Spelling suggestions: "subject:"electrical vehicle.""
341 |
Driving Pattern Generation for Customized Energy Control Strategy in Hybrid Electric Vehicle ApplicationsZhu, Qiujun 18 August 2014 (has links)
No description available.
|
342 |
Fault Diagnosis and Hardware in the Loop Simulation for the EcoCAR ProjectKruckenberg, John 22 July 2011 (has links)
No description available.
|
343 |
Aerodynamic Development of the Buckeye Bullet 3 Electric Landspeed VehicleBork, Carrington E. 19 July 2012 (has links)
No description available.
|
344 |
Design of the Architecture and Supervisory Control Strategy for a Parallel-Series Plug-in Hybrid Electric VehicleBovee, Katherine Marie 24 August 2012 (has links)
No description available.
|
345 |
En elektrifierad personbilsflotta : En hållbarhetsanalys / An electrified passenger car fleet : A sustainability analysisLagercrantz, Viktoria, Westling, Emma January 2021 (has links)
Idag står transportsektorn för cirka 30 % av Sveriges totala koldioxidutsläpp. Elbilen ses som en hållbar lösning då den skulle minska utsläppen från Sveriges transportsektor. Hållbarhet handlar dock inte bara om koldioxidutsläpp. Syftet med projektet är därför att ge en kritisk bild av ett framtida elektrifierat samhälle med fokus på elbilen. Arbetet syftar också till att undersöka vad som krävs för att elektrifiera den svenska personbilsflottan och om detta skulle leda till ett mer hållbart samhälle. De metoder som använts är litteraturstudie, workshop och en modifierad version av två befintliga Backcasting-metoder. De huvudsakliga resultaten är att elektrifiering av personbilsflottan i Sverige, utan vidare åtgärder, leder till att koldioxidutsläppen minskar. Elbilen är också avgasfri vilket gör att även partiklar och skadliga ämnen från avgaserna minskar. Dock finns en risk att problem som giftutsläpp samt dåliga arbetsvillkor vid framtagning av råvaror till elbilsbatterier förvärras när efterfrågan på råvarorna ökar. För de problem och aspekter som inte blir bättre har redan ett antal åtgärder börjat vidtas för att göra personbilsflottan mer hållbar. Dock är det svårt att säga hur stor inverkan åtgärderna har på problemen och fler åtgärder behöver vidtas för att hela produktionskedjan ska bli hållbar. Slutsatsen som dras i arbetet är att elbilen i sig inte leder till ett hållbart samhälle men att om en kombination av fler åtgärder vidtas finns potential att elbilen kan bidra till ett mer hållbart samhälle. / Today, the transport sector accounts for approximately 30 % of Sweden's total CO2-emissions. The battery electric vehicle is seen as a sustainable solution as it would reduce emissions from Sweden’s transport sector. However, sustainability is not just about CO2-emissions. The aim of the project is therefore to give a critical picture of a future electrified society with focus on the battery electric vehicle. The work also aims to investigate what is required to electrify the Swedish passenger car fleet and whether this would lead to a more sustainable society. The methods used in the report are literature study, workshop and a modified version of two existing Backcasting methods. The main results are that electrification of the passenger car fleet in Sweden, without further action, leads to a reduction in CO2-emissions. The battery electric vehicle is also exhaust-free, which means that particles and harmful substances from the exhaust gases are also reduced. However, there is a risk that problems such as toxic emissions and poor working conditions in the production of raw materials for electric vehicle batteries will worsen as demand for raw materials increases. For the problems and aspects that are not getting better, a number of measures have already begun to be taken to make the passenger car fleet more sustainable. However, it is difficult to say how much impact the measures have on the problems and more measures need to be taken to make the entire production chain sustainable. The conclusion drawn from the work is that the battery electric vehicle itself does not lead to a sustainable society, but if measures are taken, there is the potential that the battery electric vehicle can contribute to a more sustainable society.
|
346 |
Reliability evaluation of power distribution systems considering electric vehicles and distributed generation / Tillförlitlighetsanalys av elkraftdistributionssystem med hänsyn till elfordon och distribuerad produktionQiu, Kaiqing January 2020 (has links)
As human society develops, there is an increasing demand for electricity. However, the reserves of fossil fuels on earth are limited and may run out in the foreseeable future. Therefore, the possibility of replacing traditional fossil fuels with renewable energy sources is widely being investigated to resolve the world-faced energy shortage and environmental problems. The first method is to utilize more renewable energy such as wind and solar power and increase the percentage of distributed generation. Another method is to popularize electric vehicles due to their environmental-friendly and energy-saving characteristics. However, the integration of distributed generation and electric vehicles may greatly influence the operation and planning of power systems in several ways. This might result in deterioration of power system reliability. Since the society development highly depends on a safe and reliable power grid, it is essential to ensure high reliability of power systems when integrated with renewable energy resources. This master thesis aims to investigate the reliability performance of power distribution systems after integrating distributed generation and electric vehicles. First, the probabilistic model of distributed generation and electric vehicles for various scenarios are simulated. After that, a set of reliability analyses based on a standard reliability test system are carried out, in which a sequential Monte-Carlo simulation method is adopted to estimate average reliability indices. The overall conclusion is that the integration of distributed generation enhances power system reliability performance through supplying power to nearby customers in island mode. For electric vehicles, the proper regulation of charging behavior can help reduce the deterioration of power system reliability to the most extent, and the Vehicle-to-Grid mode can also improve system reliability. Furthermore, the electric bus dynamic charging mode has no additional harm to power system reliability performance than non-dynamic charging and has a promising prospect. / När det mänskliga samhället utvecklas finns det en ökande efterfrågan på el. Reserverna av fossila bränslen på jorden är dock begränsade och kan ta slut inom en överskådlig framtid. Därför undersöks möjligheten att ersätta traditionella fossila bränslen med förnybara energikällor för att lösa den världsomspända energibristen och miljöproblemen. Den första metoden är att använda mer förnybar energi såsom vind- och solenergi och öka andelen distribuerad produktion. En annan metod är att popularisera elfordon på grund av deras miljövänliga och energibesparande egenskaper. Integrationen av distribuerad produktion och elfordon kan dock påverka sätt och planering av kraftsystem i hög grad på flera sätt. Detta kan leda till försämring av elsystemets tillförlitlighet. Eftersom samhällsutvecklingen i hög grad beror på ett säkert och tillförlitligt kraftnät är det viktigt att säkerställa hög tillförlitlighet hos kraftsystem när de är integrerade med förnybara energikällor. Syftet med detta examensarbete är att undersöka tillförlitligheten hos kraftdistributionssystemet efter integrering av distribuerad generation och elfordon. För det första konstrueras den probabilistiska modellen för distribuerad generation och elfordon inklusive olika scenarier. Därefter genomförs en uppsättning tillförlitlighetsanalys baserad på RBTS buss 6-system, där sekventiell Monte-Carlo-simuleringsmetod antas för att uppskatta genomsnittliga återansvarsindex. Den övergripande slutsatsen är att integreringen av distribuerad produktion förbättrar systemets tillförlitlighet genom att leverera kraft till närliggande kunder på öns plats. För elektriska fordon kan korrekt reglering av laddningsbeteendet bidra till att minska försämringen av elsystemets tillförlitlighet i största möjliga utsträckning, och läget Fordon till nät kan även förbättra systemets tillförlitlighet. Dessutom har det elektriska bussens dynamiska laddningsläge ingen ytterligare skada på kraftsystemets tillförlitlighet och har ett lovande perspektiv.
|
347 |
Cooling Fan Optimization for Heavy Electrified Vehicles : A study on performance and noise / Kylfläktoptimering för Tunga Elektrifierade Fordon : En studie om prestanda och bullerKhiabani, Amir, Acebo Alanis, Daniel January 2020 (has links)
Vehicle electrification plays a significant role in the effort to reduce the environmental impact of the automotive industry. Scania is one of the leading manufacturers ofheavy vehicles which is currently moving towards a sustainable transport system by manufacturing a new generation of heavy vehicles powered by batteries. Oneof the major concerns with these vehicles is related to the noise generated by the electric axial fans used in the cooling system. This project was conducted with thepurpose of investigating the factors that positively affect both noise and performance in the electric fans. Based on two different blade design methods and several noisecontrol techniques, 11 fan models were developed. The fan models created with design method 1 are equipped with cambered-plate blades, while the models madewith design method 2 consist of airfoil-shaped blades. Moreover, the performance of these models was analyzed by using theoretical methods and Computational FluidDynamics (CFD). In addition, two empirical approaches were used to estimate the acoustic energy emitted by the fan models. Furthermore, the developed modelswere compared with two commercially available fans. It was found that both design methods provide similar performance in low pressure differences. On the other hand,the efficiency and acoustic energy are influenced by the choice of the noise control methods. / Fordonselektrifiering har en väsentlig roll i arbetet med att minska bilindustrins miljöpåverkan. Scania är en av de ledande tillverkarna av tunga fordon som för närvarandegår mot ett hållbart transportsystem, genom att tillverka en ny generation tunga fordon drivna med batterier. Ett stort bekymmer med dessa fordon är relaterattill det ljud som genereras av de elektriska axialfläktarna som används i kylsystemet. Detta projekt genomfördes i syfte till att undersöka de faktorer som positivtpåverkar både buller och prestanda hos de elektriska fläktarna. Baserat på två olika bladdesignmetoder och flera brusstyrningstekniker, utvecklades 11 fläktmodeller.Fläktmodellerna som är utformade med konstruktionsmetod 1 är utrustade med krökformade plattor, medan modellerna som skapades med designmetod 2 bestårav vingprofil blad. Dessutom analyserades prestandan för dessa modeller med användning av teoretiska metoder och strömningsmekaniska beräkningar. Ytterligaretvå empiriska tillvägagångssätt användes för att uppskatta den akustiska energin som släppts ut av fläktmodellerna. Utöver det jämfördes de utvecklade modellernamed två kommersiellt tillgängliga fläktar. Detta visade att båda konstruktionsmetoderna resulterar i liknande prestanda vid lågtrycksskillnader, däremot påverkasverkningsgraden och den akustiska energin av valet av brusstyrningsmetoder.
|
348 |
Investigating the Effects of Mechanical Damage on the Electrical Response of Li-ion Pouch CellsStacy, Andrew January 2019 (has links)
Li-ion batteries (LIB) are used in many applications because of their high-power/energy density, long life cycling, and low self-discharge rate. The use of LIB continues to grow every day, and the necessity for proper safety standards grows as well. A key aspect for safe utilization of LIB is determining their safety and remaining useful life (RUL). Battery characteristics degrade over time under normal and extreme operating conditions and modeling the electrochemical processes can improve RUL estimations. Extreme operating conditions such as abnormal temperatures and charge/discharge rates are believed to exacerbate the rate of degradation. Li-ion batteries are also susceptible to mechanical damage, which may lead to an electrical short. In severe cases, mechanical damage causes a thermal run away, and possibly explosions or fires. In the event of a car accident, battery packs can be damage without an electrical short or immediate thermal run away. Currently, there is no reliable batt / Mechanical Engineering
|
349 |
Capacity Expansion of Electric Vehicle Charging Network: Model, Algorithms and A Case StudyChen, Qianqian January 2019 (has links)
Governments in many counties are taking measures to promote electric vehicles. An important strategy is to build enough charging infrastructures so as to alleviate drivers’ range anxieties. To help the governments make plans about the public charging network, we propose a multi-stage stochastic integer programming model to determine the locations and capacities of charging facilities over finite planning horizons. We use the logit choice model to estimate drivers’ random choices towards different charging stations nearby. The objective of the model is to minimize the expected total cost of installing and operating the charging facilities. Two simple algorithms are designed to solve this model, an approximation algorithm and a heuristic algorithm. A branch-and-price algorithm is also designed for this model, and some implementation details and improvement methods are explained. We do some numerical experiments to test the efficiency of these algorithms. Each algorithm has advantages over the CPLEX MIP solver in terms of solution time or solution quality. A case study of Oakville is presented to demonstrate the process of designing an electric vehicle public charging network using this model in Canada. / Thesis / Master of Science (MSc)
|
350 |
Evaluation and Development of Medium-Voltage Converters Using 3.3 kV SiC MOSFETs for EV Charging ApplicationGill, Lee 05 August 2019 (has links)
The emergence of wide-bandgap-based (WBG) devices, such as silicon carbide (SiC) and gallium nitride (GaN), have unveiled unprecedented opportunities, enabling the realization of superior power conversion systems. Among the potential areas of advancement are medium-voltage (MV) and high-voltage (HV) applications, due to the growing demand for high-power-density and high-efficiency power electronics converters. These advancements have propelled a wide adoption of electric vehicles (EV), which in the future will require great improvements in the charging time of these vehicles. Thereby, this thesis attempts to address such a challenge and bring about technological improvements, enabling faster, more efficient, and more effective ways of charging an electric vehicle through the application of MV 3.3 kV SiC MOSFETs. The current fast-charging solution involves heavy and bulky MV-LV transformers, which add installation complexity for EV charging stations. However, this thesis presents an alternative power-delivery solution utilizing an MV dual-active-bridge (DAB) converter. The proposed architecture is designed to directly interface with the MV grid for high-power, fast-charging capabilities while eliminating the need for an installation of the MV-LV transformer. The MV DAB converter utilizes 3.3 kV SiC MOSFETs to realize the next 800 V EV charging system, along with an extended zero-voltage-switching (ZVS) scheme, in order to provide an efficient charging strategy across a wide range of battery voltage levels. Lastly, a detailed design comparison analysis of an MV Flyback converter, targeted for the auxiliary power supply for the proposed MV EV charging architecture, is presented. / The field of power electronics, which controls and manages the conversion of electrical energy, is an important topic of discussion, as new technologies like electric vehicles (EV) are quickly emerging and disrupting the current status-quo of vehicle-choice. In order to promote timely and extensive adoption of such an enabling EV technology, it is critical to understand the current challenges involving EV charging stations and seek out opportunities to engender future innovations. Indeed, wide-bandgap (WBG) devices, such as silicon carbide (SiC) and gallium nitride (GaN), have unveiled unprecedented opportunities in enabling the realization of superior power conversion systems. Thus, utilizing these WGB devices in EV charging applications can bring about improved design and development of EV fast chargers that are faster-charging, more efficient, and more effective. Hence, this thesis presents an opportunity in EV charging station applications with the utilization of medium-voltage SiC MOSFETs. Because the current fast-charging solution involves a heavy and bulky transformer, it adds installation complexity for EV charging stations. However, this thesis presents an alternative power-delivery solution that could potentially provide an efficient and fast-charging mechanism of EVs while reducing the size of EV chargers. All things considered, this thesis provides in-depth evaluation-studies of medium-voltage 3.3 kV SiC MOSFET-based power converters, targeted for future fast EV charging applications. The development and design of the hardware prototype is presented in this thesis, along with testing and verification of experimental results.
|
Page generated in 0.4312 seconds