Spelling suggestions: "subject:"equation dde transport"" "subject:"equation dee transport""
1 |
Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d'équations de transportMagni, Adrien 12 July 2011 (has links) (PDF)
Les méthodes particulaires sont des méthodes numériques adaptées à la résolution d'équations de conservation. Leur principe consiste à introduire des particules ''numériques'' conservant localement l'inconnue sur un petit volume, puis à les transporter le long de leur trajectoire. Lorsqu'un terme source est présent dans les équations, l'évolution de la solution le long des caractéristiques est prise en compte par une intéraction entre les particules. Ces méthodes possèdent de bonnes propriétés de conservation et ne sont pas soumises aux conditions habituelles de CFL qui peuvent être contraignantes pour les méthodes Eulériennes. Cependant, une contrainte de recouvrement entre les particules doit être satisfaite pour vérifier des propriétés de convergence de la méthode. Pour satisfaire cette condition de recouvrement, un remaillage périodique des particules est souvent utilisé. Elle consiste à recréer régulièrement de nouvelles particules uniformément réparties, à partir de celles ayant été advectées à l'itération précédente. Quand cette étape de remaillage est effectuée à chaque pas de temps, l'analyse numérique de ces méthodes particulaires remaillées nécessite d'être reconsidérée, ce qui représente l'objectif de ces travaux de thèse. Pour mener à bien cette analyse, nous nous basons sur une analogie entre méthodes particulaires avec remaillage et schémas de grille. Nous montrons que pour des grands pas de temps les schémas numériques obtenus souffrent d'une perte de précision. Nous proposons des méthodes de correction, assurant la consistance des schémas en tout point de grille, le pas de temps étant contraint par une condition sur le gradient du champ de vitesse. Cette méthode est construite en dimension un. Des techniques de limitation sont aussi introduites de manière à remailler les particules sans créer d'oscillations en présence de fortes variations de la solution. Enfin, ces méthodes sont généralisées aux dimensions plus grandes que un en s'inspirant du principe de splitting d'opérateurs. Les applications numériques présentées dans cette thèse concernent la résolution de l'équation de transport sous forme conservative en dimension un à trois, dans des régimes linéaires ou non-linéaires.
|
2 |
Homogénéisation de lois de conservation scalaires et d'équations de transportDalibard, Anne-Laure 08 October 2007 (has links) (PDF)
Cette thèse est consacrée à l'étude du comportement asymptotique de solutions d'une classe d'équations aux dérivées partielles avec des coefficients fortement oscillants. Dans un premier temps, on s'intéresse à une famille d'équations non linéaires, des lois de conservation scalaires hétérogènes, qui interviennent dans divers problèmes de la mécanique des fluides ou de l'électromagnétisme non linéaire. On suppose que le flux de cette équation est périodique en espace, et que la période des oscillations tend vers zéro. On identifie alors les profils asymptotiques microscopique et macroscopique de la solution, et on démontre un résultat de convergence forte; en particulier, on montre que lorsque la condition initiale ne suit pas le profil microscopique dicté par l'équation, il se forme une couche initiale en temps durant laquelle les solutions s'adaptent à celui-ci. Dans un second temps, on considère une équation de transport linéaire, qui modélise l'évolution de la densité d'un ensemble de particules chargées dans un potentiel électrique aléatoire et très oscillant. On établit l'apparition d'oscillations microscopiques en temps et en espace dans la densité, en réponse à l'excitation par le potentiel électrique. On donne également des formules explicites pour l'opérateur de transport homogénéisé lorsque la dimension de l'espace est égale à un.
|
3 |
Modelisation et Simulation en Photo-acoustiqueJugnon, Vincent 09 December 2010 (has links) (PDF)
Cette these traite du probleme de l'imagerie photo-acoustique. Dans ce systeme d'imagerie, on chauffe un milieu avec une onde electromagnetique. Le milieu se dilate et emet une onde ultrasonique qu'on mesure. Le but est de reconstruire les caracteristiques internes du milieu a partir des mesures de l'onde acoustique sur son bord. C'est un probleme inverse sur la condition initiale pour l'equation des ondes. Dans un cadre idealise, la procedure de reconstruction est connue et a ete etudiee en profondeur. Le but premier de cette these est de s'eloigner du cadre standard en considerant des hypotheses moins restrictives. Pour chaque hypothese (conditions de bord, vue partielle, attenuation, vitesse non-homogene ) la these propose une correction basee sur des outils mathematiques adaptes (analyse asymptotique, approche duale, correlation...). La reconstruction de la condition initiale de l'equation des ondes n'est cependant pas suffisante. Elle depend de l'illumination electromagnetique. Un second probleme inverse doit etre resolu sur la propagation de l'onde electromagnetique pour avoir acces aux coefficients physiques d'interet. La these presente des resultats algorithmiques dans le cadre de l'equation de de diffusion et des estimations theoriques dans le cadre de l'equation de transfert radiatif. La these presente aussi un resultat d'amelioration d'une approche d'imagerie par derivee topologique.
|
4 |
Modélisation du transport thermique dans des matériaux thermoélectriques / Modeling of thermal transport properties of thermoelectric materialsAndrea, Luc 08 April 2016 (has links)
Les matériaux thermoélectriques permettent de convertir de l'énergie thermique en énergie électrique. Leur rendement de conversion trop faible limite cependant leur utilisation à grande échelle. Plusieurs voies d'optimisation sont utilisés afin d'augmenter les rendements de conversion en diminuant la conductivité thermique. Dans cette thèse, nous modélisons les propriétés de transport thermique des matériaux half-Heusler parfaits et dopés qui présentent des propriétés thermoélectriques intéressantes. La méthode repose sur la théorie de la fonctionnelle de la densité pour calculer les propriétés harmoniques et anharmoniques des composés parfaits et déterminer les temps de vie des phonons. Ensuite, ces derniers sont utilisés pour écrire une équation de transport de Boltzmann pour la densité de phonons dont la résolution donne accès à la conductivité thermique. L'inclusion de défauts ponctuels a pour objectif de réduire la conductivité thermique par diffusion des phonons. Pour modéliser leur effet dans un régime de forte concentration une méthode champ moyen a été développée et appliquée aux half-Heusler. Pour traiter le régime dilué, une méthode faisant appel aux fonctions de Green a été utilisée. Ces deux méthodes montrent que des réductions significatives de conductivité thermique des composés NiTiSn, NiZrSn et NiHfSn sont déjà obtenues pour des concentrations de 10 % en dopants. / Thermoelectric materials provide a way to convert thermal energy into electrical energy. Nonetheless, their low efficiency is the main obstacle for global scale applications. Experimentally, specific treatments can lead to great improvement in the efficiency, mainly by lowering the thermal conductivity. This thesis is aimed at calculating from first principles, the thermal transport properties in perfect and doped half-Heusler thermoelectric materials. We begin with a theoretical analysis of the harmonic and anharmonic properties of phonons for perfect phases.The density functional theory is used to deduce the phonons lifetime from phonon-phonon interactions. The lifetimes are integrated into the Boltzmann transport equation for the phonon density, which solution allows us to compute fully ab initio the lattice thermal conductivity. The purpose of point defects is to scatter the phonons and thus reduce thermal conductivity. We developed two methods to account for the defects on thermal transport. The first one, based on a mean field approach, is suitable for the high concentration regimes. The second one in the framework of Green functions theory is used for dilute regimes. Both methods consistently show that the main reduction of thermal conductivity is already obtained within around 10 % of solute elements in NiTiSn, NiZrSn and NiHfSn.
|
5 |
Modélisation mathématique en imagerie cardiaque / Mathematical modeling in cardiac imagingBenmansour, Khadidja 22 September 2014 (has links)
Les pathologies cardiovasculaires sont la première cause des décès dans le monde. Il est donc vital de les étudier afin d’en comprendre les mécanismes et pouvoir prévenir et traiter plus efficacement ces maladies. Cela passe donc par la compréhension de l’anatomie, de la structure et du mouvement du coeur. Dans le cadre de cette thèse, nous nous sommes intéressés dans un premier temps au modèle de Gabarit Déformable Élastique qui permet d’extraire l’anatomie et le mouvement cardiaques. Le Gabarit Déformable Élastique consiste à représenter le myocarde par un modèle de forme a priori donné que l’on déforme élastiquement pour l’adapter à la forme spécifique du coeur du patient Dans le premier chapitre de cette thèse, nous utilisons une méthode de perturbation singulière permettant la segmentation avec précision de l’image. Nous avons démontré que si l’on faisait tendre vers 0 les coefficients de l’élasticité, le modèle mathématique convergeait vers une solution permettant la segmentation. Dans le cadre d’une formulation au sens des moindres carrés il est nécessaire de disposer d’une méthode numérique performante pour résoudre l’équation du transport au sens des moindres carrés. La méthode des éléments finis pour traiter les phénomènes de transport ne permet pas d’avoir un principe du maximum faible, sauf si l’opérateur aux dérivées partielles en temps est séparé de l’opérateur aux dérivées partielles en espace. Dans le chapitre 2 de la thèse nous considérons une formulation au sens des moindres carrés espace-temps et nous proposons de résoudre un problème sous contraintes afin de récupérer un principe du maximum discret. Le dernier objectif de la thèse est le suivi dynamique d’images cardiaques ou la reconstruction anatomique du coeur à partir de coupes 2D dans le plan orthogonal au grand axe du cœur. La méthode mathématique que nous utilisons pour cela est le transport optimal. Dans le chapitre 3 nous analysons les performances de l’algorithme proposé par Peyré pour calculer le transport optimal de nos images. La résolution numérique du transport optimal est un problème difficile et couteux en temps de calcul. C’est pourquoi nous proposons une méthode adaptative pour le calcul de l’opérateur proximal de la fonction à minimiser permettant de diviser par quatre le nombre nécessaire des itérations pour que l’algorithme converge. / Cardiovascular disease are the leading cause of death worldwide. It is therefore vital to study them in order to understand the mechanisms and to prevent and treat these diseases more effectively. Therefore it requires an understanding of anatomy, structure and motion of the heart. In this thesis, we are interested in a first time at the Deformable Elastic Template model which can extract the cardiac anatomy and movement. The Elastic Deformable template is to represent the myocardium by a shape model a priori given that it elastically deforms to fit the specific shape of the patient’s heart. In the first chapter of this thesis, we use a singular perturbation method for accurately segmenting the image. We have demonstrated that if we did tend to 0 the coefficients of elasticity, the mathematical model converge to a solution to the problem of segmentation. As part of a formulation to the least squares sense it is necessary to have an efficient numerical method for solving the transport equation in the least squares sense. The finite element method to treat transport phenomena can not have a weak maximum principle, unless the operator of partial time is separated from the operator of partial space.In Chapter 2 of the thesis, we consider a least squares formulation of space-time and we propose to solve the problem constraints to recover a discrete maximum principle. The final objective of this thesis is the dynamic monitoring of cardiac images or anatomical reconstruction of the heart from 2D slices orthogonal to the long axis of the heart level. The mathematical method we use for this is the optimal transport. In Chapter 3 we analyze the performance of the algorithm proposed by Peyré to calculate the optimal transport of our images. The numerical resolution of optimal transport is a difficult and costly in computation time problem. That is why we propose an adaptive method for determining the proximity operator of the function to be minimized to divide by four the number of iterations required for the algorithm converges.
|
6 |
Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d'équations de transport / Particle methods with remeshing : numerical analysis, new schemes and applications for the simulation of transport equationsMagni, Adrien 12 July 2011 (has links)
Les méthodes particulaires sont des méthodes numériques adaptées à la résolution d'équations de conservation. Leur principe consiste à introduire des particules ``numériques'' conservant localement l'inconnue sur un petit volume, puis à les transporter le long de leur trajectoire. Lorsqu'un terme source est présent dans les équations, l'évolution de la solution le long des caractéristiques est prise en compte par une intéraction entre les particules. Ces méthodes possèdent de bonnes propriétés de conservation et ne sont pas soumises aux conditions habituelles de CFL qui peuvent être contraignantes pour les méthodes Eulériennes. Cependant, une contrainte de recouvrement entre les particules doit être satisfaite pour vérifier des propriétés de convergence de la méthode. Pour satisfaire cette condition de recouvrement, un remaillage périodique des particules est souvent utilisé. Elle consiste à recréer régulièrement de nouvelles particules uniformément réparties, à partir de celles ayant été advectées à l'itération précédente. Quand cette étape de remaillage est effectuée à chaque pas de temps, l'analyse numérique de ces méthodes particulaires remaillées nécessite d'être reconsidérée, ce qui représente l'objectif de ces travaux de thèse. Pour mener à bien cette analyse, nous nous basons sur une analogie entre méthodes particulaires avec remaillage et schémas de grille. Nous montrons que pour des grands pas de temps les schémas numériques obtenus souffrent d'une perte de précision. Nous proposons des méthodes de correction, assurant la consistance des schémas en tout point de grille, le pas de temps étant contraint par une condition sur le gradient du champ de vitesse. Cette méthode est construite en dimension un. Des techniques de limitation sont aussi introduites de manière à remailler les particules sans créer d'oscillations en présence de fortes variations de la solution. Enfin, ces méthodes sont généralisées aux dimensions plus grandes que un en s'inspirant du principe de splitting d'opérateurs. Les applications numériques présentées dans cette thèse concernent la résolution de l'équation de transport sous forme conservative en dimension un à trois, dans des régimes linéaires ou non-linéaires. / Particle methods are numerical methods designed to solve advection dominated conservation equations. Their principle is to introduce ``numerical'' particles that concentrate the unknown locally on a small volume, and to transport them along their trajectories. These methods have good conservation properties and are not subject to the usual CFL conditions that can be binding for the Eulerian methods. However, an overlap condition must be satisfied between the particles to ensure convergence properties of the method. To satisfy this condition, a periodic remeshing of the particles is often used. New particles uniformly distributed are created on a regular mesh. When this remeshing step is performed at every time step, numerical analysis of particle methods needs to be revisited. This is the purpose of this thesis. To carry out this analysis, we rely on an analogy between remeshed particle methods and grid schemes. We show that for large time step the numerical schemes have a loss of accuracy. We propose correction methods wich ensure consistency at any grid point, provided the time step satisfies a condition based on the gradient of the velocity field. Limitation techniques are also introduced to remesh particles without creating any oscillations in the presence of strong variations of the solution. Finally, these methods are generalized to dimensions greater than one. Numerical example on various transport equations are given to illustrate the benefit of the proposed algorithms.
|
7 |
Numerical study of electro-thermal effects in silicon devices / Etude numérique des effets électrothermiques dans les nanodispositifs de SiliciumNghiem Thi, Thu Trang 25 January 2013 (has links)
Le développement de la technologie des composants CMOS ultimes à grille ultra-courte (L < 20 nm) se heurte à de nombreuses difficultés technologiques, mais également à des limites thermiques qui perturbent notablement les règles de mise à l'échelle communément employées jusqu'à présent. Les fortes densités de courant obtenues dans des zones actives aussi réduites génèrent un important échauffement local (par effet Joule), lié à l'émission de phonons par les porteurs chauds, qui peut conduire à des réductions très sensibles des performances, voire à des défaillances. Ce phénomène est identifié comme un des plus critiques pour la poursuite de l'augmentation de la densité d'intégration des circuits. Cela est particulièrement crucial dans les technologies SOI (silicium sur isolant), où la présence de l'isolant enterré constitue un frein à l'évacuation de la chaleur. À l'échelle nanométrique, l'étude théorique de ces phénomènes d'échauffement n'est plus possible par des modèles macroscopiques (coefficient de diffusion de la chaleur) mais nécessite une description microscopique détaillée des transferts de chaleur qui sont localement hors d’équilibre. Il s'agit donc de modéliser de façon appropriée, non seulement le transport électronique et la génération de phonons, mais aussi le transport de phonons hors équilibre et les interactions phonons-phonons et électrons-phonons.Le formalisme de l’équation de transport de Boltzmann (BTE) est très bien adapté à l'étude de ce problème. En effet, il est largement utilisé depuis des années pour l'étude du transport des particules chargées dans les composants semi-conducteurs. Ce formalisme est beaucoup moins standard pour étudier le transport des phonons. Une des problématiques de ce travail concerne le couplage de la résolution de la BTE des phonons avec celle des électrons.Ce travail de thèse a développé un algorithme de calcul du transport de phonons par résolution directe de la BTE des phonons. Cet algorithme de transport de phonon a été couplé au transport électronique simulé grâce au logiciel "MONACO" basé sur une résolution statistique (ou Monte Carlo) de la BTE. Finalement, ce nouveau simulateur électrothermique a été utilisé pour étudier les effets d’auto échauffement dans des nano-transistors. L’intérêt principal de ces travaux est de permettre une analyse du transport electro-thermique au-delà d’une approche macroscopique (respectivement formalisme de Fourier pour la thermique et dérive-diffusion pour le courant). En effet, il donne accès aux distributions de phonons dans le dispositif et pour chaque mode de phonon. En particulier, ce simulateur apporte une meilleure compréhension des effets des électrons chauds sur les points chauds et leur relaxation dans les accès. / The ultra-short gate (LG < 20 nm) CMOS components (Complementary Metal-Oxide-Semiconductor) face thermal limitations due to significant local heating induced by phonon emission by hot carriers in active regions of reduced size. This phenomenon, called self-heating effect, is identified as one of the most critical for the continuous increase in the integration density of circuits. This is especially crucial in SOI technology (silicon on insulator), where the presence of the buried insulator hinders the dissipation of heat.At the nanoscale, the theoretical study of these heating phenomena, which cannot be led using the macroscopic models (heat diffusion coefficient), requires a detailed microscopic description of heat transfers that are locally non-equilibrium. It is therefore appropriate to model, not only the electron transport and the phonon generation, but also the phonon transport and the phonon-phonon and electron-phonon interactions. The formalism of the Boltzmann transport equation (BTE) is very suitable to study this problem. In fact, it is widely used for years to study the transport of charged particles in semiconductor components. This formalism is much less standard to study the transport of phonons. One of the problems of this work concerns the coupling of the phonon BTE with the electron transport.In this context, wse have developed an algorithm to calculate the transport of phonons by the direct solution of the phonon BTE. This algorithm of phonon transport was coupled with the electron transport simulated by the simulator "MONACO" based on a statistical (Monte Carlo) solution of the BTE. Finally, this new electro-thermal simulator was used to study the self-heating effects in nano-transistors. The main interest of this work is to provide an analysis of electro-thermal transport beyond a macroscopic approach (Fourier formalism for thermal transport and the drift-diffusion approach for electric current, respectively). Indeed, it provides access to the distributions of phonons in the device for each phonon mode. In particular, the simulator provides a better understanding of the hot electron effects at the hot spots and of the electron relaxation in the access.
|
8 |
Modélisation, Analyse et Approximation numérique en mécanique des fluidesBoyer, Franck 03 October 2006 (has links) (PDF)
Ce travail est dédié à la mise en place de modèles d'écoulements de fluides complexes, à leur analyse théorique ainsi qu'au développement et à l'analyse de convergence de schémas numériques appropriés. <br /><br />Une première partie du travail concerne l'étude de modèles dits à interface diffuse pour les écoulements incompressibles multiphasiques. Après une étude assez précise du cadre diphasique, on propose la généralisation au cadre triphasique, ce qui nécessite d'introduire la notion importante de consistance des modèles. Des résultats numériques confirment la pertinence des modèles proposés. Ensuite, on s'intéresse au modèle plus classique de Navier-Stokes non-homogène incompressible pour lequel on établit le caractère bien posé du problème pour des conditions aux limites ouvertes non-linéaires en sortie d'un écoulement. Une brique essentielle de ce travail est l'étude détaillée du problème de traces pour l'équation de transport associée à un champ de vitesse peu régulier. Ce travail, dont l'intérêt dépasse le cadre applicatif décrit ci-dessus, fait l'objet d'un chapitre à part entière.<br /><br />Dans une seconde partie, on s'intéresse à l'approximation numérique par des méthodes de volumes finis des solutions de problèmes elliptiques non-linéaires monotones (du type p-laplacien). Un premier chapitre décrit un certain nombre de résultats obtenus dans le contexte de maillages cartésiens. Un second chapitre est consacré à l'étude d'un cadre géométrique plus général par le biais de méthodes dites en dualité discrète. Une attention particulière est portée au cas où les coefficients du problème présentent des discontinuités spatiales, ce qui mène à des problèmes de transmission non-linéaire entre deux milieux.<br /><br />Le mémoire s'achève par la description de quelques travaux connexes, d'une part sur une classe de schémas VF pour les équations elliptiques linéaires adaptés à des maillages non orthogonaux, et d'autre sur l'étude numérique de problèmes elliptiques couplés 2D/1D issus de la description asymptotique d'écoulements dans des milieux poreux fracturés.
|
9 |
Analyse spectrale de modèles neutroniquesSbihi, Mohammed 30 September 2005 (has links) (PDF)
Cette thèse porte principalement sur l'étude spectrale de divers modèles neutroniques. Elle consiste en trois parties complémentaires. La première partie est consacrée aux problèmes d'applications spectrales dans les domaines non bornés, où faute de compacité les méthodes usuelles n'opèrent plus. A l'aide d'arguments d'analyse fonctionnelle sur le spectre critique des semigroupes perturbés nous cernons une large classe de paramètres liés à l'équation pour lesquels le théorème d'application spectrale a lieu. Dans la deuxième partie, nous apportons une nouvelle approche, dite résolvante, de la stabilité des spectres essentiel et critique des semigroupes perturbés dans les espaces de Hilbert. En neutronique, par le biais de cette approche, nous retrouvons des résultats classiques de stabilité de spectre essentiel dans les domaines bornés et nous améliorons certains résultats de la première partie dans les domaines non bornés. La troisième partie traite d'un modèle de collision partiellement élastique introduit par E.W. Larsen et P.F. Zweifel. Afin de dégager le comportement asymptotique en temps grands du semigroupe gouvernant ce modèle nous ferons sa théorie spectrale. Nous étudions les propriétés de compacité à la base de cette théorie, ce qui nous permettra notamment d'obtenir des résultats de stabilité du type essentiel. Nous examinons ensuite les incidences de la positivité : irréductibilité, propriétés de monotonie stricte de la valeur propre principale, réalité du spectre périphérique
|
10 |
Analyse et développement de méthodes de raffinement hp en espace pour l'équation de transport des neutronsFournier, Damien 10 October 2011 (has links) (PDF)
Pour la conception des cœurs de réacteurs de 4ème génération, une précision accrue est requise pour les calculs des différents paramètres neutroniques. Les ressources mémoire et le temps de calcul étant limités, une solution consiste à utiliser des méthodes de raffinement de maillage afin de résoudre l'équation de transport des neutrons. Le flux neutronique, solution de cette équation, dépend de l'énergie, l'angle et l'espace. Les différentes variables sont discrétisées de manière successive. L'énergie avec une approche multigroupe, considérant les différentes grandeurs constantes sur chaque groupe, l'angle par une méthode de collocation, dite approximation Sn. Après discrétisation énergétique et angulaire, un système d'équations hyperboliques couplées ne dépendant plus que de la variable d'espace doit être résolu. Des éléments finis discontinus sont alors utilisés afin de permettre la mise en place de méthodes de raffinement dite hp. La précision de la solution peut alors être améliorée via un raffinement en espace (h-raffinement), consistant à subdiviser une cellule en sous-cellules, ou en ordre (p-raffinement) en augmentant l'ordre de la base de polynômes utilisée.Dans cette thèse, les propriétés de ces méthodes sont analysées et montrent l'importance de la régularité de la solution dans le choix du type de raffinement. Ainsi deux estimateurs d'erreurs permettant de mener le raffinement ont été utilisés. Le premier, suppose des hypothèses de régularité très fortes (solution analytique) alors que le second utilise seulement le fait que la solution est à variations bornées. La comparaison de ces deux estimateurs est faite sur des benchmarks dont on connaît la solution exacte grâce à des méthodes de solutions manufacturées. On peut ainsi analyser le comportement des estimateurs au regard de la régularité de la solution. Grâce à cette étude, une stratégie de raffinement hp utilisant ces deux estimateurs est proposée et comparée à d'autres méthodes rencontrées dans la littérature. L'ensemble des comparaisons est réalisé tant sur des cas simplifiés où l'on connaît la solution exacte que sur des cas réalistes issus de la physique des réacteurs.Ces méthodes adaptatives permettent de réduire considérablement l'empreinte mémoire et le temps de calcul. Afin d'essayer d'améliorer encore ces deux aspects, on propose d'utiliser des maillages différents par groupe d'énergie. En effet, l'allure spatiale du flux étant très dépendante du domaine énergétique, il n'y a a priori aucune raison d'utiliser la même décomposition spatiale. Une telle approche nous oblige à modifier les estimateurs initiaux afin de prendre en compte le couplage entre les différentes énergies. L'étude de ce couplage est réalisé de manière théorique et des solutions numériques sont proposées puis testées.
|
Page generated in 0.1289 seconds