the local yielding behaviour for a pile subjected to a combination of lateral and axial loading, allowing predictions to be made of the influence of load inclination on the pile behaviour. The ability of this model to represent interaction between four degrees of freedom allows a more realistic approach to be taken to this problem than that considered in current design practice.
|
178 |
Continuous Time Fatigue Modelling for Non-proportional LoadingGundmi Satish, Sajjan January 2019 (has links)
Fatigue analysis is a critical stage in the design of any structural component. Typically fatigue is analysed during post-processing, but as the size of the analysed component increases, the amount of data stored for the analysis increases simultaneously. This increases the computational and memory requirements of the system, intensifying the work load on the engineer. A continuum mechanics approach namely ’Continuous time fatigue model’, for fatigue analysis is available in a prior study which reduces the computational requirements by simultaneously computing fatigue along with the stress. This model implements a moving endurance surface in the stress space along with the damage evolution equation to compute high-cycle fatigue. In this thesis the continuous time fatigue model is compared with conventional model (ie.Cycle counting) to study its feasibility. The thesis also aims to investigate the continuous time fatigue model and an evolved version of the model is developed for non-proportional load cases to identify its limitations and benefits.
|
179 |
Phloem Loading and Carbon Transport Enhancement in Woody PlantsEvers, John Franklin 07 1900 (has links)
Phloem loading is the process by which sugars are loaded into the phloem of source leaves and then subsequently transported to sink organs via bulk flow driven by hydrostatic pressure. Three loading mechanisms are described: passive, polymer trap, and apoplastic loading. In passive loading, sucrose diffuses from mesophyll through plasmodesmata into the phloem. The two energized loading mechanisms are the polymer trap and apoplastic loading. In the polymer trap, sucrose moves into intermediary cells and is synthesized into oligosaccharides that become "trapped." In apoplastic loading, sucrose is transported into the apoplast by SWEETs, and subsequently taken up by SUTs in a proton-sucrose symport mechanism, concentrating sucrose in companion cells. Herbaceous species tend to use active loading, while woody species tend to use passive loading. Confirming either passive or energized loading is not without ambiguity. Cotton was investigated as a model because its phloem loading mechanism is ambiguous. Cotton was expected to use passive loading. However, experiments showed that active sucrose accumulation occurs in leaves through GhSUT1-L2, suggesting plasmodesmata are not always a reliable indicator of passive loading and passive loading should not be assumed for woody plants. Genetic manipulation of carbohydrate transport could prove helpful for improving productivity and challenging the passive loading hypothesis. To test this, constitutive and phloem-specific AtSUC2 expression in poplar was used to (1) test the conservation of AtSUC2 expression and (2) test for apoplastic phloem loading. Poplar expressing AtSUC2 were expected to show conserved expression and apoplastic loading. Poplar expressing AtSUC2 shared a conserved vascular-specific pattern with Arabidopsis but did not load from the apoplast. These results suggest that there is conservation of companion cell identity between poplar and Arabidopsis, passive loading is the loading mechanism in poplar.
|
180 |
Sjöars känslighet för klimatförändringar – vilka faktorer påverkar? / Lake sensitivity to climate change – which factors are important?Jidetorp, Frida January 2006 (has links)
<p>The Earths climate is changing at a higher rate, i.e between 1861 and 1994 the annual mean temperature in Scandinavia increased with 0,68º C and according to recent climate models the annual mean temperature is likely to rise with another 3º C during this century.</p><p>A warmer climate in many ways is associated with changing conditions for lake ecosystems. An expected higher water temperature and a stronger summer stratification of the water column increases the risk of anoxic conditions at the lake bottom. Thus anoxic conditions are likely to cause a phosphate leakage from the sediment, i.e. a higher internal loading of phosphate.</p><p>In this project, the extremely warm summer of 2002 has been used as an example for a possible scenario for a future climate. By comparing levels of phosphorus in the summer of 2002 with a ten-year median value, a phosphorus related sensitivity to climate change has been analyzed for 55 Swedish lakes. This sensitivity has then been related to several parameters of which in particular the lake morphometry and the land use in the catchment of the lake influenced the climatic sensitivity of the lake to climatic change.</p> / <p>Jordens klimat förändras i en allt snabbare takt. Mellan 1861 och 1994 steg årsmedeltemperaturen i Skandinavien med 0,68º C. Enligt aktuella klimatmodeller förväntas årsmedeltemperaturen i Skandinavien öka med ytterligare 3º C det närmaste seklet.</p><p>Ett varmare klimat innebär på flera sätt nya förutsättningar för ekosystemen. Genom höjda vattentemperaturer och en starkare stratifikation sommartid ökar risken för syrefria förhållanden i sjöar. Då sedimentet under syrefria förhållanden kan läcka fosfat innebär detta en ökad internbelastning av fosfor.</p><p>I detta projekt har den extremt varma sommaren 2002 använts som ett möjligt framtida klimat. Genom att jämföra fosforhalter sommaren 2002 med ett medianvärde för 10 år har den fosforrelaterade känsligheten för klimatförändringar kunnat analyseras för 55 svenska sjöar. Denna känslighet har sedan relaterats till diverse parametrar så som sjöns morfometri och avrinningsområdets sammansättning.</p>
|
Page generated in 0.0648 seconds