• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 17
  • 12
  • 11
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 216
  • 41
  • 39
  • 35
  • 31
  • 28
  • 25
  • 25
  • 23
  • 23
  • 20
  • 20
  • 20
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Mechanisms Contributing to Transcriptional Regulation and Chromatin Remodeling of the Bone Specific Osteocalcin Gene

Gutierrez Gallegos, Soraya Elisa 20 November 2002 (has links)
Activation of tissue-specific genes is a tightly controlled process that normally involves the combined action of several transcription factors and transcriptional co-regulators. The bone-specific osteoca1cin gene (OC) has been used as a prototype to study both tissue-specific and hormonal responsiveness. In this study we have examined the role of Runx2, VDR and C/EBP factors in the regulation of OC gene transcription. Contributions of the Runx and VDRE motifs to OC promoter activity were addressed by introducing point mutations within the context of the rat (-1.1 kb) osteocalcin promoter fused to a CAT-reporter gene. The functional significance of these mutations was assayed following transient transfection and after genomic integration in ROS 17/2.8 osteoblastic cell lines. Furthermore, we tested the effect of these mutations on the chromatin organization of the OC promoter. Our data show that all three Runx sites are required for maximal activation of the OC promoter and that the distal sites contribute significantly to the basal activity. Strikingly, mutation of the three Runx sites abrogates responsiveness of the OC promoter to vitamin D; this loss is also observed when only the Runx sites flanking the VDRE are mutated. Chromatin changes that result in the appearance of DNase I hypersensitive sites during activation of the OC gene are well documented. Mutation of the three Runx sites results in altered chromatin structure as reflected by absence of DNase I hypersensitive sites at the vitamin D response element and over the proximal, tissue-specific basal promoter. These data are consistent with the critical role of Runx2 in osteoblast maturation and bone development. Mutation of the VDRE resulted in a complete loss of vitamin D responsiveness; however, this mutant promoter exhibited increased basal activity. The two DNase I hypersensitive sites characteristic of the transcriptionally active OC gene in osteoblastics cells were not altered upon mutation of the VDRE element, although restriction enzyme accessibility in the proximal promoter region was decreased. We also found an increased level of histone H3 acetylation at the VDRE mutant promoter in comparison to the endogenous gene. Thus binding of VDR to OC promoter is required to achieve a normal transcriptional regulation and chromatin structure of the OC gene. Although Runx2 is considered a master gene for bone development and osteoblast differentiation, it is noteworthy that osteoblast-specific transcription of the rat OC promoter occurs even in the absence of Runx sites. Therefore, other transcription factor(s) should be able to drive OC expression. We characterized a C/EBP enhancer element in the proximal promoter of the rat osteoca1cin gene that resides in close proximity to a Runx element, essential for tissue-specific activation. We find that C/EBPβ or δ and Runx2 factors interact together in a synergistic manner to enhance OC transcription in cell culture systems. Mutational analysis demonstrated that this synergism is mediated through the C/EBP responsive element in the OC promoter and requires a direct interaction between Runx2 and C/EBPβ or δ. Taken together, our findings strongly support a mechanism in which combinatorial interaction of Runx2, VDR, C/EBPβ or δ and probably other transcription factors are needed for regulating OC expression. In this process Runx factors not only act as simple transcriptional trans activators but also by facilitating modifications in promoter architecture and maintaining an active conformation of the target gene promoter.
172

Transcriptional Regulation During Adipocyte Differentiation: A Role for SWI/SNF Chromatin Remodeling Enzymes: A Dissertation

Salma, Nunciada 02 March 2006 (has links)
Chromatin has a compact organization in which most DNA sequences are structurally inaccessible and functionally inactive. Reconfiguration of thechromatir required to activate transcription. This reconfiguration is achieved by the action of enzymes that covalently modify nucleosomal core histones, and by enzymes that disrupt histone-DNA interactions via ATP hydrolysis. TheSWI/SNF family of ATP-dependent chromatin remodeling enzymes has been implicated not only in gene activation but also in numerous cellular processes including differentiation, gene repression, cell cycle control, recombination and DNA repair. PPARγ, C/EBPα and C/EBPβ are transcription factors with well established roles in adipogenesis. Ectopical expression of each of these factors in non-adipogenic cells is sufficient to convert them to adipocyte-like cells. To determine the requirements of SWI/SNF enzymes in adipocyte differentiation, we introduced PPARγ, C/EBPα or C/EBPβ into fibroblasts that inducibly express dominant-negative versions of the Brahma-Related Gene 1 (BRG1) or human Brahma (BRM), which are the ATPase subunits of the SWI/SNF enzymes. We found that adipogenesis and expression of adipocyte genes were inhibited in the presence of mutant SWI/SNF enzymes. Additionally, in cells expressing C/EBPα or C/EBPβ, PPARγ expression was SWI/SNF dependent. These data indicate the importance of these remodeling enzymes in both early and late gene activation events. Subsequently, we examined by chromatin immunoprecipitation (ChIP) assay the functional role of SWI/SNF enzymes in the activation of PPARγ2, the master regulator of adipogenesis. Temporal analysis of factors binding to the PPARγ2 promoter showed that SWI/SNF enzymes are required to promote preinitiation complex assembly and function. Additionally, our studies concentrated on the role of C/EBP family members in the activation of early and late genes during adipocyte differentiation. During adipogenesis, C/EBPβ and δ are rapidly and transiently expressed and are involved in the expression of PPARγ and C/EBPα, which together activate the majority of the adipocyte genes. Our studies determined the temporal recruitment of the C/EBP family at the promoters of early and late genes by ChIP assay during adipocyte differentiation. We found that all of the C/EBP members evaluated are present at the promoters of early and late genes, and the binding correlated with the kinetics of the C/EBPs expression. Binding of C/EBPβ and δ is transient, subsequently being replaced by C/EBPα. These studies demonstrated that C/EBPβ and δ are not only involved in the regulation of PPARγ and C/EBPα, but also in the activation of late expressed adipocyte genes.
173

Defining a Registry of Candidate Regulatory Elements to Interpret Disease Associated Genetic Variation

Moore, Jill E. 10 October 2017 (has links)
Over the last decade there has been a great effort to annotate noncoding regions of the genome, particularly those that regulate gene expression. These regulatory elements contain binding sites for transcription factors (TF), which interact with one another and transcriptional machinery to initiate, enhance, or repress gene expression. The Encyclopedia of DNA Elements (ENCODE) consortium has generated thousands of epigenomic datasets, such as DNase-seq and ChIP-seq experiments, with the goal of defining such regions. By integrating these assays, we developed the Registry of candidate Regulatory Elements (cREs), a collection of putative regulatory regions across human and mouse. In total, we identified over 1.3M human and 400k mouse cREs each annotated with cell-type specific signatures (e.g. promoter-like, enhancer-like) in over 400 human and 100 mouse biosamples. We then demonstrated the biological utility of these regions by analyzing cell type enrichments for genetic variants reported by genome wide association studies (GWAS). To search and visualize these cREs, we developed the online database SCREEN (search candidate regulatory elements by ENCODE). After defining cREs, we next sought to determine their potential gene targets. To compare target gene prediction methods, we developed a comprehensive benchmark of enhancer-gene links by curating ChIA-PET, Hi-C and eQTL datasets. We then used this benchmark to evaluate unsupervised linking approaches such as the correlation of epigenomic signal. We determined that these methods have low overall performance and do not outperform simply selecting the closest gene. We then developed a supervised Random Forest model which had notably better performance than unsupervised methods. We demonstrated that this model can be applied across cell types and can be used to predict target genes for GWAS associated variants. Finally, we used the registry of cREs to annotate variants associated with psychiatric disorders. We found that these "psych SNPs" are enriched in cREs active in brain tissue and likely target genes involved in neural development pathways. We also demonstrated that psych SNPs overlap binding sites for TFs involved in neural and immune pathways. Finally, by identifying psych SNPs with allele imbalance in chromatin accessibility, we highlighted specific cases of psych SNPs altering TF binding motifs resulting in the disruption of TF binding. Overall, we demonstrated our collection of putative regulatory regions, the Registry of cREs, can be used to understand the potential biological function of noncoding variation and develop hypotheses for future testing.
174

Estratégia alimentar e densidade de estocagem para acarádisco (Symphysodon aequifasciata) / Feeding strategy and stocking density for discus fish (Symphysodon aequifasciata)

BEERLI, Eduardo Lopes 29 May 2009 (has links)
Made available in DSpace on 2014-07-29T15:13:51Z (GMT). No. of bitstreams: 1 Tese Eduardo FINAL.pdf: 833614 bytes, checksum: 73be39460b25a5571084c5593253b76b (MD5) Previous issue date: 2009-05-29 / Four diets were tested to verify the effect of beef heart as feed enhancer for discus fish, studding the growth, weight gain, survivor, consumption, water quality and economic performance variables. Is was utilized 12 aquariums, distributed in 4 treatments and 3 replications. The treatments were: T1- 100% ration (42%PB); T2- 75% ration and 25% beef heart; T3- 50% ration and 50% beef heart and T4- 25% ration and 75% beef heart. The diets were feed until fish s satiation, twice by day, at 8:00h and 17:00h. After each feed time, 40% of water was changed. Each aquarium contained 20 fishes, totalizing 240 discus fishes. The following water quality parameters were available: pH, dissolved oxygen, temperature and ammonia. There wasn`t effect of treatments on survivor. The dry matter consumption was higher in 50% and 75% of beef heart diets, and better growth and weight gain were obtained, but 50% of beef heart were at a low price, and were considered the best diet. The relative condition factor (Kn) analysis indicate better body condition of fishes according beef heart was higher in tested diets. The economic performance shows that 75% of beef heart obtain lower cost index, but 50% of beef heart obtain higher partial liquid income. However beef heart diets turn water cloudy, the analyzed water quality parameters keep suitable for fishes. The conclusion is that beef heart is efficient as feed enhancer for discus fish and that 50% of beef heart with 50% of ration provide better performance and higher economic gain. / Foram elaborados dois experimentos para obter dados zootécnicos que auxiliem a produção comercial do acará-disco (Symphysodon aequifasciata), com os seguintes objetivos: a) verificar a eficácia da adição de coração de boi como estimulador de consumo, sobre as variáveis de desempenho, sobrevivência, consumo, qualidade de água e desempenho econômico; b) avaliar o efeito da densidade de estocagem sobre o desempenho do acará-disco e obter informações econômicas para determinar qual a melhor densidade para cultivo desta espécie em aquários. No primeiro experimento foram utilizados 12 aquários, com 20 peixes, totalizando 240 acará-disco, divididos em quatro tratamentos e três repetições. Os tratamentos foram: T1- 100% ração (42%PB); T2- 75% ração e 25% coração de boi; T3- 50% ração e 50% coração de boi e T4- 25% ração e 75% coração de boi. As dietas foram fornecidas aos peixes até a saciedade, duas vezes por dia, nos horários de 8:00h e 17:00h. Os tratamentos com 50% e 75% de coração de boi proporcionaram crescimento e ganho de peso significativamente superior, entretanto a dieta com 50% de coração de boi foi mais econômica, sendo considerada a melhor. O segundo experimento recebeu a dieta com 25% ração e 75% coração de boi. As dietas foram fornecidas aos peixes até a saciedade, duas vezes por dia, nos horários de 8:00h e 17:00h. Foram testadas densidades de 8, 12, 16 e 20 peixes/aquário. Os resultados foram submetidos a análises de regressão e a densidade calculada que proporcionaria maior desempenho seria de 17,5 peixes/aquário.
175

Single molecule characterization of the roles of long non-coding RNAs in eukaryotic transcription regulation

Rahman, Samir 05 1900 (has links)
Récemment, des analyses dans divers organismes eucaryotes ont révélé que l'ensemble du génome est transcrit et produit en plus des ARNs messagers, une grande variété d’ARNs non codants de différentes longueurs. Les ARNs non codants de plus de 200 nucleotides, classés comme longs ARNs non codants (LARNnc), représentent la classe la plus abondante de transcripts non codants. Les études des fonctions des LARNnc suggèrent que beaucoup d'entre eux seraient impliqués dans la régulation de la transcription. L'objectif de ma thèse de doctorat était d'élucider les mécanismes de la régulation transcriptionnelle médiée par des LARNnc dans différents systèmes eucaryotes. Dans mon premier projet, j'ai étudié le rôle d'un long ARN non codant antisens dans la régulation transcriptionnelle du gène PHO84, codant un transporteur de phosphate à haute affinité, chez S. cerevisiae. Des études antérieures ont montré que la suppression d’une proteine de l’exosome Rrp6 entraîne une augmentation de l'expression antisens et la répression de PHO84. Il a été suggéré que la perte de Rrp6 entraîne une stabilisation antisens au locus PHO84, entraînant le recrutement de l'histone de-acétylase Hda1 et la répression de PHO84. Cependant, le mécanisme par lequel Rrp6p régule la transcription de PHO84 n’était pas connu. En combinant des méthodes à l’échelle de cellule unique, des approches biochimiques et génétiques, nous avons montré que les niveaux d'ARN antisens sont régulés principalement lors de l'élongation par le complexe Nrd1-Nab3-Sen1, qui nécessite Rrp6 pour un recrutement efficace à l`extrémité 3`de PHO84. De plus, nous révélons l'expression anticorrelé du sens et de l'antisens, En résumé, nos données suggèrent que la transcription antisens régule le seuil d'activation du promoteur PHO84. Dans mon second projet, j'ai étudié les rôles des ARNs dérivés des amplificateurs (ARNa) dans la regulation de la transcription. En utilisant les cellules de cancer du sein MCF7 comme système modèle, nous avons cherché à déterminer comment les ARNa induits par l'oestrogène (E2) participent à la régulation de la transcription médiée par le recepteur d’oestrogène (ERα) au niveau de l'allèle unique. À l'aide de l’hybridation fluorescente à l’échelle de molécule unique (smFISH), nous avons révélé qu`après induction d'E2, les ARNa sont induits avec une cinétique similaire à celle des ARNm cibles, sont localisés exclusivement dans le noyau, principalement associés à la chromatine, et sont moins abondants que les ARNm. De manière surprenante, nous avons constaté que les ARNa sont rarement co-transcrits avec leurs loci cibles, indiquant que la transcription active des gènes ne nécessite pas la synthèse continue ou l'accumulation d'ARNa sur l'amplificateur. En outre, en utilisant des mesures de la distance à sous-diffraction, nous avons démontré que la cotranscription des ARNa et des ARNm se produit rarement dans une boucle amplificateurpromoteur. De plus, nous avons révélé que la transcription basale d'ARNa n'exige pas ERα ou l'histone méthyltransférase MLL1 qui active l'amplificateur par la mono-méthylation H3K4. Dans l'ensemble, nos résultats ont montré que les ARNa peuvent jouer un rôle lors de l'activation du promoteur, mais ne sont pas nécessaires pour maintenir la transcription de l'ARNm ou pour stabiliser les interactions amplificateur-promoteur. / Transcription is the initial step in gene expression and is subject to extensive regulation. Recently, analyses in diverse eukaryotes have revealed that in addition to protein coding genes, transcription occurs throughout the noncoding genome, producing non-coding RNAs of various lengths. Non-coding RNAs longer than 200 nucleotides, classified as long non-coding RNAs (lncRNAs), represent the most abundant class of non-coding transcripts, whose functions however are poorly understood. Recent studies suggest that many lncRNAs might have roles in transcription regulation. The goal of my PhD thesis was to elucidate the mechanisms of lncRNA mediated transcription regulation in different eukaryotic systems. For my first project, I investigated the role of an antisense long noncoding RNA in transcription regulation of the high-affinity phosphate transporter gene PHO84 in the unicellular eukaryote S. cerevisiae. Previous studies showed that deletion of the nuclear exosome component Rrp6 results in increased antisense expression and repression of PHO84. It was suggested that the loss of Rrp6 results in antisense stabilization at the PHO84 locus, leading to recruitment of the histone de-acetylase Hda1 and repression of PHO84. However, most of the mechanistic details of how Rrp6p functions in regulating PHO84 transcription were not understood. Combining single cell methods with biochemical and genetic approaches, we showed that antisense RNA levels are regulated primarily during transcriptional elongation by the Nrd1-Nab3-Sen1 complex, which requires Rrp6 for efficient recruitment to the 3’end of PHO84. Furthermore, we reveal anti-correlated expression of sense and antisense, which have distinct modes of transcription. In summary, our data suggest a model whereby antisense transcriptional read-through into the PHO84 promoter regulates the activation threshold of the gene. For my second project, I investigated the roles of enhancer derived RNAs (eRNAs). eRNAs are lncRNAs transcribed from enhancers that have been suggested to regulate transcription through different mechanisms, including enhancer-promoter looping, RNA polymerase elongation, and chromatin remodeling. However, no coherent model of eRNA function has yet emerged. Using MCF7 breast cancer cells as a model system, we sought to determine how estrogen (E2) induced eRNAs participate in estrogen receptor alpha (ERα) mediated transcription regulation at the single allele level. Using single molecule fluorescent in situ hybridization (smFISH), we revealed that upon E2 induction eRNAs are induced with similar kinetics as target mRNAs, but are localized exclusively in the nucleus, mostly chromatin associated, and are less abundant than mRNAs. Surprisingly, we found that eRNAs are rarely co-transcribed with their target loci, indicating that active gene transcription does not require the continuous synthesis or accumulation of eRNAs at the enhancer. Furthermore, using sub-diffraction-limit distance measurements, we demonstrated that co-transcription of eRNAs and mRNAs rarely occurs within a closed enhancer-promoter loop. Moreover, we revealed that basal eRNA transcription does not require ERα or the histone methyltransferase MLL1, which activates the enhancer through H3K4 mono-methylation. Altogether, our findings showed that eRNAs may play a role during promoter activation, but are not required to sustain mRNA transcription or stabilize enhancer-promoter looping interactions.
176

Transcription regulation of Nrp1 during endothelial cell differentiation

Zhao, Zhe January 2014 (has links)
Various diseases, including cancer, stroke and heart attack, are associated with disruption of the vascular system. However, lack of a profound understanding of the transcription regulation during vascular development hinders the formation of effective molecular intervention strategies targeting angiogenesis. Here we describe an enhancer of Neuropilin1 (Nrp1) from the second intron of the gene that directs arterial and coronary endothelial cell-specific expression. Mice transgenic for either human or mouse sequences of the Nrp1in2 enhancers drove expression of the LacZ reporter gene specifically in the endothelial cells within the arterial compartment from early in development, while no expression was detected in veins. In addition, the hNrp1in2 enhancer directed expression to the endothelial cells in the developing coronary vasculature, with the initial expansion from around the sinus venosus at E11.5, and eventually contributed to the capillary, venous and arterial compartments of the coronary vessels but not the endocardium. This expression pattern is consistent with that reported in the Apelin-nlacZ line (Red-Horse et al., 2010), making the Nrp1 enhancer the first identified mammalian regulating enhancer of the coronary endothelial cell. Phylogenetic footprinting, and a tissue culture reporter assay suggested that this enhancer contains a 184bp minimal core region hNrp1in2peakA2 that recapitulates the expression profile of the full length enhancer. hNrp1in2peakA2 has conserved and in vitro validated recognition sites for Gata, Ets, and Fox. The validated Fox and Ets sites form a functional FOX:ETS motif, and the FOX:ETS motif is responsible for synergistic activation ofthe enhancer by FoxC2 and Etv2 in reporter assays. Mutation introduction to the functional Ets sites or compound ablation of the Gata and Fox site in hNrp1in2peakA2 result in total loss of vascular expression, in terms of both arterial and coronary expression. The Fox, Ets and Gata recognition sites may be sufficient to achieve arterial- and coronary- specific expression of the hNrp1in2peakA2.
177

Democratic decentralisation in Rwanda

Mulindahabi, Charline January 2002 (has links)
Masters in Public Administration - MPA / Rwandan local government system is currently making an important turning point with the introduction of democratic decentralisation. This study was carried out in order to find out the prospects and challenges of democratic decentralisation in Rwandan context. From Rwanda's independence in 1962 up to the 1999 administrative reforms, local governments, namely communes, have largely failed in their mission of being basic development units. Democratic decentralisation was then introduced to bridge gaps and correct weaknesses that undemined local governance in the past. There are some challenges like generalised poverty in the country, the nonparticipation, and dependence syndrome among citizens that need to be overcome. However, there are also opportunities that ought to be taken advantage if democratic decentralisation is to really take root in Rwanda. The main opportunity is commitment to to democracy and decentralisation by all stakeholders, the national leadership, local authorities and citizens in general. However, democratic decentralisation cannot be attained quickly. It is achieved gradually depending on citizens' understanding and to the availability of the resources. authorities and citizens in general
178

Developmental regulomes that drive tissue-specific and temporally controlled gene expression in Drosophila melanogaster

Guimarães, Ana Luísa 12 February 2020 (has links)
Während der Entwicklung des Organismus führen naive Zellen aufgrund eines streng regulierten Transkriptionsprogramms zu differenzierten Zelltypen und Geweben. Obwohl viele Aspekte dieses Differenzierungsprozesses noch wenig verstanden sind, ist allgemein anerkannt, dass Transkriptionsfaktoren (TFs), die mit cis-regulatorischen Modulen (CRMs), nämlich Enhancern, interagieren, einen wesentlichen Beitrag zur Regulierung der räumlich-zeitlichen Genexpression leisten. Um die regulatorischen Wechselwirkungen von Enhancern zu verstehen, verwendete ich eine Technik namens inSTEP, von zwei wichtigen neurogenen Enhancern und einem mesodermalen Enhancer zu entschlüsseln. inSTEP ist eine Abkürzung für in vivo Spatio-Temporal Enhancer Proteomics und beinhaltet die Präzipitation eines ausgewählten Enhancers zusammen mit all seinen gebundenen Elementen aus einem bestimmten Gewebe zur Identifizierung durch Massenspektrometrie (MS), wodurch die Identifizierung von regulatorischen Kandidaten ermöglicht wird, die die Neurogenese vorantreiben. Das Herunterfallen von mindestens zwei der mutmaßlichen Regulierungskandidaten CG4707 und CG2962 führte zu einem veränderten Reportergen-Expressionsmuster, das vom vndenhancer gesteuert wurde, was darauf hindeutet inSTEP ist in der Lage, neue regulatorische Proteine zu identifizieren, die an der Regulation der Genexpression im sich entwickelnden Nervensystem beteiligt sind. Einer der Enhancer, an denen ich am meisten interessiert bin, ist ein Enhancer für das Gen vnd, das einen entscheidenden TF für die Neurogenese codiert. Ich habe mein Projekt daher über die Frage hinaus erweitert, wie vnd-Expression reguliert wird, um auch die Rolle einzubeziehen, die Vnd selbst bei der Neurogenese spielt. Ich habe ChIP-seq-Experimente durchgeführt, um die genomweiten Bindungsprofile von Vnd aufzuklären, und ich habe Werkzeuge entwickelt, die die isoformspezifische Rolle von Vnd aufklären. / During organismal development, naive cells give rise to differentiated cell types and tissues as a result of a tightly regulated transcriptional programs. Although many aspects of this differentiation process are still poorly understood, it is widely accepted that transcription factors (TFs) interacting with cis-regulatory modules (CRMs), namely enhancers, are major contributors to regulate spatio-temporal gene expression. In order to understand the regulatory interactions of enhancers, I used a technique called inSTEP to unravel the enhancer-protein interactions on two major neurogenic enhancers (for the vnd and rho genes) and one mesodermal enhancer (1070enhancer), for which no target genes are known. inSTEP is an acronym for in vivo Spatio-Temporal Enhancer Proteomics and entails precipitation of a chosen enhancer together with all its bound elements from a specific tissue, for identification by mass spectrometry (MS), thus enabling the identification of regulatory candidates driving neurogenesis. I have identified candidate regulators in the ventral column and selected ten to do follow-up experiments The knock down of at least two of the vndenhancer putative regulators, CG4707 and CG2962, led to an altered reporter gene expression pattern driven by the vndenhancer, suggesting that inSTEP is able to identify new regulatory proteins involved in the regulation of gene expression in the developing nervous system. One of the enhancers I am most interested in is an enhancer for the gene vnd, which encodes a crucial TF for neurogenesis. I have therefore expanded my project beyond the question of ‘how’ vnd expression is regulated, to also include the role Vnd itself plays in neurogenesis. I have conducted ChIP-seq experiments to elucidate the genome-wide binding profiles of Vnd and I have developed tools that will elucidate the isoform-specific role of Vnd.
179

Muscle gene transfer studies of a 27-BP segment of the troponin I fast gene IRE enhancer

Nowacka, Lidia. January 2009 (has links)
No description available.
180

D-Tryptophan as a Biocide Enhancer for Desulfovibrio vulgaris Biofilm Mitigation andBiocorrosion of Carbon Steel by Nitrate-Reducing Pseudomonas aeruginosa

Lindenberger, Amy L. January 2014 (has links)
No description available.

Page generated in 0.0544 seconds