• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transposon Tagging in Strawberry and Potato and Characterization of Representative Strawberry Mutants

Lu, Nan 25 September 2013 (has links)
Strawberry and potato are both important crop species in the world providing various nutritional values. The cultivated strawberry, Fragaria ananassa, is a fruit crop with a complex genome (2n=8x=56) whereas the diploid woodland strawberry, Fragaria vesca, has a smaller genome (2n=2x=14, 240 Mb) and lots of other qualities that make it a good model for genetic and genomic study, such as high yield of seeds and efficient transformation. Potato (Solanum tuberosum, 2n=4x=48) is an important vegetable crop in the world and is highly heterozygous. The successful sequencing of the homozygous doubled monoploid clone of potato provides good insight into the study of important genes in this species in improving the pest resistance and improving yield. One approach to characterize gene function in a model system is having large populations of T-DNA insertional or transposon tagged mutants. The idea of using AcDs construct to create transposon tagged mutant populations has also been applied in many species. Here we transformed two species, Fragaria vesca and a monoploid potato, Solanum phureja 1-3-516, which is the progenitor of the sequenced doubled monoploid clone, with the same AcDs construct, Ac-DsATag-Bar_gosGFP, to generate mutant collection, compare the marker gene performance and transposition efficiency, as well as characterizing phenotypic mutants with genes of interest. Transposants were found to reinsert to unlinked sites from the launch pad site in the strawberry genome, whereas in potato transposants tended to locate locally from the launch pad position when using the same construct. One transposon based activation tagging strawberry mutant, with its insertion in the promoter region of gene of interest in strawberry from the Ac-DsATag-Bar_gosGFP population was studied. In a segregating T2 population, expression level of the candidate gene, epidermis-specific secreted glycoprotein EP1 precursor, was 670 fold higher in petioles of homozygotes than in wild type plants, suggesting the function of this gene involved in maintaining mechanical strength of petioles. Since the often-used transposase gene was cloned from the monocot species maize, the efficiency of obtaining germinal transposants was many times lower than expected in order to saturate the genome for diploid species. In order to improve the chance of getting unique transposants, we attempted to codon optimize the transposase gene, as well as switching to microspore specific promoters that had been well characterized to control timing of expression of the transposase gene. Transposants were found in both T0 primary regenerates and anther culture derived potatoes using both the pAcDs-AtSCP and pAcDs-AmDEFH125 constructs. Sequencing of the empty donor site revealed that excision occurred in different cells during anther culture. A strawberry mutant with sugar transport deficiency due to T-DNA insertion near a sucrose transporter-2 gene showing stunted phenotype with increased level of anthocyanin was also characterized. The concentrations of sucrose, glucose, and fructose were significantly greater in source leaves of the mutant than wild type plants, suggesting these compounds might be substrates of this gene in transporting to sink leaves and roots. / Ph. D.
2

Metabolização de açúcares em linhagens de Saccharomyces cerevisiae com e sem transportador de sacarose e diferentes atividades de invertase / Sugar metabolization of Saccharomyces cerevisiae with transporter of sucrose and different invertase activity

Parazzi Júnior, Osmar 22 September 2006 (has links)
O presente trabalho teve por objetivo avaliar o perfil metabólico da utilização dos açúcares por diferentes leveduras (BG-1, CAT-1, FLEISCHMANN, PE-2, 1403-7A e LCM001) em diferentes meios de crescimento e também analisar o comportamento e a atividade de invertase destas leveduras durante um processo fermentativo com reciclos de células, semelhantemente ao processo industrial, levando em consideração os parâmetros: produção de etanol, formação de biomassa, produção de trealose, glicogênio, glicerol, rendimento e eficiência fermentativa. Os experimentos foram divididos em três partes: a 1a foi a quantificação da atividade de invertase das diferentes leveduras, em mosto de fermentação à base de mel e água (13% ART), a 2a analisouse o perfil de metabolização em diferentes meios de crescimento à base de YEP com 2% de açúcares (glicose, sacarose, ou glicose + sacarose), e a 3a foi a realização de uma fermentação alcoólica com 4 reciclos de células, com mosto de mel (13% ART), sendo os três primeiros utilizados para a avaliação do rendimento fermentativo, bem como seus indicadores (trealose, glicogênio, viabilidade, entre outros) e o último, destinado ao perfil de metabolização de açúcares em condições de fermentação. Os resultados mostram que as leveduras possuem diferentes atividades de invertase (BG-1 = 7,34; FLEISCHMANN = 5,75; CAT-1 = 3,76; PE-2 = 2,39 gART.h-1.gbiomassa; 1403-7A e LCM001, não possuem atividade), apresentam diferentes velocidades de hidrólise da sacarose, tanto em meios de crescimento como mostos (BG-1 e FLEISCHMANN = 2 h; CAT-1 = 3h; PE-2 = 4h; 1403-7A = 24 h e LCM001 = >24 h), assim como a velocidade de metabolização dos açúcares presentes nestes. Conclui-se que a atividade de invertase é dependente da linhagem de levedura, assim como a velocidade de metabolização dos açúcares em meios de crescimento e mosto. A análise do perfil de metabolização de açúcares não permite identificar a presença de transportador de sacarose. No geral, as leveduras selecionadas apresentam melhor desempenho fermentativo. Por outro lado, verificou-se que as linhagens com transportador de sacarose apesar da menor produção de álcool, apresentaram uma boa eficiência fermentativa. O maior problema por parte destas últimas, é o alto tempo de fermentação e a baixa taxa de multiplicação, com conseqüente queda na viabilidade celular. / The aim of this work was to evaluate the metabolic profile in the utilization of sugars, using different yeast strains (BG-1, CAT-1, FLEISHMANN, PE-2, 1403-7A and LCM001) with different growth medium and also to analyze behavior and the invertase activities of these yeast strains during fermentative process with recycling, similar to the industrial process. The following parameters were used: ethanol production, biomass formation, trealose production, glycogen, glycerol, ethanol yield and fermentation efficiency. The trials were divided into three parts: First was activity quantification of invertase using different yeast strains, with a mix of molasses and water (13% ART), the second was analyzed the metabolization profile with different growth medium using YEP added 2% of sugars (glucose, sucrose, or glucose + sucrose), and the third it was the alcoholic fermentation with 4 yeast cell recycles, using wort of molasses and juice ( 13 % ART), The first three were utilized to evaluate the fermentation yield and also theirs indicatives (trealose, glycogen, viability within others) and, the last one was performed to study the profile of sugars metabolization in fermentation conditions. The results showed that those yeasts produced different invertase activities (BG-1 = 7,34; FLEISCHMANN = 5,75; CAT-1 = 3,76; PE-2 = 2,39 gART.h-1.gbiomass; 1403-7A and LCM001 did not have invertase activity), different velocity of sucrose hydrolysis, as much as medium growth as worts (BG-1 and FLEISCHANN = 2 h; CAT-1 = 3h; PE-2 = 4h; 1403-7A = 24 h and LCM001 = >24 h), also as the velocity of sugars metabolization present on this medium. It can be concluded that the invertase activity is dependent of yeast strain, as the velocity of sugars metabolization in growth medium and wort. The profile analysis of metabolization of sugars did not allow to identify the presence of sucrose transporter. In general, the selected yeasts present the best fermentation performance. On the other hand, it was observed the strains with sucrose transportation did not show stress. The major problem of these yeasts were the high fermentation time and low propagation rate, and a decrease of the viability.
3

Metabolização de açúcares em linhagens de Saccharomyces cerevisiae com e sem transportador de sacarose e diferentes atividades de invertase / Sugar metabolization of Saccharomyces cerevisiae with transporter of sucrose and different invertase activity

Osmar Parazzi Júnior 22 September 2006 (has links)
O presente trabalho teve por objetivo avaliar o perfil metabólico da utilização dos açúcares por diferentes leveduras (BG-1, CAT-1, FLEISCHMANN, PE-2, 1403-7A e LCM001) em diferentes meios de crescimento e também analisar o comportamento e a atividade de invertase destas leveduras durante um processo fermentativo com reciclos de células, semelhantemente ao processo industrial, levando em consideração os parâmetros: produção de etanol, formação de biomassa, produção de trealose, glicogênio, glicerol, rendimento e eficiência fermentativa. Os experimentos foram divididos em três partes: a 1a foi a quantificação da atividade de invertase das diferentes leveduras, em mosto de fermentação à base de mel e água (13% ART), a 2a analisouse o perfil de metabolização em diferentes meios de crescimento à base de YEP com 2% de açúcares (glicose, sacarose, ou glicose + sacarose), e a 3a foi a realização de uma fermentação alcoólica com 4 reciclos de células, com mosto de mel (13% ART), sendo os três primeiros utilizados para a avaliação do rendimento fermentativo, bem como seus indicadores (trealose, glicogênio, viabilidade, entre outros) e o último, destinado ao perfil de metabolização de açúcares em condições de fermentação. Os resultados mostram que as leveduras possuem diferentes atividades de invertase (BG-1 = 7,34; FLEISCHMANN = 5,75; CAT-1 = 3,76; PE-2 = 2,39 gART.h-1.gbiomassa; 1403-7A e LCM001, não possuem atividade), apresentam diferentes velocidades de hidrólise da sacarose, tanto em meios de crescimento como mostos (BG-1 e FLEISCHMANN = 2 h; CAT-1 = 3h; PE-2 = 4h; 1403-7A = 24 h e LCM001 = >24 h), assim como a velocidade de metabolização dos açúcares presentes nestes. Conclui-se que a atividade de invertase é dependente da linhagem de levedura, assim como a velocidade de metabolização dos açúcares em meios de crescimento e mosto. A análise do perfil de metabolização de açúcares não permite identificar a presença de transportador de sacarose. No geral, as leveduras selecionadas apresentam melhor desempenho fermentativo. Por outro lado, verificou-se que as linhagens com transportador de sacarose apesar da menor produção de álcool, apresentaram uma boa eficiência fermentativa. O maior problema por parte destas últimas, é o alto tempo de fermentação e a baixa taxa de multiplicação, com conseqüente queda na viabilidade celular. / The aim of this work was to evaluate the metabolic profile in the utilization of sugars, using different yeast strains (BG-1, CAT-1, FLEISHMANN, PE-2, 1403-7A and LCM001) with different growth medium and also to analyze behavior and the invertase activities of these yeast strains during fermentative process with recycling, similar to the industrial process. The following parameters were used: ethanol production, biomass formation, trealose production, glycogen, glycerol, ethanol yield and fermentation efficiency. The trials were divided into three parts: First was activity quantification of invertase using different yeast strains, with a mix of molasses and water (13% ART), the second was analyzed the metabolization profile with different growth medium using YEP added 2% of sugars (glucose, sucrose, or glucose + sucrose), and the third it was the alcoholic fermentation with 4 yeast cell recycles, using wort of molasses and juice ( 13 % ART), The first three were utilized to evaluate the fermentation yield and also theirs indicatives (trealose, glycogen, viability within others) and, the last one was performed to study the profile of sugars metabolization in fermentation conditions. The results showed that those yeasts produced different invertase activities (BG-1 = 7,34; FLEISCHMANN = 5,75; CAT-1 = 3,76; PE-2 = 2,39 gART.h-1.gbiomass; 1403-7A and LCM001 did not have invertase activity), different velocity of sucrose hydrolysis, as much as medium growth as worts (BG-1 and FLEISCHANN = 2 h; CAT-1 = 3h; PE-2 = 4h; 1403-7A = 24 h and LCM001 = >24 h), also as the velocity of sugars metabolization present on this medium. It can be concluded that the invertase activity is dependent of yeast strain, as the velocity of sugars metabolization in growth medium and wort. The profile analysis of metabolization of sugars did not allow to identify the presence of sucrose transporter. In general, the selected yeasts present the best fermentation performance. On the other hand, it was observed the strains with sucrose transportation did not show stress. The major problem of these yeasts were the high fermentation time and low propagation rate, and a decrease of the viability.
4

Manipulations of Sucrose/Proton Symporters and Proton-pumping Pyrophosphatase Lead to Enhanced Phloem Transport But Have Contrasting Effects on Plant Biomass

Khadilkar, Aswad S 05 1900 (has links)
Delivery of photoassimilate, mainly sucrose (Suc) from photoautotrophic source leaves provides the substrate for the growth and maintenance of sink tissues such as roots, storage tissues, flowers and fruits, juvenile organs, and seeds. Phloem loading is the energized process of accumulating solute in the sieve element/companion cell complex of source leaf phloem to generate the hydrostatic pressure that drives long-distance transport. In many plants this is catalyzed by Suc/Proton (H+) symporters (SUTs) which are energized by the proton motive force (PMF). Overexpression of SUTs was tested as means to enhance phloem transport and plant productivity. Phloem specific overexpression of AtSUC2 in wild type (WT) tobacco resulted in enhanced Suc loading and transport, but against the hypothesis, plants were stunted and accumulated carbohydrates in the leaves, possibly due to lack of sufficient energy to support enhanced phloem transport. The energy for SUT mediated phloem loading is provided from the PMF, which is ultimately supplied by the oxidation of a small proportion of the loaded photoassimilates. It was previously shown that inorganic pyrophosphate (PPi) is necessary for this oxidation and overexpressing a proton-pumping pyrophosphatase (AVP1) enhanced both shoot and root growth, and augmented several energized processes like nutrient acquisition and stress responses. We propose that AVP1 localizes to the PM of phloem cells and uses PMF to synthesize PPi rather than hydrolyze it, and in doing so, maintains PPi levels for efficient Suc oxidation and ATP production. Enhanced ATP production in turn strengthens the PMF via plasma membrane (PM) ATPase, increasing phloem energization and phloem transport. Phloem-specific and constitutive AVP1 overexpressing lines showed increased growth and more efficiently moved carbohydrates to sink organs compared to WT. This suggested changes in metabolic flux but diagnostic metabolites of central metabolism did not show changes in steady state levels. This research focuses on fundamental aspects of carbon utilization and transport, and has a strong applied component, since increased H+-PPase activity enhances plant biomass, nutrient up-take capacities, and stress tolerance for as yet not fully characterized reasons.
5

The Medicago truncatula sucrose transporter family : sugar transport from plant source leaves towards the arbuscular mycorrhizal fungus / Medicago truncatula

Doidy, Joan 23 May 2012 (has links)
Pas de résumé en français / In plants, long distance transport of sugars from photosynthetic source leaves to sink organs comprises different crucial steps depending on the species and organ types. Sucrose, the main carbohydrate for long distance transport is synthesized in the mesophyll and then loaded into the phloem. After long distance transport through the phloem vessels, sucrose is finally unloaded towards sink organs. Alternatively, sugar can also be transferred to non‐plant sinks and plant colonization by heterotrophic organisms increases the sink strength and creates an additional sugar demand for the host plant. These sugar fluxes are coordinated by transport systems. Main sugar transporters in plants comprise sucrose (SUTs) and monosaccharide (MSTs) transporters which constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Although complete SUTs and MSTs gene families have been identified from the reference Dicot Arabidopsis thaliana and Monocot rice (Oriza sativa), sugar transporter families of the leguminous plant Medicago truncatula, which represents a widely used model for studying plant-fungal interactions in arbuscular mycorrhiza (AM), have not yet been investigated.With the recent completion of the M. truncatula genome sequencing as well as the release of transcriptomic databases, monosaccharide and sucrose transporter families of M. truncatula were identified and now comprise 62 MtMSTs and 6 MtSUTs. I focused on the study of the newly identified MtSUTs at a full family scale; phylogenetic analyses showed that the 6 members of the MtSUT family distributed in all three Dicotyledonous SUT clades; they were named upon phylogenetic grouping into particular clades: MtSUT1-1, MtSUT1-2, MtSUT1-3, MtSUT2, MtSUT4-1 and MtSUT4-2. Functional analyses by yeast complementation and expression profiles obtained by quantitative RT-PCR revealed that MtSUT1-1 and MtSUT4-1 are H+/sucrose symporters and represent key members of the MtSUT family. Conservation of transport capacity between orthologous leguminous proteins, expression profiles and subcellular localization compared to previously characterized plant SUTs indicate that MtSUT1-1 is the main protein involved in phloem loading in source leaves whilst MtSUT4-1 mediates vacuolar sucrose export for remobilization of intracellular reserve.The AM symbiosis between plants and fungi from the phylum Glomeromycota is characterized by trophic exchanges between the two partners. The fungus supplies the autotrophic host with nutrients and thereby promotes plant growth. In return, the host plant provides photosynthate (sugars) to the heterotrophic symbiont. Here, sugar fluxes from plant source leaves towards colonized sink roots in the association between the model leguminous plant M. truncatula and the arbuscular mycorrhizal fungus (AMF) Glomus intraradices were investigated. Sugar transporter candidates from both the plant and fungal partners presenting differential expression profiles using available transcriptomic tools were pinpointed. Gene expression profiles of MtSUTs and sugar quantification analyses upon high and low phosphorus nutrient supply and inoculation by the AMF suggest a mycorrhiza-driven stronger sink in AM roots with a fine-tuning regulation of MtSUT gene expression. Conserved regulation patterns were observed for orthologous SUTs in response to colonization by glomeromycotan fungi.In parallel, a non-targeted strategy consisting in the development of a M. truncatula - G. intraradices expression library suitable for yeast functional complementation and screening of symbiotic marker genes, similar to the approach that led to the identification of the first glomeromycotan hexose transporter (GpMST1), has been developed in this study. [...]
6

The Medicago truncatula sucrose transporter family : sugar transport from plant source leaves towards the arbuscular mycorrhizal fungus

Doidy, Joan 23 May 2012 (has links) (PDF)
In plants, long distance transport of sugars from photosynthetic source leaves to sink organs comprises different crucial steps depending on the species and organ types. Sucrose, the main carbohydrate for long distance transport is synthesized in the mesophyll and then loaded into the phloem. After long distance transport through the phloem vessels, sucrose is finally unloaded towards sink organs. Alternatively, sugar can also be transferred to non‐plant sinks and plant colonization by heterotrophic organisms increases the sink strength and creates an additional sugar demand for the host plant. These sugar fluxes are coordinated by transport systems. Main sugar transporters in plants comprise sucrose (SUTs) and monosaccharide (MSTs) transporters which constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Although complete SUTs and MSTs gene families have been identified from the reference Dicot Arabidopsis thaliana and Monocot rice (Oriza sativa), sugar transporter families of the leguminous plant Medicago truncatula, which represents a widely used model for studying plant-fungal interactions in arbuscular mycorrhiza (AM), have not yet been investigated.With the recent completion of the M. truncatula genome sequencing as well as the release of transcriptomic databases, monosaccharide and sucrose transporter families of M. truncatula were identified and now comprise 62 MtMSTs and 6 MtSUTs. I focused on the study of the newly identified MtSUTs at a full family scale; phylogenetic analyses showed that the 6 members of the MtSUT family distributed in all three Dicotyledonous SUT clades; they were named upon phylogenetic grouping into particular clades: MtSUT1-1, MtSUT1-2, MtSUT1-3, MtSUT2, MtSUT4-1 and MtSUT4-2. Functional analyses by yeast complementation and expression profiles obtained by quantitative RT-PCR revealed that MtSUT1-1 and MtSUT4-1 are H+/sucrose symporters and represent key members of the MtSUT family. Conservation of transport capacity between orthologous leguminous proteins, expression profiles and subcellular localization compared to previously characterized plant SUTs indicate that MtSUT1-1 is the main protein involved in phloem loading in source leaves whilst MtSUT4-1 mediates vacuolar sucrose export for remobilization of intracellular reserve.The AM symbiosis between plants and fungi from the phylum Glomeromycota is characterized by trophic exchanges between the two partners. The fungus supplies the autotrophic host with nutrients and thereby promotes plant growth. In return, the host plant provides photosynthate (sugars) to the heterotrophic symbiont. Here, sugar fluxes from plant source leaves towards colonized sink roots in the association between the model leguminous plant M. truncatula and the arbuscular mycorrhizal fungus (AMF) Glomus intraradices were investigated. Sugar transporter candidates from both the plant and fungal partners presenting differential expression profiles using available transcriptomic tools were pinpointed. Gene expression profiles of MtSUTs and sugar quantification analyses upon high and low phosphorus nutrient supply and inoculation by the AMF suggest a mycorrhiza-driven stronger sink in AM roots with a fine-tuning regulation of MtSUT gene expression. Conserved regulation patterns were observed for orthologous SUTs in response to colonization by glomeromycotan fungi.In parallel, a non-targeted strategy consisting in the development of a M. truncatula - G. intraradices expression library suitable for yeast functional complementation and screening of symbiotic marker genes, similar to the approach that led to the identification of the first glomeromycotan hexose transporter (GpMST1), has been developed in this study. [...]
7

Zur Bedeutung von Saccharose-Transportern in Pflanzen mit offener Phloemanatomie / On the significance of sucrose transporters in plants with an open phloem anatomy

Knop, Christian 01 November 2001 (has links)
No description available.

Page generated in 0.0673 seconds