• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 9
  • 2
  • Tagged with
  • 67
  • 67
  • 41
  • 41
  • 41
  • 41
  • 41
  • 36
  • 33
  • 21
  • 20
  • 20
  • 15
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estimación bayesiana de efectos de red: el modelo Logit mixto

Chahuara Vargas, Paulo Roberto 02 October 2017 (has links)
Los efectos o externalidades de red son factores que pueden condicionar las decisiones de contratación de los consumidores en favor de empresas ya establecidas y en contra de los nuevos competidores, pudiendo limitar la competencia efectiva y potencial de los mercados, en especial, en aquellas industrias donde el número de empresas es bajo y la entrada de nuevos competidores es poco frecuente. Por ello, es importante verificar su existencia y la magnitud de sus efectos sobre las decisiones de compra de los consumidores con el objetivo de justificar o establecer medidas que impulsen una competencia más equilibrada entre las empresas. Además, teniendo en consideración que los consumidores pueden tener cierto grado de heterogeneidad en sus comportamientos de adquisición, también resulta relevante estudiar el grado de diferenciación de los efectos de red entre los consumidores a fin de mejorar las políticas que fomenten la competencia. Este trabajo tiene por objetivo estimar un modelo logit mixto bajo el enfoque de la inferencia bayesiana, para estudiar empíricamente la existencia y heterogeneidad de los efectos de red sobre las decisiones de contratación de los consumidores en la industria de telefonía móvil peruana. El análisis se hace con base a una muestra que combina información de la Encuestas Residencial de Servicios de Telecomunicaciones (ERESTEL) del a˜no 2015 e información de las empresas operadoras del servicio de telefonía móvil. Los resultados de las estimaciones realizadas sugieren que los efectos de red tendrían un condicionamiento importante sobre las decisiones de contración del servicio de telefonía móvil, además de presentar un grado de heterogeneidad estadísticamente significativo en la magnitud de sus efectos.
22

Modelos de teoría de respuesta al ítem multidimensional con una aplicación psicológica

Malaspina Quevedo, Martín Ludgardo 23 November 2016 (has links)
La presente investigación, dentro del contexto de la Teoría de Respuesta al Ítem (TRI), estudia un modelo multidimensional logístico compensatorio de dos parámetros (M2PL) para ítems dicotómicos. Para ello, se explican teóricamente los métodos de estimación más conocidos para los parámetros de los ítems y de los rasgos latentes de las personas, priorizando el método bayesiano mediante Cadenas de Markov de Monte Carlo (MCMC). Estos métodos de estimación se exploran mediante implementaciones computacionales con el software R y R2WinBUGS. La calidad de las respectivas estimaciones de los parámetros se analiza mediante un estudio de simulación, en el cual se comprueba que el método de estimación más robusto para el modelo propuesto es el bayesiano mediante MCMC. Finalmente, el modelo y el método de estimación elegidos se ilustran mediante una aplicación que usa un conjunto de datos sobre actitudes hacia la estadística en estudiantes de una universidad privada de Colombia. / Tesis
23

Inferencia bayesiana en un modelo de regresión cuantílica semiparamétrico

Agurto Mejía, Hugo Miguel 20 July 2015 (has links)
Este trabajo propone un Modelo de Regresión Cuantílica Semiparamétrico. Nosotros empleamos la metodología sugerida por Crainiceanu et al. (2005) para un modelo semiparamétrico en el contexto de un modelo de regresión cuantílica. Un enfoque de inferencia Bayesiana es adoptado usando Algoritmos de Montecarlo vía Cadenas de Markov (MCMC). Se obtuvieron formas cerradas para las distribuciones condicionales completas y así el algoritmo muestrador de Gibbs pudo ser fácilmente implementado. Un Estudio de Simulación es llevado a cabo para ilustrar el enfoque Bayesiano para estimar los parámetros del modelo. El modelo desarrollado es ilustrado usando conjuntos de datos reales. / Tesis
24

Modelo secuencial con aplicación a la medición del rendimiento estudiantil

Mejía Campos, Luis Ángel 04 February 2019 (has links)
En este trabajo se presenta el Modelo Secuencial para datos politómicos ordinales de la teoría de respuesta al ítem y sus características. De forma específi ca se estudia el Modelo Secuencial Logístico de 2 parámetros (2PL-SM). La estimación de este modelo se realiza utilizando Métodos de Cadenas de Markov de Montecarlo (MCMC), los cuales fueron implementados en R y WinBUGS. Se realizó un estudio de simulación con el objetivo de estudiar la precisión en la recuperación de parámetros observándose resultados apropiados según los índices de precisión utilizados. El Modelo Secuencial en estudio fue luego aplicado a la prueba de escritura de la Evaluación Muestral 2013 del Ministerio de Educación, evaluación que fue aplicada a una muestra de 4327 estudiantes de sexto grado de primaria de todo el país. Con la aplicación del modelo a la prueba se pudo determinar que en general esta contiene ítems cuyas di ficultades son bajas y que, para los estudiantes, el enfrentarse a esta prueba no debería resultarles complicado. / Tesis
25

Brecha en ingresos por género en el sector salud implementación bayesiana

Ormeño Meza, Rubén Aaron 26 April 2021 (has links)
La brecha salarial entre hombres y mujeres es un tema abordado con mucho énfasis en los últimos años y los profesionales del sector salud no son ajenos a esta problemática. En el desarrollo del presente trabajo de investigación se tuvo por objetivo implementar un modelo de regresiones gamma que permita modelar el ingreso del profesional de salud diferenciándolo según sexo, profesión y otras variables confusoras. La estimación de los parámetros se llevó a cabo desde una perspectiva bayesiana. Estos métodos de estimación se exploran mediante implementaciones computaciones con el software R y Stan. La ventaja principal de usar el enfoque bayesiano en el modelo de regresiones gamma es la posibilidad de añadir variables confusoras como componentes espaciales. Para ello, se define teóricamente el modelo y se explican los conceptos de geoestadística y modelos espaciales necesarios para el trabajo. Finalmente, el modelo se ilustra mediante una aplicación que usa una encuesta con representatividad nacional sobre el sistema de salud en el Perú.
26

Marco de trabajo para la gestión de inventarios de repuestos en una empresa de montacargas basado en técnicas de aprendizaje automático, simulación y optimización

Cuya Nizama, Eduardo Andre 16 September 2020 (has links)
Los inventario de partes de repuestos se caracterizan por albergar un gran volumen de productos con características distintas y poseer una demanda intermitente y altamente variable, lo cual hace que la tarea de realizar un planeamiento adecuado a través de métodos tradicionales sea imposible. Se propone un marco de trabajo basado en técnicas de clasificación, pronostico, simulación y optimización como propuesta para encontrar la política óptima para la gestión cada producto y de esa manera reducir los costos derivados de esta. Este documento estudia la situación actual de una empresa de venta y alquiler de montacargas peruana que atraviesa por esta problemática y detalla el procedimiento y técnicas de modelamiento matemática que se deben aplicar en cada etapa para poder implementar el marco de trabajo. Para la etapa de clasificación, se sustenta el uso de un nuevo sistema de clasificación alfa-omega de 5 categorías. En la etapa de pronóstico, se propone el uso de métodos basados en Inferencia Bayesiana. En la etapa de simulación, se hace uso del método de Montecarlo para recrear las diversas políticas posibles para cada producto. En la etapa de optimización, se hace uso de Optimización Bayesiana para encontrar los parámetros de dichas políticas tales que maximizan la utilidad. Para finalizar, se evalúan los requisitos y beneficios económicos que conlleva la implementación de este marco de trabajo. Se concluye que el marco de trabajo propuesto puede llegar a generar ahorros significativos para la empresa; sin embargo, para lograr el éxito en su implementación es necesario de una cultura organizacional que permita la sinergia entre las áreas involucradas.
27

Portafolios óptimos bajo estimadores robustos clásicos y bayesianos con aplicaciones al mercado peruano de acciones

Vera Chipoco, Alberto Manuel 20 July 2015 (has links)
El Modelo del Portafolio, propuesto por Markowitz (1952), es uno de los más importantes en el ámbito nanciero. En él, un agente busca lograr un nivel óptimo de sus inversiones considerando el nivel de riesgo y rentabilidad de un portafolio, conformado por un conjunto de acciones bursátiles. En este trabajo se propone una extensión a la estimación clásica del riesgo en el Modelo del Portafolio usando Estimadores Robustos tales como los obtenidos por los métodos del Elipsoide de Volumen mínimo, el Determinante de Covarianza Mínima, el Estimador Ortogonalizado de Gnanadesikan y Kettenring, el Estimador con base en la matriz de Covarianzas de la distribución t-student Multivariada y la Inferencia Bayesiana. En este último caso se hace uso de los modelos Normal Multivariado y t-student multivariado. En todos los modelos descritos se evalúa el impacto económico y las bondades estadísticas que se logran si se usaran estas técnicas en el Portafolio del inversionista en lugar de la estimación clásica. Para esto se utilizarán activos de la Bolsa de Valores de Lima.
28

Método para la fusión de categorías usando técnicas de agrupamiento

Farro Diaz, Victor Daniel 28 April 2022 (has links)
En la actualidad, muchas organizaciones disponen o tienen acceso a una gran cantidad y variedad de datos que les permiten tomar decisiones acordes en temas económicos, sociales, de educación, de salud, entre otros. Con frecuencia, los estudios que se realizan se enfocan en el objetivo de explicar una variable de interés utilizando un conjunto de variables explicativas; y si la relación de dependencia es lineal, se le conoce como modelo de regresión lineal. Los modelos de regresión lineal presentan su principal reto en la estimación de los parámetros de la regresión, que se consiguen a partir de la información obtenida mediante el análisis de las observaciones de una muestra previamente recogida. La complejidad de los modelos de regresión lineal aumenta con la existencia de covariables que son medidas en una escala nominal u ordinal, y que en muchas ocasiones presentan una gran cantidad de categorías, como por ejemplo: estado civil, grupo sanguíneo, entre otros. Lo habitual para modelar el efecto total de una covariable categórica es definir una categoría (o nivel) como línea base y utilizar variables ficticias para las otras categorías (o niveles). La presente tesis tiene como principal objetivo el desarrollo del método de fusión de efectos de covariables categóricas usando técnicas de agrupamiento PAM, propuesto por Malsiner-Walli, Pauger y Wagner (2018), y aplicarlo en un conjunto de datos reales relacionados a los ingresos monetarios de la población de Lima Metropolitana y Callao del primer trimestre del 2020.
29

Modelamiento bayesiano espacial multivariado para datos de áreas

Lopez Esquivel, Miguel Angel 19 January 2024 (has links)
Las infecciones respiratorias son enfermedades que ingresan a nuestro tracto respiratorio afectando la faringe hasta a los pulmones y según la Organización mundial de salud es la causa más común de muertes en el mundo. En particular, en esta tesis se propone estudiar la relación entre la incidencia de infecciones respiratorias agudas (IRA) y la incidencia de neumonía en el Perú. Por un lado estas variables pueden estar correlacionadas, conforme aumenta el número de casos de una enfermedad también aumenta el de la otra. Por otro lado, si nos enfocamos en la incidencia de estas enfermedades a nivel provincial, esperamos que la incidencia de IRA sea similar en provincias vecinas, lo mismo esperamos que ocurra con la incidencia de neumonía. En este contexto, en esta tesis se propone estudiar la distribución espacial entre la incidencia de IRA y neumonía a nivel provincial en el Perú a través de un modelo espacial multivariado, el cual nos permite estudiar la distribución espacial de dos o más variables correlacionadas entre sí. En particular, se propone aplicar un modelo espacial multivariado con efectos aleatorios condicionales autoregresivos. Para conseguir implementar la inferencia bayesiana del modelo jerárquico espacial multivariado de forma eficiente se propone usar el método de integración aproximada anidada de Laplace (INLA).
30

Inferencia bayesiana en un modelo de regresión cuantílica autorregresivo

Quintos Choy, Manuel Alejandro 14 June 2021 (has links)
El modelo de regresión cuantílica autorregresivo permite modelar el cuantil condicional de una serie de tiempo a partir de los rezagos de la serie. En el presente trabajo se presenta la estimación de este modelo desde la perspectiva bayesiana asumiendo que los errores se distribuyen según la distribución asimétrica de Laplace (ALD). Luego, el proceso de generación de muestras de la distribución a posteriori es simplificado utilizando una representación estocástica de la ALD propuesta por Kotz et al. (2001) y el algoritmo de datos aumentados de Tanner y Wong (1987), siguiendo la propuesta de Kozumi y Kobayashi (2011), así como las adaptaciones para el modelamiento de series de tiempo de Cai et al. (2012) y Liu y Luger (2017). Los estudios de simulación demuestran que el supuesto sobre la distribución del término error no es limitante para estimar el cuantil condicional de series de tiempo con otras distribuciones. El modelo es aplicado en la predicción del Valor en Riesgo (VaR) en la serie de tiempo de los retornos diarios de la tasa de cambio de PEN a USD, y sus resultados son comparados con las predicciones obtenidas por las metodologías RiskMetrics, GARCH(1,1) y CAVIaR. Al respecto, la evidencia numérica permite concluir que el modelo QAR es una alternativa válida para estimar el VaR.

Page generated in 0.1399 seconds