• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 11
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

‘Signal-close-to-noise’ calcium activity reflects neuronal excitability / ‘Signal-close-to-noise’ Kalziumaktivität als Ausdruck neuronaler Erregbarkeit

Hugo, Julian January 2023 (has links) (PDF)
Chronic pain conditions are a major reason for the utilization of the health care system. Inflammatory pain states can persist facilitated by peripheral sensitization of nociceptors. The voltage-gated sodium channel 1.9 (NaV1.9) is an important regulator of neuronal excitability and is involved in inflammation-induced pain hypersensitivity. Recently, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (OxPAPC) was identified as a mediator of acute inflammatory pain and persistent hyperalgesia, suggesting an involvement in proalgesic cascades and peripheral sensitization. Peripheral sensitization implies an increase in neuronal excitability. This thesis aims to characterize spontaneous calcium activity in neuronal compartments as a proxy to investigate neuronal excitability, making use of the computational tool Neural Activity Cubic (NA3). NA3 allows automated calcium activity event detection of signal-close-to-noise calcium activity and evaluation of neuronal activity states. Additionally, the influence of OxPAPC and NaV1.9 on the excitability of murine dorsal root ganglion (DRG) neurons and the effect of OxPAPC on the response of DRG neurons towards other inflammatory mediators (prostaglandin E2, histamine, and bradykinin) is investigated. Using calcium imaging, the presence of spontaneous calcium activity in murine DRG neurons was established. NA3 was used to quantify this spontaneous calcium activity, which revealed decreased activity counts in axons and somata of NaV1.9 knockout (KO) neurons compared to wildtype (WT). Incubation of WT DRG neurons with OxPAPC before calcium imaging did not show altered activity counts compared to controls. OxPAPC incubation also did not modify the response of DRG neurons treated with inflammatory mediators. However, the variance ratio computed by NA3 conclusively allowed to determine neuronal activity states. In conclusion, my findings indicate an important function of NaV1.9 in determining the neuronal excitability of DRG neurons in resting states. OxPAPC exposition does not influence neuronal excitability nor sensitizes neurons for other inflammatory mediators. This evidence reduces the primary mechanism of OxPAPC-induced hyperalgesia to acute effects. Importantly, it was possible to establish an approach for unbiased excitability quantification of DRG neurons by calcium activity event detection and calcium trace variance analysis by NA3. It was possible to show that signal-close-to-noise calcium activity reflects neuronal excitability states. / Entzündliche Schmerzzustände können lange fortbestehen, was durch eine periphere Sensibilisierung von Nozizeptoren begünstigt wird. Der spannungsgesteuerte Natriumkanal 1.9 (NaV1.9) ist ein wichtiger Regulator neuronaler Erregbarkeit und ist nachweislich an entzündungsbedingter Schmerzüberempfindlichkeit beteiligt. Kürzlich wurde oxidiertes 1-Palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholin (OxPAPC) als Mediator akuter Entzündungsschmerzen und anhaltender Hyperalgesie identifiziert, was auf eine Beteiligung an Mechanismen der peripheren Sensibilisierung hindeutet. Periphere Sensibilisierung setzt eine Erhöhung der neuronalen Erregbarkeit voraus. In dieser Arbeit soll neuronale spontane Kalziumaktivität charakterisiert werden, um Rückschlüsse auf die neuronale Erregbarkeit zu ziehen. Dazu wurde das Tool Neural Activity Cubic (NA3) eingesetzt, welches die automatisierte Detektion von „signal-close-to-noise“ Kalziumaktivitätsereignissen und die Bewertung neuronaler Aktivitätszustände erlaubt. Mittels NA3 wurde der Einfluss von OxPAPC und NaV1.9 auf die Erregbarkeit von murinen Spinalganglion (DRG)-Neuronen untersucht. Zusätzlich wurde die Reaktion von DRG-Neuronen auf weitere Entzündungsmediatoren (Prostaglandin E2, Histamin und Bradykinin) nach Inkubation mit OxPAPC beurteilt. Mittels Calcium-Imaging konnte spontane Kalziumaktivität in murinen DRG-Neuronen identifiziert werden. NA3 wurde verwendet, um diese spontane Kalziumaktivität zu quantifizieren. NaV1.9 Knockout-Neuronen (KO) zeigten signifikant Verringerte Kalziumaktivität im Vergleich Wildtyp (WT)-Neuronen. Die Inkubation von WT-Neuronen mit OxPAPC vor Calcium-Imaging resultierte in unveränderter Kalziumaktivität. Eine OxPAPC-Inkubation hatte ebenso keinen Einfluss auf die Reaktion von DRG-Neuronen, die mit einem Gemisch aus Entzündungsmediatoren stimuliert wurden. Die von NA3 berechnete „variance ratio“ ermöglichte jedoch eine eindeutige Bestimmung der neuronalen Aktivitätszustände. Zusammenfassend weisen meine Ergebnisse auf eine wichtige Funktion von NaV1.9 bei der Bestimmung der neuronalen Erregbarkeit von DRG-Neuronen im Ruhezustand hin. Eine Exposition mit OxPAPC beeinflusst allerdings weder die neuronale Erregbarkeit noch werden Neuronen für andere Entzündungsmediatoren sensibilisiert. Dies legt akute Effekte als primären Mechanismus der OxPAPC-induzierten Hyperalgesie nahe. Es war möglich, eine Methode für die unverzerrte Quantifizierung neuronaler Erregbarkeit von durch die Erkennung von Kalziumaktivitätsereignissen und die Varianzanalyse von Kalziumsignalen mit NA3 zu etablieren. Es konnte gezeigt werden, dass die „signal-close-to-noise“ Kalziumaktivität den Zustand der neuronalen Erregbarkeit widerspiegelt.
2

Self-organization in semiconductor lasers with ultra-short optical feedback

Ushakov, Oleg 18 May 2007 (has links)
In dieser Arbeit wird die Selbstorganisation in Halbleiterlasern mit ultrakurzer optischer Rueckkopplung untersucht. Es wurden eine Vielzahl neuer nichtlinearer dynamischer Szenarien experimentell praepariert und untersucht, wobei die Steuerung der relevanten Rueckkopplungsparameter ueber Injektionsstroeme erfolgt. Zwei verschiedene Typen von selbsterhaltenden Intensitaetspulsationen wurden abhaengig von der Phase und der Staerke der Rueckkopplung gefunden. Ein Pulsationstyp entsteht in einer Hopf-Bifurkation aus gedaempften Relaxationsoszillationen. Beim zweiten Pulsationstyp handelt es sich um Schwebungs-Oszillationen zweier verschiedener konkurrierender Moden der Gesamtkavitaet. Diese Ergebnisse repraesentieren experimentelle Beweise fuer theoretische Vorhersagen. Die Koexistenz von Schwebungsoszillationen und Relaxationsoszillationen fuehrt zum uebergang von regulaeren Pulsationen in chaotische Emission ueber eine quasiperiodische Route zum Chaos. Ein ploetzlicher Untergang des Chaos deutet auf ein Boundary-Crisis-Szenario hin. Die Existenz chaotischer Saettel, die transienten chaotischen Dynamiken nach einer Boundary Crisis zugrunde liegen und die Erregung von chaotischen Transienten ist eng verwandt mit konventioneller Erregbarkeit, wird experimentell verifiziert. Es wird der Einfluss externen Gaussschen Rauschens nahe von sub- und superkritischen Hopf-Bifurkationen untersucht. Rausch-induzierte Schwingungen tauchen als verrauschte Vorlaeufer in Form von lorentzfoermigen Spitzen im Powerspektrum auf. Der Kohaerenzfaktor, definiert durch das Produkt aus Hoehe der Spitze und Qualitaetsfaktor, zeigt fuer beide Typen von Hopf-Bifurkationen ein nichtmonotones Verhalten. Damit wird Kohaerenzresonanz experimentell demonstriert. Die Messungen zeigen neben diesen uebereinstimmungen auch qualitative Unterschiede zwischen den beiden Faellen. Die experimentellen Ergebnisse werden mittels eines allgemeinen Modells fuer rauschgetriebene Bewegungen in der Naehe von Bifurkationen untersucht. / In this work, self-organization in semiconductor lasers with ultra-short optical feedback is investigated. Exploiting dc currents to tune the relevant feedback parameters, we have experimentally prepared and studied a number of novel nonlinear dynamical scenarios. Two different types of self-sustaining intensity-pulsations are detected depending on strength and phase of the feedback. One type of pulsations is emerging in a Hopf-bifurcation from relaxation oscillations. The second type of pulsations is a beating of distinct compound-cavity modes. It is also born in a Hopf bifurcation. These findings represent experimental evidence for theoretical predictions. Coexistence of mode beating and relaxation oscillations gives rise to the break-up of regular pulsations into chaotic emission via a quasi-periodic route to chaos. The sudden destruction of chaos is indicative of a boundary crisis scenario. The existence of chaotic saddles underlying transient chaotic dynamics which appears behind boundary crisis is experimentally verified. It is experimentally demonstrated that an excitation of chaotic transients is closely related to a conventional excitability. The influence of external Gaussian noise close to the onset of sub- and super-critical Hopf bifurcations is studied. Noise-induced oscillations appear as a noisy precursor with Lorentzian shape peak in the power spectrum. The coherence factor defined by the product of height and quality factor exhibits non-monotonic behavior with a distinct maximum at a certain noise intensity for both types of Hopf bifurcations, demonstrating coherence resonance. Besides these similarities, the measurements reveal also qualitative differences between the two cases. Whereas the width of the noise induced peak increases monotonically with noise intensity for the supercritical bifurcation, it traverses a pronounced minimum in the subcritical case. The experimental findings are examined in terms of general model for the noise driven motion close to bifurcations.
3

Controlling excitable media with noise

Sailer, Franz-Xaver 09 May 2006 (has links)
Im Fokus dieser Untersuchung steht der Einfluss von Fluktuationen auf gekoppelte erregbare Systeme. Wir betrachten numerisch die stationäre Wahrscheinlichkeitsverteilung und den -fluss für ein einzelnes FitzHugh--Nagumo (FHN) System mit Rauschen. Abhängig von der Rauschintensität treten unterschiedliche Kombinationen von Extrema in der Verteilung auf. In einer Kombination finden wir Reminiszenzen an Kohärente Resonanz. Zur Untersuchung von gekoppelten Ensembles erregbarer Systeme nutzen wir eine Methode die auf der Dynamik der zentralen Momente der zugehörigen Verteilungen basiert. Wir leiten einen allgemeinen Ausdruck für ein System mit N Variablen her und diskutieren die Qualität verschiedener Näherungsmethoden. Rauschen kann die Dynamik eines ursprünglich nicht erregbaren Systems derart verändern, dass dieses Erregbarkeit zeigt. Dies demonstrieren wir durch Verallgemeinerung eines bekannten Modells für rauschinduzierte Phasenübergänge. Mit Hilfe der Momentenmethode erhalten wir das Bifurkationsdiagramm. Es zeigt Regionen rauschinduzierter Oszillationen und auch rauschinduzierter Erregbarkeit. Wenn wir additives Rauschen auf ein global gekoppeltes Ensemble mit FHN Kinetik anwenden, beobachten wir ein kompliziertes Übergangsregime hin zu Oszillationen des Mittelwerts. Neben Periodenverdopplung, Chaos und anderen Dynamiken finden wir ein plötzliches starkes Ansteigen der Ausdehnung eines chaotischen Attraktors. Dieses Phänomen ist bei Grenzzyklen als Canard Explosion bekannt. Wir demonstrieren die Möglichkeit von Musterbildung mit Hilfe von dichotomen Fluktuationen an Hand eines lokal gekoppelten Systems mit FHN Kinetik. Abhängig von räumlichen und zeitlichen Korrelationen tritt die Formation von Structure Patterns durch unterschiedliche Mechanismen und in unterschiedlichen Parameterregionen auf. / The focus of this study is on the influence of fluctuations on coupled excitable systems. We examine numerically the stationary probability distribution and the flux for an individual FitzHugh--Nagumo (FHN) system with noise. Depending on noise intensity different combinations of extrema of the distribution occur. In one combination we find reminiscences of coherence resonance. For the investigation of coupled ensembles of excitable systems we use a method based on the central moment dynamics of the corresponding probability distribution. We derive a general expression for a system with N variables and discuss the quality of different approximation techniques. Noise can alter dynamics that are formerly not excitable in a way that it becomes excitable. We demonstrate this using a generalization of a well known model for noise-induced phase transitions. With the help of the moment dynamics we obtain the phase diagram. It shows regions of noise induced oscillations and noise-induced excitability. When applying additive noise to a globally coupled ensemble with FHN kinetics a complicated transition regime towards oscillations of the mean is observed. Besides period-doubling, chaos, and other regimes we find a quick increase of the size of a chaotic attractor. This phenomenon is known from limit cycle oscillations as Canard explosion. We demonstrate the possibility of pattern formation with the help of dichotomous fluctuations using a system with nearest neighbor coupling obeying FHN kinetics. Depending on the spatial and temporal correlations we find structure pattern formation via different mechanisms in different parameter regions.
4

Steigerung der Effektivität repetitiver Doppelpuls-TMS mit I-Wellen-Periodizität (iTMS) durch individuelle Adaptation des Interpulsintervalls

Sewerin, Sebastian 01 December 2014 (has links) (PDF)
Die transkranielle Magnetstimulation (TMS) ist ein nichtinvasives Hirnstimulationsverfahren, mit welchem sowohl die funktionelle Untersuchung umschriebener kortikaler Regionen als auch die Modulation der Erregbarkeit ebendieser sowie die Induktion neuroplastischer Phänomene möglich ist. Sie wurde in der Vergangenheit insbesondere bei der Erforschung des humanen zentralmotorischen Systems angewandt. Dabei zeigte sich, dass ein einzelner über dem primärmotorischen Areal (M1) applizierter TMS-Puls multiple deszendierende Erregungswellen im Kortikospinaltrakt induzieren kann. Von diesen Undulationen besitzt die D-Welle (direkte Welle) die kürzeste Latenz und sie rekurriert auf eine direkte Aktivierung kortikospinaler Neurone, wohingegen I-Wellen (indirekte Wellen) längere Latenzen besitzen und durch transsynaptische Aktivierung dieser Zellen entstehen. Bemerkenswert ist das periodische Auftreten der letztgenannten Erregungswellen mit einer Periodendauer von etwa 1,5 ms. Zwar sind die genauen Mechanismen noch unbekannt, welche der Entstehung dieser I-Wellen sowie dem Phänomen der I-Wellen-Fazilitierung, das sich in geeigneten TMS-Doppelpulsprotokollen offenbart, zugrunde liegen, jedoch existieren hierzu verschiedene Erklärungsmodelle. Im Mittelpunkt der vorliegenden Arbeit steht die repetitive Anwendung eines TMS-Doppelpulsprotokolls, bei dem das Interpulsintervall (IPI) im Bereich der I-Wellen-Periodizität liegt (iTMS) und das gleichsam durch eine Implementierung der I-Wellen-Fazilitierung in der repetitiven TMS charakterisiert ist. Da gezeigt werden konnte, dass iTMS mit einem IPI von 1,5 ms (iTMS_1,5ms) die kortikospinale Erregbarkeit signifikant intra- und postinterventionell zu steigern vermag, und die I-Wellen-Periodizität interindividuellen Schwankungen unterliegt, wurde in der hier vorgestellten Studie an Normalprobanden der Einfluss einer individuellen Anpassung des IPIs (resultierend in der iTMS_adj) auf die intrainterventionelle kortikospinale Erregbarkeit untersucht. In der Tat stellte sich heraus, dass die iTMS_adj der iTMS_1,5ms diesbezüglich überlegen ist. Dieses Ergebnis unterstreicht das Potential einer Individualisierung der interventionellen TMS für erregbarkeitsmodulierende Effekte und macht dasjenige der ohnehin auf physiologische Prozesse abgestimmten iTMS explizit, was insbesondere für klinische Anwendungen relevant sein mag.
5

Selektive Modulation des Erregbarkeitsniveaus am motorischen Cortex durch transkranielle Wechsel- und Rauschstrom-Stimulation mit unterschiedlichen Intensitäten / Selective modulation of the excitability level on the motor cortex by transcranial AC and noise current stimulation with different intensities

Atalay, Deniz-Arman 02 July 2020 (has links)
No description available.
6

Pharmacological alterations of neuroplasticity in the human motor cortex induced by dopaminergic and cholinergic agents / Einfluß cholinerger und dopaminerger Mechanismen auf Neuroplastizität im humanen motorischen Kortex

Thirugnanasambandam, Nivethida 17 January 2011 (has links)
Dopamin und Acetylcholin sind wichtige neuromodulatorische Substanzen im menschlichen zentralen Nervensystem mir einem starken Einfluß auf Neuroplastizität. Der spezifische Einfluß dieser Substanzen auf Neuroplastizität wird durch verschiedene Faktoren, unter anderem Dosisabhängigkeit, Hintergrundaktivität neuronaler Netze und Subrezeptorspezifität determiniert. In dieser Dissertation haben wir den dosis- und subrezeptorabhängigen Effekt des cholinergen und dopaminergen Systems auf Neuroplastizität des menschlichen motorischen Kortex untersucht. Transkranielle Gleichstromstimulation (tDCS) und gepaarte assoziative Stimulation (PAS) stellen nicht-invasive Hirnstimulationstechniken dar, die die Erzeugung von Neuroplastizität beim Menschen ermöglichen. Wir haben in unseren Studien tDCS zur Erzeugung nicht-fokaler und PAS zur Erzeugung fokaler synapsenspezifischer Plastizität im motorischen Kortex von gesunden Probanden eingesetzt. In der ersten Studie konnten wir zeigen, daß die Aktivierung nikotinischer Rezeptoren einen fokussierenden Effekt auf fazilitatorische Plastizität hatte, inhibitorische Plastizität aber unabhängig von ihrer Fokalität verhinderte. Somit hat die Aktivierung nikotinerger Rezeptoren ähnliche Effekte wie globale cholinerge Aktivierung auf fazilitatorische, aber differente Effekte auf inhibitorische Plastizität. In der zweiten Studie untersuchten wir die dosisabhängigen Auswirkungen der Dopamin-Vorläufersubstanz l-Dopa auf Neuroplastizität. Bei mittlerer Dosis von l-Dopa war fokale Plastizität unverändert, wohingegen niedrige und hohe Dosen von l-Dopa die Induktion von Plastizität verhinderten. Die Ergebnisse zeigen somit einen klaren nicht-linearen dosisabhängigen Effekt. Aus den Ergebnissen dieser Studien kann geschlossen werden, daß Neuromodulatoren Plastizität im motorischen Kortex des Menschen relevant beeinflussen. Diese Effekte sind Subrezeptor- und Dosis-abhängig.
7

Akute Auswirkungen transkranieller Gleichstromstimulation auf Parameter kortikaler Erregbarkeit / Acute effects of transcranial direct current stimulation on cortical excitability parameters

Sturhan, Cornelia-Carmen 24 July 2012 (has links)
No description available.
8

Synchronization, Neuronal Excitability, and Information Flow in Networks of Neuronal Oscillators / Synchronisation, Neuronale Erregbarkeit und Informations-Fluss in Netzwerken Neuronaler Oszillatoren

Kirst, Christoph 28 September 2011 (has links)
No description available.
9

Cortical and subcortical mechanisms of persistent stuttering / Kortikale und subkortikale Mechanismen bei persistentemStottern

Neef, Nicole 10 January 2011 (has links)
No description available.
10

Steigerung der Effektivität repetitiver Doppelpuls-TMS mit I-Wellen-Periodizität (iTMS) durch individuelle Adaptation des Interpulsintervalls

Sewerin, Sebastian 01 November 2012 (has links)
Die transkranielle Magnetstimulation (TMS) ist ein nichtinvasives Hirnstimulationsverfahren, mit welchem sowohl die funktionelle Untersuchung umschriebener kortikaler Regionen als auch die Modulation der Erregbarkeit ebendieser sowie die Induktion neuroplastischer Phänomene möglich ist. Sie wurde in der Vergangenheit insbesondere bei der Erforschung des humanen zentralmotorischen Systems angewandt. Dabei zeigte sich, dass ein einzelner über dem primärmotorischen Areal (M1) applizierter TMS-Puls multiple deszendierende Erregungswellen im Kortikospinaltrakt induzieren kann. Von diesen Undulationen besitzt die D-Welle (direkte Welle) die kürzeste Latenz und sie rekurriert auf eine direkte Aktivierung kortikospinaler Neurone, wohingegen I-Wellen (indirekte Wellen) längere Latenzen besitzen und durch transsynaptische Aktivierung dieser Zellen entstehen. Bemerkenswert ist das periodische Auftreten der letztgenannten Erregungswellen mit einer Periodendauer von etwa 1,5 ms. Zwar sind die genauen Mechanismen noch unbekannt, welche der Entstehung dieser I-Wellen sowie dem Phänomen der I-Wellen-Fazilitierung, das sich in geeigneten TMS-Doppelpulsprotokollen offenbart, zugrunde liegen, jedoch existieren hierzu verschiedene Erklärungsmodelle. Im Mittelpunkt der vorliegenden Arbeit steht die repetitive Anwendung eines TMS-Doppelpulsprotokolls, bei dem das Interpulsintervall (IPI) im Bereich der I-Wellen-Periodizität liegt (iTMS) und das gleichsam durch eine Implementierung der I-Wellen-Fazilitierung in der repetitiven TMS charakterisiert ist. Da gezeigt werden konnte, dass iTMS mit einem IPI von 1,5 ms (iTMS_1,5ms) die kortikospinale Erregbarkeit signifikant intra- und postinterventionell zu steigern vermag, und die I-Wellen-Periodizität interindividuellen Schwankungen unterliegt, wurde in der hier vorgestellten Studie an Normalprobanden der Einfluss einer individuellen Anpassung des IPIs (resultierend in der iTMS_adj) auf die intrainterventionelle kortikospinale Erregbarkeit untersucht. In der Tat stellte sich heraus, dass die iTMS_adj der iTMS_1,5ms diesbezüglich überlegen ist. Dieses Ergebnis unterstreicht das Potential einer Individualisierung der interventionellen TMS für erregbarkeitsmodulierende Effekte und macht dasjenige der ohnehin auf physiologische Prozesse abgestimmten iTMS explizit, was insbesondere für klinische Anwendungen relevant sein mag.

Page generated in 0.1146 seconds