• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 4
  • Tagged with
  • 21
  • 21
  • 21
  • 17
  • 15
  • 14
  • 11
  • 11
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ein Beitrag zur Verbesserung der Eigenschaften magnetisch-induktiver Tastspulen / A method to improve the properties of magneto-inductive coils

Heidary Dastjerdi, Maral 06 September 2016 (has links) (PDF)
Magnetisch-induktive Techniken finden seit langer Zeit viele Anwendungsfelder in der Medizin, Sicherheitstechnik und der Industrie. Obwohl die technischen Grundlagen seit vielen Jahrzehnten bekannt sind, werden auf Basis detaillierter Analysen spezielle Lösungsansätze verfolgt, die neuartiges Anwendungspotential erschließen sollen. Dazu dienen verbesserte Werkzeuge wie Computersimulationen und analytische Berechnungen sowie neu kombinierte Methoden und Aufbauten aus Leistungselektronik und Signaldetektion. Die Vorteile magnetisch-induktiver Techniken sind dabei u.a., dass sie das Prüfobjekt nicht schädigen, berührungslos arbeiten, robust gegenüber Verschmutzungen und einfach im Aufbau sind. Ein Nachteil dieser Technik ist die unzureichende Auflösung von feinen Strukturen. In der aktuellen Forschung und Entwicklung werden unterschiedliche Spulenanordnungen zur Anwendung in industriellen und medizinischen Fragestellungen untersucht und optimiert. Thema dieser Arbeit ist es, durch Verbesserung der Spuleneigenschaften, neue Anwendungsbereiche für die zerstörungsfreie Materialprüfung zu erschließen. Es wird eine Methode vorgestellt, die Eigenschaften magnetisch-induktiver Tastspulen zu verbessern und so den Aufwand bei der Signalverarbeitung zur Rekonstruktion im Rechner zu reduzieren sowie die Auflösung zu erhöhen. Dazu werden zwei Spulenanordnungen, Transmissions - Tastspulen und Gradiometer - Tastspulen, vergleichend gegenübergestellt und ihre technischen Grenzen aufgezeigt. / Magneto-inductive techniques are found in many fields of application areas so in medicine, security technology and industry. Although the technical basis has been known for many decades, special solutions are pursued on the basis of detailed analysis that should open new application potential. These are enhanced tools such as computer simulations, analytical calculations, new combined methods and structures of power electronics and signal detection. The advantages of magneto-inductive techniques are that they do not damage the test object, are contactless, robust against dirt and simple in construction. A disadvantage of this technique is the insufficient resolution of fine structures. In current research and development different coil assemblies are investigated in industrial and medical applications. The aim of this work is to improve the coil properties by changing geometric constructions and current patterns of the coils, in order to allow a sharper localization of objects in space and to tap new application areas for non-destructive testing. A method to improve the properties of magneto-inductive coils and thus to reduce the effort in signal processing and image reconstruction as well as to increase the resolution is presented. Two different coil assemblies, gradiometer – coils and transmission – coils, are compared and their technical limits shown.
12

Structural and electrical characterization of novel layered intergrowth compounds

Grosse, Corinna 11 February 2016 (has links)
Die untersuchten Ferekristalle sind neuartige Verwachsungs-Schichtverbindungen aus m Monolagen von Niobdiselenid (NbSe2), die wiederholt mit n atomaren Bilagen von Bleiselenid (PbSe) oder Zinnselenid (SnSe) geschichtet sind. Niobdiselenid als Volumenmaterial besitzt eine Schichtstruktur und ist ein Supraleiter. Aufgrund ihrer gezielt einstellbaren atomar geschichteten Struktur können Ferekristalle als Modellsysteme für geschichtete Supraleiter dienen. In dieser Arbeit werden ihre strukturellen und elektrischen Eigenschaften untersucht. Mittels Transmissionselektronenmikroskopie wird ihre turbostratisch ungeordnete, nanokristalline Struktur nachgewiesen. Die atomare Struktur innerhalb der einzelnen Schichten ist ähnlich wie in den Volumenmaterialien NbSe2, PbSe und SnSe, wobei die kristallographischen c-Achsen parallel zur Stapelrichtung der Ferekristalle zeigen. Eine quantitative Analyse unter Verwendung eines Zwei-Schicht-Modells für den spezifischen Widerstand, Hall-Koeffizienten und Magnetwiderstand liefert ähnliche Ladungsträgersorten, -dichten und –beweglichkeiten in den NbSe2-Schichten, wie sie für isolierte Einzellagen von NbSe2 berichtet wurden. Diese unterscheiden sich von denen des Volumenmaterials NbSe2. Erstmals wurde ein Übergang der Ferekristalle in den supraleitenden Zustand nachgewiesen. Die Sprungtemperaturen sind dabei in etwa auf die Hälfte der Sprungtemperaturen der jeweiligen nicht turbostratisch ungeordneten Misfit-Schichtverbindungen reduziert. Diese Reduzierung kann der turbostratischen Unordnung der Ferekristalle zugeordnet werden. Das Verhältnis zwischen der schichtsenkrechten Ginzburg-Landau-Kohärenzlänge und dem Abstand zwischen den supraleitenden Schichten ist bei den Ferekristallen kleiner als bei den nicht ungeordneten Misfit-Schichtverbindungen, was Ferekristalle zu vielversprechenden Kandidaten für (quasi-)zweidimensionale Supraleiter macht. / The investigated ferecrystals are novel layered intergrowth compounds consisting of m monolayers of niobium diselenide (NbSe2) stacked repeatedly with n atomic bilayers of lead selenide (PbSe) or tin selenide (SnSe). Bulk NbSe2 is a layered compound showing superconductivity. Due to their artificially atomic-scale layered structure, which is tunable on the atomic scale, ferecrystals can serve as model systems for layered superconductors. In this study, their structural and electrical properties are investigated. Using transmission electron microscopy their turbostratically disordered, nanocrystalline structure is revealed. The atomic structure within the individual layers is similar as for bulk NbSe2, PbSe and SnSe, with the crystallographic c-axes parallel to the stacking direction in the ferecrystals. A quantitative analysis using a two-layer model fit for the electrical resistivity, Hall coefficient and magnetoresistance yields a similar carrier type, density and mobility in the NbSe2 layers as reported for isolated NbSe2 monolayers. These values differ from those of bulk NbSe2. For the first time, a normal-to-superconducting transition has been detected in ferecrystals. The transition temperatures of the ferecrystals are reduced to about a half of those of analogous non-disordered misfit layer compounds. This reduction in transition temperature can be correlated to the turbostratic disorder in ferecrystals. The ratio between the cross-plane Ginzburg-Landau coherence length and the cross-plane distance between the NbSe2 layers for the ferecrystals is lower than for non-disordered misfit layer compounds, making ferecrystals promising candidates for (quasi-)two-dimensional superconductors.
13

Strain-dependent magnetism and electrical conductivity of La(1-x)SrxSoO3 films

Zeneli, Orkidia 22 August 2011 (has links) (PDF)
In this work, the effects of epitaxial strain and film thickness on the lattice structure, microstructure, magnetization and electrical conduction of La1-xSrxCoO3 (LSCO) (x = 0.18 and 0.30) thin films have been studied using thickness-dependent film series on several types of single-crystalline substrates. Alternatively, the direct effect of strain has been probed using a piezoelectric substrate. La0.7Sr0.3CoO3 is a ferromagnetic metal, whereas La0.82Sr0.18CoO3 is at the phase boundary between the ferromagnetic metal and an insulating spin glass phase. Epitaxial biaxial strain in La1-xSrxCoO3 (x = 0.18-0.3) films is known to reduce the ferromagnetic double exchange interactions. It has further been suggested for the control of the crystal field splitting of the Co ions which may be utilized to manipulate the spin state. The LSCO (x = 0.18 and 0.30) films have been grown by pulsed laser deposition (PLD) on substrates of LaAlO3, SrTiO3, (PbMg1/3Nb2/3O3)0.72(PbTiO3)0.28 (PMN-PT) and (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT), which provide different strain states and, in the case of PMN-PT, a reversibly controllable strain. Thickness-dependent series of La0.82Sr0.18CoO3 on SrTiO3 and LaAlO3 as well as of La0.7Sr0.3CoO3 on LSAT have been studied. The lattice parameters of the epitaxially grown films were determined from X-ray diffraction measurements (Bragg-Brentano method and reciprocal space mapping). Large tensile strains of 2% can be achieved in thicker films of up to 100 nm. On the other hand, the films under larger tensile strain have cracks and reveal ordered superstructures in HRTEM images which are tentatively attributed to ordered oxygen vacancies. The Curie temperature and the magnetic moment of the x = 0.18 films increases towards larger film thickness in qualitative agreement with the joined effects of strain relaxation and finite thickness on magnetic ordering. In order to separate the direct strain effect from the thickness effect, the Curie temperature, the magnetic moment and the (rather large) coercivity of the films have been investigated in two electrically controlled strain states for a film on PMN-PT. Non-cracked, sufficiently thick x = 0.18 films show metallic behaviour with large magnetoresistance. The crack-free x = 0.3 films on LSAT undergo an insulator-to-metal transition with increasing thickness and also show large magnetoresistance, both consistent with a percolative transport behaviour. The spin state of the Co ions appears to remain unchanged in the investigated doping range.
14

All in situ ultra-high vacuum study of Bi2Te3 topological insulator thin films

Höfer, Katharina 24 February 2017 (has links)
The term "topological insulator" (TI) represents a novel class of compounds which are insulating in the bulk, but simultaneously and unavoidably have a metallic surface. The reason for this is the non-trivial band topology, arising from particular band inversions and the spin-orbit interaction, of the bulk. These topologically protected metallic surface states are characterized by massless Dirac dispersion and locked helical spin polarization, leading to forbidden back-scattering with robustness against disorder. Based on the extraordinary features of the topological insulators an abundance of new phenomena and many exciting experiments have been proposed by theoreticians, but still await their experimental verification, not to mention their implementation into applications, e.g. the creation of Majorana fermions, advanced spintronics, or the realization of quantum computers. In this perspective, the 3D TIs Bi2Te3 and Bi2Se3 gained a lot of interest due to their relatively simple electronic band structure, having only a single Dirac cone at the surface. Furthermore, they exhibit an appreciable bulk band gap of up to ~ 0.3 eV, making room temperature applications feasible. Yet, the execution of these proposals remains an enormous experimental challenge. The main obstacle, which thus far hampered the electrical characterization of topological surface states via transport experiments, is the residual extrinsic conductivity arising from the presence of defects and impurities in their bulk, as well as the contamination of the surface due to exposure to air. This thesis is part of the actual effort in improving sample quality to achieve bulk-insulating Bi2Te3 films and study of their electrical properties under controlled conditions. Furthermore, appropriate capping materials preserving the electronic features under ambient atmosphere shall be identified to facilitate more sophisticated ex-situ experiments. Bi2Te3 thin films were fabricated by molecular beam epitaxy (MBE). It could be shown that, by optimizing the growth conditions, it is indeed possible to obtain consistently bulk-insulating and single-domain TI films. Hereby, the key factor is to supply the elements with a Te/Bi ratio of ~8, while achieving a full distillation of the Te, and the usage of substrates with negligible lattice mismatch. The optimal MBE conditions for Bi2Te3 were found in a two-step growth procedure at substrate temperatures of 220°C and 250°C, respectively, and a Bi flux rate of 1 Å/min. Subsequently, the structural characterization by high- and low-energy electron diffraction, photoelectron spectroscopy, and, in particular, the temperature-dependent conductivity measurements were entirely done inside the same ultra-high vacuum (UHV) system, ensuring a reliable record of the intrinsic properties of the topological surface states. Bi2Te3 films with thicknesses ranging from 10 to 50 quintuple layers (QL; 1QL~1 nm) were fabricated to examine, whether the conductivity is solely arising from the surface states. Angle resolved photoemission spectroscopy (ARPES) demonstrates that the chemical potential for all these samples is located well within the bulk band gap, and is only intersected by the topological surface states, displaying the characteristic linear dispersion. A metallic-like temperature dependency of the sheet resistance is observed from the in-situ transport experiments. Upon going from 10 to 50QL the sheet resistance displays a variation by a factor 1.3 at 14K and of 1.5 at room temperature, evidencing that the conductivity is indeed dominated by the surface. Low charge carrier concentrations in the range of 2–4*10^12 cm^−2 with high mobility values up to 4600 cm2/Vs could be achieved. Furthermore, the degradation effect of air exposure on the conductance of the Bi2Te3 films was quantified, emphasizing the necessity to protect the surface from ambient conditions. Since the films behave inert to pure oxygen, water/moisture is the most probable source of degeneration. Moreover, epitaxially grown elemental tellurium was identified as a suitable capping material preserving the properties of the intrinsically insulating Bi2Te3 films and protecting from alterations during air exposure, facilitating well-defined and reliable ex-situ experiments. These findings serve as an ideal platform for further investigations and open the way to prepare devices that can exploit the intrinsic features of the topological surface states.:Abstract Kurzfassung Acronyms List of Symbols Introduction 1 Topological insulators 1.1 Basic theory of topological insulators 1.2 3D topological insulator materials: bismuth chalcogenides 2 Experimental techniques 2.1 General layout of the UHV-system 2.2 Molecular beam epitaxy 2.3 Structural and spectroscopic characterization 2.3.1 RHEED and LEED 2.3.2 Photoelectron spectroscopy 2.3.3 Ex situ x-ray diffraction 2.4 In situ electrical resistance measurements 2.4.1 In situ transport setup 2.4.2 Measurement equipment and operation modes 2.5 Substrates and sample holders 3 MBE growth and structural characterization of Bi2Te3 thin films 3.1 Bi2Te3 growth optimization and in situ structural characterization 3.1.1 1-step growth on Al2O3 (0001) 3.1.2 2-step growth on Al2O3 (0001) 3.1.3 2-step growth on BaF2 (111) 3.2 Ex situ structural characterization 4 In situ spectroscopy and transport properties of Bi2Te3 thin films 4.1 In situ spectroscopy of Bi2Te3 thin films 4.1.1 XPS 4.1.2 ARPES 4.2 Combined ARPES and in situ electrical resistance measurements of bulk-insulating Bi2Te3 thin films 4.2.1 Quality of the in situ electrical sample contacts 4.2.2 Verification of the intrinsic conduction through topological surface states of bulk-insulating Bi2Te3 thin films 5 Effect of surface contaminants on the TI properties 5.1 Effect of air exposure on the electrical conductivity of Bi2Te3 surfaces 5.2 Determination of the contaminants causing degradation of the TI properties 5.3 Long-time resistance behavior of a Bi2Te3 film exposed to minimal traces of contaminants 6 Protective capping of bulk-insulating Bi2Te3 thin films 6.1 Capping with BaF2 6.1.1 MBE growth and structure of BaF2 on Bi2Te3 thin films 6.1.2 Electron spectroscopy and electrical transport properties of BaF2 capped Bi2Te3 6.2 Capping with tellurium 6.2.1 MBE growth and structure of Te on Bi2Te3 thin films 6.2.2 Photoelectron spectroscopy and electrical transport properties of Te capped Bi2Te3 6.2.3 De-capping of Te 6.2.4 Efficiency of Te capping against air exposure 7 Conclusion and outlook Bibliography Versicherung Curriculum vitae Veröffentlichungen / Der Begriff "Topologischer Isolator" (TI) beschreibt eine neuartige Klasse von Verbindungen deren Inneres (engl. Bulk) isolierend ist, dieses Innere aber gleichzeitig und zwangsläufig eine metallisch leitende Oberfläche aufweist. Dies ist begründet in der nicht-trivialen Topologie dieser Materialien, welche durch eine spezielle Invertierung einzelner Bänder in der Bandstruktur und der Spin-Bahn-Kopplung im Materialinneren hervorgerufen ist. Diese topologisch geschützten, metallischen Oberflächenzustände sind gekennzeichnet durch eine masselose Dirac Dispersionsrelation und gekoppelte Helizität der Spinpolarisation, welche die Rückstreuung der Ladungsträger verbietet und somit zur Stabilisierung der Zustände gegenüber Störungen beiträgt. Auf Grundlage dieser außergewöhnlichen Merkmale haben Theoretiker eine Fülle neuer Phänomene und spannender Experimente vorhergesagt. Deren experimentelle Überprüfung steht jedoch noch aus, geschweige denn deren Umsetzung in Anwendungen, wie zum Beispiel die Erzeugung von Majorana Teilchen, fortgeschrittene Spintronik, oder die Realisierung von Quantencomputern. Aufgrund ihrer relativ einfachen Bandstruktur, welche nur einen Dirac-Kegel an der Oberfläche aufweist, haben die 3D TI Bi2Te3 und Bi2Se3 in den letzten Jahren großes Interesse erlangt. Weiterhin besitzen diese Materialien eine merkliche Bandlücke von bis zu ~0,3 eV, welche sogar Anwendungen bei Raumtemperatur ermöglichen könnten. Dennoch ist deren experimentelle Umsetzung nachwievor eine enorme Herausforderung. Das Haupthindernis, welches bis jetzt insbesondere die elektrische Charakterisierung the topologischen Oberflächenzustände behindert hat, ist die zusätzliche Leitfähigkeit des Materialinneren, welche durch Kristalldefekte und Beimischungen, sowie die Verunreinigung der Probenoberfläche durch Luftexposition bedingt wird. Die vorliegende Arbeit liefert einen Beitrag zu aktuellen den Anstrengungen in der Verbesserung der Probenqualität der TI um die Leitfähigkeit des Materialinneren zu unterdrücken, sowie die anschließende Untersuchung der elektrischen Eigenschaften unter kontrollierten Bedingungen durchzuführen. Weiterhin sollen geeignete Deckschichten identifiziert werden, welche die besonderen elektronischen Merkmale der TI nicht beeinflussen sowie diese gegen äußere Einflüsse schützen, und somit die Durchführung anspruchsvoller ex situ Experimente ermöglichen können. Die untersuchten Bi2Te3 Schichten wurden mittels Molekularstrahlepitaxie (MBE) hergestellt. Es konnte gezeigt werden, dass es allein durch Optimierung der Wachstumsbedingungen möglich ist Proben herzustellen, die gleichbleibend isolierende Eigenschaften des TI Inneren aufweisen und Eindomänen-Ausrichtung besitzen. Die zentralen Faktoren sind hierbei die Aufrechterhaltung eines Flussratenverhältnisses von Te/Bi ~8 der einzelnen Elemente, sowie die Wahl einer ausreichend hohen Substrattemperatur, um ein vollständiges Abdampfen (Destillation) des überschüssigen Tellur zu erreichen. Weiterhin müssen Substrate mit gut angepassten Gitterparametern verwendet werden, welches bei BaF2 (111) gegeben ist. Optimales MBE Wachstum konnte durch ein Zwei-Stufen Prozess bei Substrattemperaturen von 220°C und 250°C und einer Bi-Verdampfungsrate von 1 Å/min erreicht werden. Die nachfolgende Charakterisierung der strukturellen Eigenschaften, Photoelektronenspektroskopie, sowie temperaturabhängige Leitfähigkeitsmessungen wurden alle in einem zusammenhängenden Ultrahochvakuum-System durchgeführt. Auf diese Weise wird eine zuverlässige Erfassung der intrinsischen Eigenschaften der TI sichergestellt. Zur Überprüfung, ob die Leitfähigkeit der Proben tatsächlich nur durch die Oberflächenzustände hervorgerufen wird, wurden Filme mit Schichtdicken im Bereich von 10 bis 50 Quintupel-Lagen (QL; 1QL~ 1 nm) hergestellt und charakterisiert. Winkelaufgelöste Photoelektronenspektroskopie (ARPES) belegt, dass das chemische Potential (Fermi-Niveau) in allen Proben innerhalb der Bandlücke der Bandstruktur des Materialinneren liegt und nur von den topologisch geschützten Oberflächenzuständen gekreuzt wird, welche die charakteristische lineare Dirac Dispersionsrelation aufweisen. Die temperaturabhängigen Widerstandsmessungen zeigen ein metallisches Verhalten aller Proben. Bei der Variation der Schichtdicke von 10 zu 50QL wird eine Streuung des Flächenwiderstandes vom Faktor 1,3 bei 14K und 1,5 bei Raumtemperatur beobachtet. Dies beweist, dass die gemessene Leitfähigkeit vorrangig durch die topologisch geschützten Oberflächenzustände hervorgerufen wird. Eine geringe Oberflächenladungsträgerkonzentration im Bereich von 2–4*10^12 cm^−2 und hohe Mobilitätswerte von bis zu 4600 cm2/Vs wurden erreicht. Weiterhin wurden die negativen Auswirkungen auf die Eigenschaften der TI durch Luftexposition quantifiziert, welches die Notwendigkeit belegt, die Oberfläche der TI vor Umgebungseinflüssen zu schützen. Die Proben verhalten sich inert gegenüber reinem Sauerstoff, daher ist Wasser aus der Luftfeuchte höchstwahrscheinlich der Hauptgrund für die beobachtbare Verschlechterung. Darüber hinaus konnte epitaktisch gewachsenes Tellur als geeignete Deckschicht ausfindig gemacht werden, welches die Eigenschaften der Bi2Te3 Filme nicht beeinflusst, sowie gegen Veränderungen durch Luftexposition schützt. Die gewonnenen Erkenntnisse stellen eine ideale Grundlage für weiterführende Untersuchungen dar und ebnen den Weg zur Entwicklung von Bauelementen welche die spezifischen Besonderheiten der topologischen Oberflächenzustände.:Abstract Kurzfassung Acronyms List of Symbols Introduction 1 Topological insulators 1.1 Basic theory of topological insulators 1.2 3D topological insulator materials: bismuth chalcogenides 2 Experimental techniques 2.1 General layout of the UHV-system 2.2 Molecular beam epitaxy 2.3 Structural and spectroscopic characterization 2.3.1 RHEED and LEED 2.3.2 Photoelectron spectroscopy 2.3.3 Ex situ x-ray diffraction 2.4 In situ electrical resistance measurements 2.4.1 In situ transport setup 2.4.2 Measurement equipment and operation modes 2.5 Substrates and sample holders 3 MBE growth and structural characterization of Bi2Te3 thin films 3.1 Bi2Te3 growth optimization and in situ structural characterization 3.1.1 1-step growth on Al2O3 (0001) 3.1.2 2-step growth on Al2O3 (0001) 3.1.3 2-step growth on BaF2 (111) 3.2 Ex situ structural characterization 4 In situ spectroscopy and transport properties of Bi2Te3 thin films 4.1 In situ spectroscopy of Bi2Te3 thin films 4.1.1 XPS 4.1.2 ARPES 4.2 Combined ARPES and in situ electrical resistance measurements of bulk-insulating Bi2Te3 thin films 4.2.1 Quality of the in situ electrical sample contacts 4.2.2 Verification of the intrinsic conduction through topological surface states of bulk-insulating Bi2Te3 thin films 5 Effect of surface contaminants on the TI properties 5.1 Effect of air exposure on the electrical conductivity of Bi2Te3 surfaces 5.2 Determination of the contaminants causing degradation of the TI properties 5.3 Long-time resistance behavior of a Bi2Te3 film exposed to minimal traces of contaminants 6 Protective capping of bulk-insulating Bi2Te3 thin films 6.1 Capping with BaF2 6.1.1 MBE growth and structure of BaF2 on Bi2Te3 thin films 6.1.2 Electron spectroscopy and electrical transport properties of BaF2 capped Bi2Te3 6.2 Capping with tellurium 6.2.1 MBE growth and structure of Te on Bi2Te3 thin films 6.2.2 Photoelectron spectroscopy and electrical transport properties of Te capped Bi2Te3 6.2.3 De-capping of Te 6.2.4 Efficiency of Te capping against air exposure 7 Conclusion and outlook Bibliography Versicherung Curriculum vitae Veröffentlichungen
15

RF überlagertes DC-Sputtern von transparenten leitfähigen Oxiden

Heimke, Bruno 19 March 2013 (has links)
Die vorliegende Dissertation befasst sich mit dem RF- überlagerten DC-Sputtern von Indiumzinnoxid und aluminiumdotierten Zinkoxid. Bei dem dafür entwickelten synchron gepulsten RF/DC-Verfahren werden die zu untersuchenden Materialien gleichzeitig mit Hilfe eines RF- und eines PulsDC-Generators gesputtert. Ein wesentliches Resultat der Untersuchungen ist, dass durch RF- überlagertes DCSputtern Schichten abgeschieden werden können, die im Vergleich zum DC- bzw. PulsDC-Sputtern geringere spezifische Widerstände aufweisen. Dies ist auf eine Verringerung von Defekten in den abgeschiedenen Schichten zurückzuführen. Es konnte anhand der Untersuchungen gezeigt werden, dass fur die Abscheidung von Indiumzinnoxid und aluminiumdotiertem Zinkoxid die Substrattemperatur beim RF überlagerten DC-Sputtern gegenüber dem DC-Sputtern um bis zu 100°C verringert werden kann.
16

Ein Beitrag zur Verbesserung der Eigenschaften magnetisch-induktiver Tastspulen

Heidary Dastjerdi, Maral 06 September 2016 (has links)
Magnetisch-induktive Techniken finden seit langer Zeit viele Anwendungsfelder in der Medizin, Sicherheitstechnik und der Industrie. Obwohl die technischen Grundlagen seit vielen Jahrzehnten bekannt sind, werden auf Basis detaillierter Analysen spezielle Lösungsansätze verfolgt, die neuartiges Anwendungspotential erschließen sollen. Dazu dienen verbesserte Werkzeuge wie Computersimulationen und analytische Berechnungen sowie neu kombinierte Methoden und Aufbauten aus Leistungselektronik und Signaldetektion. Die Vorteile magnetisch-induktiver Techniken sind dabei u.a., dass sie das Prüfobjekt nicht schädigen, berührungslos arbeiten, robust gegenüber Verschmutzungen und einfach im Aufbau sind. Ein Nachteil dieser Technik ist die unzureichende Auflösung von feinen Strukturen. In der aktuellen Forschung und Entwicklung werden unterschiedliche Spulenanordnungen zur Anwendung in industriellen und medizinischen Fragestellungen untersucht und optimiert. Thema dieser Arbeit ist es, durch Verbesserung der Spuleneigenschaften, neue Anwendungsbereiche für die zerstörungsfreie Materialprüfung zu erschließen. Es wird eine Methode vorgestellt, die Eigenschaften magnetisch-induktiver Tastspulen zu verbessern und so den Aufwand bei der Signalverarbeitung zur Rekonstruktion im Rechner zu reduzieren sowie die Auflösung zu erhöhen. Dazu werden zwei Spulenanordnungen, Transmissions - Tastspulen und Gradiometer - Tastspulen, vergleichend gegenübergestellt und ihre technischen Grenzen aufgezeigt. / Magneto-inductive techniques are found in many fields of application areas so in medicine, security technology and industry. Although the technical basis has been known for many decades, special solutions are pursued on the basis of detailed analysis that should open new application potential. These are enhanced tools such as computer simulations, analytical calculations, new combined methods and structures of power electronics and signal detection. The advantages of magneto-inductive techniques are that they do not damage the test object, are contactless, robust against dirt and simple in construction. A disadvantage of this technique is the insufficient resolution of fine structures. In current research and development different coil assemblies are investigated in industrial and medical applications. The aim of this work is to improve the coil properties by changing geometric constructions and current patterns of the coils, in order to allow a sharper localization of objects in space and to tap new application areas for non-destructive testing. A method to improve the properties of magneto-inductive coils and thus to reduce the effort in signal processing and image reconstruction as well as to increase the resolution is presented. Two different coil assemblies, gradiometer – coils and transmission – coils, are compared and their technical limits shown.
17

Multi-staged deposition of trench-gate oxides for power MOSFETs

Neuber, Markus, Storbeck, Olaf, Langner, Maik, Stahrenberg, Knut, Mikolajick, Thomas 06 October 2022 (has links)
Here, silicon oxide was formed in a U-shaped trench of a power metal-oxide semiconductor field-effect transistor device by various processes. One SiO₂ formation process was performed in multiple steps to create a low-defect Si-SiO₂ interface, where first a thin initial oxide was grown by thermal oxidation followed by the deposition of a much thicker oxide layer by chemical vapor deposition (CVD). In a second novel approach, silicon nitride CVD was combined with radical oxidation to form silicon oxide in a stepwise sequence. The resulting stack of silicon oxide films was then annealed at temperatures between 1000 and 1100 °C. All processes were executed in an industrial environment using 200 mm-diameter (100)-oriented silicon wafers. The goal was to optimize the trade-off between wafer uniformity and conformality of the trenches. The thickness of the resulting silicon oxide films was determined by ellipsometry of the wafer surface and by scanning electron microscopy of the trench cross sections. The insulation properties such as gate leakage and electrical breakdown were characterized by current–voltage profiling. The electrical breakdown was found to be highest for films treated with rapid thermal processing. The films fabricated via the introduced sequential process exhibited a breakdown behavior comparable to films deposited by the common low-pressure CVD technique, while the leakage current at electric fields higher than 5 MV/cm was significantly lower.
18

Cu(Ag)-Legierungsschichten als Werkstoff für Leiterbahnen höchstintegrierter Schaltkreise / Herstellung, Gefüge, thermomechanische Eigenschaften, Elektromigrationsresistenz

Strehle, Steffen 04 April 2007 (has links) (PDF)
Die vorliegende Arbeit verfolgt das Ziel, Cu(Ag)-Dünnschichten als potentiellen Werkstoff für Leiterbahnen in der Mikroelektronik zu untersuchen. Für die Beurteilung dieses Materialsystems wurden vier Schwerpunkte bezüglich der Schichtcharakterisierung definiert: Herstellung, Gefüge, thermomechanische Eigenschaften, Elektromigrationsresistenz. Grundlage sämtlicher Untersuchungen ist eine geeignete Probenpräparation. In Anlehnung an Technologien, die zur Zeit bei der Herstellung von reinen Cu-Leiterbahnen Anwendung finden, erfolgte die Beschichtung der Cu(Ag)-Schichten (Dicke bis 1 µm) galvanisch aus einem schwefelsauren Elektrolyten unter Additiveinsatz auf thermisch oxidierten Siliziumwafern. Hierbei war nicht nur die Abscheidung von ganzflächigen Dünnschichten, sondern auch die Beschichtung auf strukturierte Substrate von Interesse. Die erzeugten Schichtproben werden in ihren Gefügeeigenschaften, vergleichend zu reinen Kupferschichten, charakterisiert. Hierzu zählen Korngrößen und -orientierungen, thermisches Gefügeverhalten, Einbau, Verteilung und Segregation von Silber und Fremdstoffen sowie die elektrischen Eigenschaften. Von grundsätzlicher Bedeutung für das Elektromigrationsverhalten und damit für die Zuverlässigkeit und das Leistungsvermögen sind die thermomechanischen Eigenschaften. Diese werden an ausgedehnten Schichten mit der Substratkrümmungsmessung bis zu Temperaturen von 500°C beschrieben. Die Diskussion des mechanischen Schichtverhaltens umfasst sowohl thermische als auch temporale Charakteristika. Die Untersuchungen geben einen Einblick in die wirkenden Mechanismen des Stofftransports und des Spannungsabbaus. Den Abschluss der Arbeit stellen erste Experimente zum Elektromigrationsverhalten der Cu(Ag)-Dünnschichten dar. Den Kern dieser Analysen bilden Messungen an sog. Blech-Strukturen (Materialdriftexperimente). Hierbei werden geeignete Technologien für die mikrotechnologische Herstellung von derartigen Cu(Ag)-Strukturen vorgestellt. Anhand erster Messungen wird das Elektromigrationsverhalten von Cu(Ag)-Metallisierungen in seinen Grundcharakteristika beschrieben.
19

Cu(Ag)-Legierungsschichten als Werkstoff für Leiterbahnen höchstintegrierter Schaltkreise: Herstellung, Gefüge, thermomechanische Eigenschaften, Elektromigrationsresistenz

Strehle, Steffen 12 March 2007 (has links)
Die vorliegende Arbeit verfolgt das Ziel, Cu(Ag)-Dünnschichten als potentiellen Werkstoff für Leiterbahnen in der Mikroelektronik zu untersuchen. Für die Beurteilung dieses Materialsystems wurden vier Schwerpunkte bezüglich der Schichtcharakterisierung definiert: Herstellung, Gefüge, thermomechanische Eigenschaften, Elektromigrationsresistenz. Grundlage sämtlicher Untersuchungen ist eine geeignete Probenpräparation. In Anlehnung an Technologien, die zur Zeit bei der Herstellung von reinen Cu-Leiterbahnen Anwendung finden, erfolgte die Beschichtung der Cu(Ag)-Schichten (Dicke bis 1 µm) galvanisch aus einem schwefelsauren Elektrolyten unter Additiveinsatz auf thermisch oxidierten Siliziumwafern. Hierbei war nicht nur die Abscheidung von ganzflächigen Dünnschichten, sondern auch die Beschichtung auf strukturierte Substrate von Interesse. Die erzeugten Schichtproben werden in ihren Gefügeeigenschaften, vergleichend zu reinen Kupferschichten, charakterisiert. Hierzu zählen Korngrößen und -orientierungen, thermisches Gefügeverhalten, Einbau, Verteilung und Segregation von Silber und Fremdstoffen sowie die elektrischen Eigenschaften. Von grundsätzlicher Bedeutung für das Elektromigrationsverhalten und damit für die Zuverlässigkeit und das Leistungsvermögen sind die thermomechanischen Eigenschaften. Diese werden an ausgedehnten Schichten mit der Substratkrümmungsmessung bis zu Temperaturen von 500°C beschrieben. Die Diskussion des mechanischen Schichtverhaltens umfasst sowohl thermische als auch temporale Charakteristika. Die Untersuchungen geben einen Einblick in die wirkenden Mechanismen des Stofftransports und des Spannungsabbaus. Den Abschluss der Arbeit stellen erste Experimente zum Elektromigrationsverhalten der Cu(Ag)-Dünnschichten dar. Den Kern dieser Analysen bilden Messungen an sog. Blech-Strukturen (Materialdriftexperimente). Hierbei werden geeignete Technologien für die mikrotechnologische Herstellung von derartigen Cu(Ag)-Strukturen vorgestellt. Anhand erster Messungen wird das Elektromigrationsverhalten von Cu(Ag)-Metallisierungen in seinen Grundcharakteristika beschrieben.
20

Nanomanipulation and In-situ Transport Measurements on Carbon Nanotubes / Nanomanipulation und In-situ Transportmessung an Kohlenstoff-Nanoröhren

Löffler, Markus 20 May 2010 (has links) (PDF)
With the advent of microelectronics and micromechanical systems, the benefits of miniaturized technology became evident. With the discovery of carbon nanotubes by Iijima in 1991, a material has been found that offers superior porperties such as high tensile strength, excellent electrical and heat conductivity while being lightweight, flexible and tunable by the specific atomic arrangement in its structure. The first part of this thesis deals with a new synthesis approach, which combines the known routes of chemical vapour deposition and laser ablation. The results concerning diameter and yield fit well within an established model for the nucleation and growth of carbon nanotubes and extend it by considering a larger parameter space. Furthermore, conventional laser ablation has been used to synthesize C-13 augmented carbon nanotubes, whose diameters depend among the usual synthesis parameters also on the C-13 content, an influence which is in line with the changed thermal conductivities of isotope mixtures. Manipulation of carbon nanotubes inside a transmission electron microscope forms the second part of this thesis. With the help of an in-situ nanomanipulator, several experiments involving the mechanical and electrical properties of carbon nanotubes have been performed. Two-probe resistances of individual nanotubes have been measured and the observation of individual shell failures allowed for the determination of current limits per carbon shell. With the help of electrical current, a nanotube was modified in its electrical characteristics by reshaping its structure. By application of DC-currents or square current pulses, the filling of iron- or cementite-filled multi-wall carbon nanotubes has been found to move in a polarity-defined direction guided by the nanotube walls. Depending on the current, nanotube shape, and composition of the filling different regimes of material transport have been identified, including the reworking of the inner nanotube shells. The application of a high driving current leads to a complete reworking of the host nanotube and the current-induced growth of carbonaceous nanostructures of changed morphology. Utilizing the obtained results, a transport mechanism involving momentum transfer from the electron wind to the filling atoms and a solid filling core during transport is developed and discussed. Finally, measurements of mechanical properties using electrically induced resonant or non-resonant vibrations inside the transmission electron microscope have been observed and important mechanical parameters have been determined with the help of a modified Euler-Bernoulli-beam approach. / Mit dem Aufkommen von Mikroelektronik und mikromechanischen Systemen wurden die Vorteile miniaturisierter Geräte augenscheinlich. Mit der Entdeckung von Kohlenstoff-Nanoröhren durch Iijima 1991 wurde ein Material gefunden, welches überlegene Eigenschaften wie hohe Festigkeit, exzellente elektrische und Wärmeleitfähigkeit zeigt, während es zeitgleich leicht und flexibel ist. Diese Eigentschaften können durch eine Änderung der spezifischen atomaren Anordnung in der Nanoröhrenhülle beeinflusst werden. Der erste Teil dieser Dissertationsschrift behandelt einen neuartigen Syntheseansatz, welche die bekannten Syntheserouten der chemischen Gasphasenabscheidung und Laserablation kombiniert. Die Ergebnisse bezüglich des Durchmessers und der Ausbeute lassen sich gut mit einem etablierten Modell der Nukleation und des Wachstums von Kohlenstoff-Nanoröhren beschreiben - sie erweitern es, indem sie einen größeren Parameterraum berücksichtigen. Des Weiteren wurde konventionelle Laserablation benutzt, um C-13 angereicherte Kohlenstoff-Nanoröhren herzustellen, deren Durchmesser nicht nur von den üblichen Parametern, sondern auch vom C-13 Anteil abhängt. Diese Abhängigkeit geht mit der veränderten thermischen Leitfähigkeit von Isotopenmischungen einher. Die Manipulation von Kohlenstoff-Nanoröhren in einem Transmission-Elektronenmikroskop formt den zweiten Teil der Dissertationschrift. Mit Hilfe eines in-situ Manipulators wurden vielfältige Experimente durchgeführt, um die mechanischen und elektrischen Eigenschaften der Kohlenstoff-Nanoröhren zu bestimmen. Zweipunktmessungen des Widerstands einzelner Nanoröhren und die Beobachtung des Versagens einzelner Kohlenstoffschichten erlaubte die Bestimmung der Stromtragfähigkeit einzelner Hüllen. Mit Hilfe eines elektrischen Stromes konnte eine Nanoröhre durch die veränderung der Struktur in ihren elektrischen Eigenschaften verändert werden. Unter Verwendung dauerhaften oder gepulsten Gleichstroms konnte die Eisen- oder Zementit-Füllung der Kohlenstoff-Nanoröhren in eine polaritätsabhängige Richtung bewegt werden. Die Füllung wurde dabei durch die Wände der Nanoröhre geführt. Abhängig von Strom, Form der Nanoröhre und Zusammensetzung der Füllung ließen sich verschiedene Bereiche des Materialtransports identifizieren, u.a. das Umarbeiten einiger innerer Kohlenstoffschichten. Ein hoher Strom hingegen bewirkt eine Umarbeitung der kompletten Nanoröhre und strominduziertes Wachstum von Kohlenstoff-Nanostrukturen mit veränderter Morphologie. Mit Hilfe der gewonnenen Resultate wurde ein Transportmodell entwickelt, welches den Impulstransfer von Elektronen an Füllungsatome sowie einen festen Füllungskern während des Transports diskutiert. Messungen der mechanischen Eigenschaften, welche mit Hilfe von resonanter oder nicht-resonanter elektrischer Anregung von Schwingungen im Transmissions-Elektronenmikroskop durchgeführt wurden bilden den Abschluss der Arbeit. Durch die Beobachtungen konnten mit einem modifizierten Euler-Bernoulli-Balkenmodell wichtige mechanische Eigenschaften bestimmt werden.

Page generated in 0.1296 seconds