• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 96
  • 37
  • 27
  • 2
  • 2
  • Tagged with
  • 246
  • 230
  • 156
  • 117
  • 96
  • 96
  • 96
  • 79
  • 62
  • 46
  • 44
  • 44
  • 44
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Transformation of the German energy system - Towards photovoltaic and wind power: Technology Readiness Levels 2018

Pieper, Christoph 20 September 2019 (has links)
The aim of this thesis is to objectify the discussion regarding the availability of technologies related to the German energy transition. This work describes the state of development of relevant technologies on the basis of Technology Readiness Levels. Further, it points out development potentials and limits as well as the necessary power capacities needed for a certain energy system design that is mainly based on electricity. Thus, the scope is set to renewable energy sources suited to provide electricity in Germany, technologies that convert primary electricity for other energy sectors (heating and mobility) and storage technologies. Additionally, non-conventional technologies for electricity supply and grid technologies are examined. The underlying Technology Readiness Assessment is a method used to determine the maturity of these systems or their essential components. The major criteria for assessment are scale, system fidelity and environment. In order to estimate the relevant magnitudes for certain energy technologies regarding power and storage capacities, a comprehensible simulation model is drafted and implemented. It allows the calculation of a renewable, volatile power supply based on historic data and the display of load and storage characteristics. As a result, the Technology Readiness Level of the different systems examined varies widely. For every step in the direct or indirect usage of renewable intermittent energy sources technologies on megawatt scale are commercially available. The necessary scale for the energy storage capacity is in terawatt hours. Based on the examined storage technologies, only chemical storages potentially provide this magnitude. Further, the required total power capacities for complementary conversion technologies lay in the two-digit gigawatt range.:Abstract 2 Contents 3 1. Introduction 7 2. General remarks on the current state of the German energy system 12 3. Method of Technology Readiness Assessment 16 3.1. Fundamentals of the method 16 3.2. Drawbacks of TRA 19 3.3. Extended Readiness Levels 20 3.4. Conducting the Technology Readiness Assessment 21 3.5. Expert interviews 23 3.6. References 24 4. Preliminary remarks on the TRL assessment 25 4.1. Mission and environment 25 4.2. Simplifications and neglected aspects 26 4.3. References 26 5. Wind power 27 5.1. Technology description 27 5.2. Estimation of potential 32 5.3. Representation of the achieved state of expansion 37 5.4. TRL assessment 39 5.5. References 40 6. Solar energy 44 6.1. Technology description 44 6.2. Solar thermal energy 44 6.3. Photovoltaic technologies 45 6.4. Estimation of potential 48 6.5. Representation of the achieved state of expansion 52 6.6. TRL assessment 53 6.7. References 54 7. Geothermal energy 56 7.1. Technology description 56 7.2. Estimation of potential 59 7.3. Description of the current level of expansion 62 7.4. TRL assessment 63 7.5. References 64 8. Hydropower 66 8.1. Technology description 66 8.2. Estimation of potential 68 8.3. Description of the current level of development 70 8.4. TRL assessment 71 8.5. References 72 9. Biomass 73 9.1. Technology description 73 9.2. Estimation of potential 75 9.3. Representation of the achieved state of expansion 79 9.4. TRL assessment 81 9.5. References 82 10. Transmission and distribution grids 84 10.1. Technology description 84 10.2. Estimation of potential 90 10.3. Representation of the achieved state of expansion 94 10.4. TRL assessment 95 10.5. References 96 11. Power-to-heat 100 11.1. Technology description 100 11.2. Estimation of potential 104 11.3. Representation of the achieved state of expansion 107 11.4. TRL assessment 108 11.5. References 109 12. Power-to-cold 111 12.1. Technology description 111 12.2. Estimation of potential 114 12.3. Representation of the achieved state of expansion 117 12.4. TRL assessment 118 12.5. References 120 13. Power-to-chemicals 122 13.1. Technology description 122 13.2. Estimation of potential 134 13.3. Representation of the achieved state of expansion 137 13.4. TRL assessment 138 13.5. Manufacturer overview for electrolysis systems 140 13.6. References 142 14. Mechanical storage 146 14.1. Technology description 146 14.2. Estimation of potential 148 14.3. Representation of the achieved state of expansion 155 14.4. TRL assessment 155 14.5. References 158 15. Thermal storage 160 15.1. Technology description 160 15.2. Estimation of potential 164 15.3. Representation of the achieved state of expansion 169 15.4. TRL assessment 170 15.5. References 172 16. Chemical storage systems 175 16.1. Technology description 175 16.2. Estimation of potential 180 16.3. Representation of the achieved state of expansion 185 16.4. TRL assessment 186 16.5. References 188 17. Electro-chemical storage systems 191 17.1. Technology description 191 17.2. Estimation of potential 198 17.3. Representation of the achieved state of expansion 202 17.4. TRL assessment 202 17.5. References 204 18. Gas engines/gas turbines for hydrogen combustion 207 18.1. Technology description 207 18.2. Estimation of potential 208 18.3. Representation of the achieved state of expansion 211 18.4. TRL assessment 211 18.5. References 213 19. Chemicals-to-Power – Fuel cells 214 19.1. Technology description 214 19.2. Estimation of potential 218 19.3. Representation of the achieved state of expansion 221 19.4. TRL assessment 223 19.5. References 225 20. Interim conclusion for TRA 227 21. Evaluation of system integration 230 21.1. Modelling approach 230 21.2. Scenarios for a renewable energy supply 238 21.3. Results of the simulation 238 21.4. Consequences 244 21.5. References 245 22. Summary and Outlook 247 23. Abbreviations and symbols 249 24. Indices 254 25. List of Figures 255 26. List of Tables 258 27. Appendix 260 27.1. DOE TRL definition and description 260 27.2. Visualized summary of TRLs 262
132

Szenarien eines diversifizierten Energieangebots in OPEC-Staaten am Beispiel Irans : Strategien eines auf klimaschonenden Energieträgern basierenden Umstiegs

Supersberger, Nikolaus 22 January 2008 (has links)
Iran ist einer der größten Ölexporteure der Welt, sieht sich aber trotzdem mit zahlreichen Energieproblemen konfrontiert (z. B. stark steigender und subventionierter Energieverbrauch). Gemein mit anderen OPEC-Staaten hat Iran außerdem das so genannte Dutch Disease. Für Iran wurden Langzeit-Energieszenarien berechnet, die den Einsatz von Energieeffizienz und erneuerbaren Energien in unterschiedlich hohen Graden abbilden. Es wird gezeigt, dass in Iran unter Beibehaltung des bisherigen energieintensiven Entwicklungspfads binnen weniger Jahrzehnte mehr Erdöl und Erdgas verbraucht werden, als heimisch produziert werden kann. Nur unter Annahme hoher Effizienzsteigerungen wird es möglich sein, dass Iran auch noch im Jahr 2050 Erdöl und Erdgas exportiert. Unter Annahme von Preiskurven wird deutlich, dass Energieeffizienz für den iranischen Staat sehr hohe (ökonomische) Gewinne ermöglicht. Die Nutzung erneuerbarer Energien in Iran ermöglicht ebenfalls hohe ökonomische Gewinne: Durch deren heimischen Einsatz kann Erdgas eingespart und exportiert werden. Außerdem tragen sie zu einer Diversifizierung des heimischen Energiemix sowie des Exportportfolios bei. Kernenergie ist dagegen für die Herstellung iranischer Versorgungssicherheit nicht notwendig. Der großmaßstäbliche Einsatz erneuerbarer Energien als Exportgut könnte innerhalb der OPEC einen Prozess der Disaggregation gemeinsamer Interessen einleiten. Dennoch sprechen zahlreiche Gründe dafür, dass die OPEC eine weitreichende Strategie für erneuerbare Energien und Energieeffizienz entwickelt, die langfristig ihren eigenen Interessen dient und sie zu einem Klimaschutz-Vorreiter machen kann.
133

First workshop of the Asian Network for Environment and Energy: Event report

Le, Hung-Anh, Kim, Jo-Chun, Perng, Yuan-Shing, Kim, In-Won 14 November 2013 (has links)
Asia is one of the most densely populated areas in the world. Many Asian countries experienced strong economic growth and rapid urbanization in the last decade. However, Asia is also faced with the challenge of environmental protection, energy security and CO2 emissions. The purpose of establishment of the Asian Network for Environment and Energy (ANEE) is to connect the re-search and training institutions, facilitate the exchange of experience and know-how, and initiating joint projects on environmental protection and renewable energy. The network organizes annual scientific conferences, develops projects addressing environmental problems of the region, and builds personnel training programs for renewable energy and environment. The first ANEE workshop held in Ho Chi Minh City is the launching event the network addressing air pollution, water management, solid waste and energy. / Châu Á là một trong những khu vực đông dân nhất trên thế giới. Nhiều quốc gia tại châu Á đã có sự phát triển kinh tế mạnh mẽ và đô thị hóa rất nhanh trong thập kỷ vừa qua. Tuy nhiên, khu vực châu Á cũng đối mặt với các thách thức về bảo vệ môi trường, phát thải CO2 và an ninh năng lượng. Mục đích thành lập Mạng lưới châu Á về Môi trường và Năng lượng (ANEE) nhằm kết nối các tổ chức nghiên cứu và đào tạo, tạo điều kiện cho trao đổi kinh nghiệm và know-how, xây dựng các dự án tổng thể về bảo vệ môi trường và năng lượng tái tạo. Mạng lưới tổ chức các Hội thảo khoa học hàng năm, phát triển các dự án giải quyết các vấn đề môi trường thời sự của khu vực, xây dựng các chương trình đào tạo nhân lực ngành môi trường và năng lượng tái tạo. Hội thảo lần thứ nhất của ANEE được tổ chức tại Tp.Hồ Chí Minh là sự kiện khởi động Mạng lưới với các chuyên đề về Ô nhiễm không khí, Quản lý nguồn nước, chất thải rắn và năng lượng.
134

Monitoring erneuerbarer Energien im Verkehr

Schröder, Jörg, Naumann, Karin 07 July 2022 (has links)
Der DBFZ-Report Nr. 44 beschäftigt sich mit dem Monitoring zur Anwendung von erneuerbaren Energien im Verkehr. Im Fokus des Berichts stehen erneuerbare biomassebasierte und strombasierte Kraftstoffe sowie Strom im Kontext sich ändernder Rahmenbedingungen. Der Report ist eine Fortsetzung und Erweiterung des bisherigen DBFZ-Reports Nr. 11 (Monitoring Biokraftstoffsektor, 4 Auflage) [Naumann (2019)]. Aufgrund der umfassenden Überarbeitung und inhaltlichen Erweiterung erfolgte die Änderung des Titels und damit die Veröffentlichung dieser ersten Auflage. Perspektivisch werden wesentliche Informationen auch online unter https://www.dbfz.de/Monitoring-EE-im-Verkehr zur Verfügung gestellt. Insbesondere für ausgewählte Abbildungen, die im Bericht in vereinfachter Form dargestellt sind, können hier in ausführlicher Form nachvollzogen werden. Einführend werden der derzeitige rechtliche Rahmen und die wesentlichen politischen Zielstellungen für erneuerbare Energien sowie der Status quo im Verkehr und dessen Infrastruktur zusammenfassend dargelegt. Die weitere Struktur dieses Reports orientiert sich im Wesentlichen an den Schritten der Bereitstellungs- und Nutzungskette von erneuerbaren Energieträgern, gefolgt von einer ökologischen und ökonomischen Einordnung. Abschließend werden diese Aspekte verkürzt in spezifischen Steckbriefen für die einzelnen erneuerbaren Kraftstoffoptionen und für erneuerbaren Strom sowie gemeinsam in zwei Fahrzeug-Energieträger-Matrices für die Jahre 2030 und 2045 dargestellt. / DBFZ Report No. 44 examines the monitoring of the use of renewable energies in transport. The report focuses on renewable biomass-based and electricity-based fuels and electricity within the context of a changing framework. The report is an update and expansion of the previous DBFZ Report No. 11 (Monitoring of the Biofuel Sector, 4th Edition) [Naumann (2019)]. Because the report has been comprehensively revised and its content expanded upon, it has been given a new title and is being published as a first edition. In future, essential information will be made available online at https://www.dbfz.de/Monitoring-EE-im-Verkehr. Here, complex figures that are presented in simplified form in the report will be reproduced in detail. The report will start with a summary of the current legal framework and the main policy objectives for renewable energy and will describe the status quo in transport as well as its infrastructure. The report will go on to cover the steps of the supply chain for renewable energy sources and their use, followed by a classification in ecological and economic terms. Finally, these topics will be presented in abbreviated form as part of specific profiles of the individual renewable fuel options and renewable electricity, as well as jointly in two vehicle-energy source matrices for the years 2030 and 2045.
135

Quantitative Analysis of the Reduction of Greenhouse Gas Emissions in the Power Sector

Anke, Carl-Philipp 08 November 2021 (has links)
Climate change is one of the pressing issues of our time. In order to limit global warming, the greenhouse gas emissions (GHG) need to be reduced drastically over the next decades in all sectors. A special role is played by the power sector, because it is the one responsible for most GHG emissions and because its costs for decarbonization are rather low. Consequently, national policies aim at reducing GHG emissions by supporting the expansion of renewable energy sources for electricity production (RES) and initiating a coal phase-out (CPO). European policymakers have implemented the EU Emissions Trading Scheme (EU ETS), a mechanism for pricing GHG emissions in the power and industry sector across Europe that incentives carbon mitigation. This dissertation investigates how national and European policies affect the power market and especially its GHG emissions and examines how these policies interact. This dissertation shows that RES, in addition to the short-term, well-studied, merit order effect, which reduces power wholesale prices, also have long-term effects on electricity markets. The long-term effect describes the impact that RES have on investment decisions into conventional technologies, which are reduced by over 8 GW in Germany. This indicates that the power market adapts to the expansion of RES. With regard to the GHG mitigation of RES, it is shown that currently RES contribute substantially to the mitigation of GHG emissions. Because wind power substitutes coal power, it has a significantly higher potential to avoid GHG emissions than solar power in Germany. Provided wind stays favorable in the future, this portends from a climate perspective that politics should focus on the expansion of wind. It further justifies higher support schemes for wind than solar energy. The impact of the CPO on the GHG emissions depends strongly on legal implementation. If no further actions are taken, the demand for emission decreases, because existing emitters leave the market and the price drops to 0 EUR/t. The EU ETS loses its incentive effect and the emissions are realized elsewhere since the cap remains the same and is fully exploited. Therefore, alongside the CPO, emission certificates have to be deleted in order to maintain the incentive effect of the EU ETS. Furthermore, the loss in valuation of the German coal power plants depends strongly on the time of the CPO. Given high expected emission prices and the expansion of RES, coal-fired power plants cannot be operated economically advantageously in the long-term. Therefore, no devaluation is expected if power plants are phased out in 2038 or shortly before and hence, those power plants should not receive any compensation. Additionally, this dissertation shows that the EU ETS is a strong European policy that provides sufficient incentives to meet the European climate targets in 2030 and to realize the necessary expansion of RES. However, if national RES development paths are implemented, this leads to higher overall costs but also very different profitability of RES in each country This is because countries with high ambitions regarding the expansion of RES face self-marginalization effects, which reduces the revenues for RES due to the merit order effect, and increases the level of support needed for them to expand. In contrast, countries with low RES ambitions have little or no need of support schemes but benefit from low prices in the EU ETS due to strong RES expansion in countries with high ambitions. Summarizing, this dissertation demonstrated that both national and European policy contribute to the decarbonization of the European power sector. However, the different policies interact. This can have negative impacts, which indicates that a greater harmonization of policies is necessary. Further research should develop comprehensive policy approaches and discuss possible challenges.
136

Telling stories or solving problems? The 20-20-20 package and the efficiency of
EU Climate Change Policies

Schinke, Jan Christian 24 May 2016 (has links)
No description available.
137

The integration of renewable energy sources in continuous intraday markets for electricity

von Selasinsky, Alexander 28 April 2016 (has links) (PDF)
This thesis develops and applies methodological approaches for the analysis of intraday markets for electricity which are organised as continuous double auctions. The focus is to improve the understanding of how balancing forecast errors from weather-dependent renewable energy sources influences the outcomes of continuous intraday markets. This is important as it helps to assess how large amounts of renewable capacity can be utilised cost-efficiently and without stressing security of supply. In a first step, the thesis proposes a (non-mathematical) model of a continuous intraday market to show how the direction of the forecast error determines transactions between market participants, how these transactions relate to the formation of prices, and how the market integration of renewables can be improved. In a second step, the thesis provides a foundation for quantitative market analyses by modelling price-setting decisions for power generators and electricity demanders. This makes it possible to show that information on market participants' technical characteristics enables informed predictions of their market behaviour. In a third step, the thesis presents a computer simulation of a continuous intraday market. Implementing the simulation approach for the German power system allows calculation of the costs associated with the uncertain feed-in from renewables.
138

Der Stromausfall in München

Schubert, Daniel Kurt Josef, Meyer, Thomas, von Selasinsky, Alexander, Schmidt, Adriane, Thuß, Sebastian, Erdmann, Niels, Erndt, Mark 13 August 2015 (has links) (PDF)
Mit dem Forschungsprojekt wurde das Ziel verfolgt, den Einfluss des Münchner Stromausfalls im Winter 2012 auf die Zahlungsbereitschaft für Versorgungssicherheit sowie auf die Akzeptanz für Erneuerbare Energien zu untersuchen. Das Ausfallereignis in München bot sich in besonderer Weise für eine Untersuchung an, da etwa die Hälfte des Stadtgebiets betroffen war, sodass eine Trennung nach beeinträchtigten und nicht-beeinträchtigen Haushalten aus einer nahezu homogenen Stichprobe ermöglicht wurde. Im Zentrum der Untersuchung steht eine repräsentative Bevölkerungsumfrage, die zwei Monate nach dem Ausfallereignis durchgeführt wurde. Dazu wurden über das Telefonlabor der Technischen Universität Dresden 526 Personen aus Münchner Privathaushalten befragt. Nach unseren Befunden beeinflusst eine kleine Versorgungsunterbrechung, wie in München, die Einstellung hinsichtlich der Erneuerbaren Energien nur unwesentlich. Allerdings können wir mit Hilfe der kontingenten Bewertungsmethode einen signifikanten Einfluss des Ausfalls auf die Zahlungsbereitschaft für eine sichere Versorgung nachweisen. Darüber ergeben sich aus unserer Studie Erkenntnisse für die Umsetzung der Energiewende: Beispielsweise wurde der Wert für die letzte gelieferte Kilowattstunde Strom (Value of Lost Load), das Last-Abschaltpotenzial von Haushalten sowie die Akzeptanz der Höhe der EEG-Umlage ermittelt.
139

Journal of Vietnamese Environment

06 August 2012 (has links)
No description available.
140

Journal of Vietnamese Environment

09 November 2012 (has links)
No description available.

Page generated in 0.0548 seconds