• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 9
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 12
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural and thermal evolution of the Gulf Extensional Province in Baja California, Mexico: implications for Neogene rifting and opening of the Gulf of California

Seiler, C. January 2009 (has links)
The Gulf of California in western Mexico is a prime example of a young passive margin that is currently undergoing the transition from continental rifting to seafloor spreading. With less than ~25 km of the width of the original continental surface area submerged, the northern Gulf Extensional Province represents a key area to assess the history of strain localisation during the early stages of continental extension. Geological mapping revealed that the basins and ranges of the Sierra San Felipe, located in the hanging wall of the Main Gulf Escarpment, are bounded to the east by an en-echelon array of left-stepping moderate- to low-angle normal faults that represent the next dominant set of normal faults from the break-away fault in direction of transport. Structural displacement estimates suggest up to ~4.5–9 km of broadly east-directed extension on the Las Cuevitas, Santa Rosa and Huatamote detachments. Fault kinematics suggest a transtensional stress regime with NE- to SE-directed extension and permutating vertical and N–S subhorizontal shortening. Clockwise vertical-axis block rotations and constrictional folding of the detachments were an integral part of the late Miocene to Pleistocene deformation history of the San Felipe fault array. This overall constrictional strain regime is indistinguishable from the present-day deformation in the Gulf Extensional Province and indicates that the fault array formed during a single phase of integrated transtensional shearing since rifting began in the late Miocene. / Apatite fission track (AFT) and (U-Th)/He results of Cretaceous crystalline basement samples from the Sierra San Felipe record a three-stage Cenozoic cooling history. Moderate cooling (~4–7ºC/m.y.) during late Paleocene to Eocene times is attributed to progressive down-wearing and bevelling of the ancestral Peninsular Ranges. Beginning at ~45–35 Ma, a period of tectonic quiescence with cooling rates of ≤1ºC/m.y. marks final unroofing of the basement and the development of a regional Oligocene to Miocene peneplain. Thermal modelling of samples from the footwall of the Las Cuevitas and Santa Rosa fault systems indicates that accelerated cooling began at ~9–8 Ma. This cooling pulse is attributed to tectonic denudation of the footwall and implies that faulting initiated synchronously on both detachments at ~9–8 Ma. Late Miocene deformation occurred distributed throughout the Sierra San Felipe, but started waning after the Pacific-North America plate boundary had localised into the Gulf of California by ~4.7 Ma / During a late Pliocene structural reorganisation in the northern Gulf, the locus of extension shifted from the Tiburón to the Delfín basins, thereby initiating strike-slip faulting on the Ballenas fracture zone, a transform fault located approximately 1.5–4.5 km offshore in central Baja California. This is consistent with low-temperature thermochronometric data from two horizontal transects perpendicular to the strike of the transform, which document a pronounced late Pliocene to Pleistocene heating event that is related to the structural and/or magmatic evolution of the transform fault. During reheating, maximum paleotemperatures reached >100–120ºC near the coast, but did not exceed ~60ºC some 5–8 km further inland. Highly non-systematic overprinting patterns are best explained by circulating hydrothermal fluids, which are most likely associated with magmatic leaking along the transform fault. / AFT and (U-Th)/He ages from a vertical profile collected on the Libertad escarpment, which forms part of the Main Gulf Escarpment in central Baja, pre-date Neogene extension and indicate that rift-related denudation was insufficient to expose samples from temperatures higher than the sensitivity zones of the two systems. One sample from the base of the escarpment however, records a middle to late Miocene hydrothermal overprint and suggests that extension in central Baja California likely initiated before ~10–8 Ma.
22

Plio-Pleistocene North-South and East-West Extension at the Southern Margin of the Tibetan Plateau

January 2012 (has links)
abstract: The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change in geomorphic character across the transition strongly suggests differential uplift between the Himalayan realm and the southernmost Tibetan Plateau. Most Himalayan researchers credit the South Tibetan fault system (STFS), a family of predominantly east-west trending, low-angle normal faults with a known trace of over 2,000 km along the Himalayan crest (e.g. Burchfiel et al., 1992), with defining the southern margin of the Tibetan Plateau in the Early Miocene. Inasmuch as most mapped strands of the STFS have not been active since the Middle Miocene (e.g., Searle & Godin, 2003), modern-day control of the physiographic transition by this fault system seems unlikely. However, several workers have documented Quaternary slip on east-west striking, N-directed extensional faults, of a similar structural nature but typically at a different tectonostratigraphic level than the principal STFS strand, in several locations across the range (Nakata, 1989; Wu et al., 1998; Hurtado et al., 2001). In order to explore the nature of the physiographic transition and determine its relationship to potential Quaternary faulting, I examined three field sites: the Kali Gandaki valley in central Nepal (~28˚39'54"N; 83˚35'06"E), the Nyalam region of south-central Tibet (28°03'23.3"N, 86°03'54.08"E), and the Ama Drime Range in southernmost Tibet (87º15'-87º50'E; 27º45'-28º30'N). Research in each of these areas yielded evidence of young faulting on structures with normal-sense displacement in various forms: the structural truncation of lithostratigraphic units, distinctive fault scarps, or abrupt changes in bedrock cooling age patterns. These structures are accompanied by geomorphic changes implying structural control, particularly sharp knickpoints in rivers that drain from the Tibetan Plateau, across the range crest, and down through the southern flank of the Himalaya. Collectively, my structural, geomorphic, and thermochronometric studies confirm the existence of extensional structures near the physiographic transition that have been active more recently than 1.5 Ma in central Nepal, and over the last 3.5 Ma in south-central Tibet. The structural history of the Ama Drime Range is complex and new thermochronologic data suggest multiple phases of E-W extension from the Middle Miocene to the Holocene. Mapping in the accessible portions of the range did not yield evidence for young N-S extension, although my observations do not preclude such deformation on structures south of the study area. In contrast, the two other study areas yielded direct evidence that Quaternary faulting may be controlling the position and nature of the physiographic transition across the central Tibetan Plateau-Himalaya orogenic system. / Dissertation/Thesis / Ph.D. Geological Sciences 2012
23

The geologic history of central and eastern Ledi-Geraru, Afar, Ethiopia

January 2013 (has links)
abstract: Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between 3-2.5 million years ago (Ma), but sediments spanning this time period are sparse. In this dissertation, I present the results of a geologic investigation targeting sediments between 3-2.5 Ma in the central and eastern Ledi Geraru (CLG and ELG) field areas in the lower Awash Valley, using a combination of geologic mapping, stratigraphy, and tephra chemistry and dating. At Gulfaytu in CLG, I mapped the northern-most outcrops of the hominin-bearing Hadar Formation (3.8-2.9 Ma), a 20 m-thick section of flat-lying lacustrine sediments containing 8 new tephras that directly overlie the widespread BKT-2 marker beds (2.95 Ma). Paleolake Hadar persisted after 2.95 Ma, and the presence and characteristics of the Busidima Formation (2.7-0.016 Ma) indicates Gulfaytu was affected by a reversal in depositional basin polarity. Combined with regional and geophysical data, I show the Hadar Formation underlying CLG is >300 m thick, supporting the hypothesis that it was the lower Awash Pliocene depocenter. At ELG, I mapped >300 m of sediments spanning 3.0-2.45 Ma. These sediments coarsen upward and show a progression from fluctuating lake conditions to fluvial landscapes and widespread soil development. This is consistent with the temporal change in depositional environments observed elsewhere in the lower Awash Valley, and suggests that these strata are correlative with the Hadar Formation. Furthermore, the strata and basalts at ELG are highly faulted, and overprinted by shifting extension directions attributed to the northern migration of the Afar triple junction. The presence of fossiliferous beds and stone tools makes ELG a high-priority target for anthropological and archaeological research. This study provides a new temporally-calibrated and high-resolution record of deposition, volcanism, and faulting patterns during a period of significant change in the Afar. / Dissertation/Thesis / Ph.D. Geological Sciences 2013
24

Structural and Kinematic Evolution of Eocene-Oligocene Grasshopper Extensional Basin, Southwest Montana

Kickham, Julie C. 01 May 2002 (has links)
The Grasshopper basin of southwest Montana is a complex east-dipping graben containing five unconformity-bounded sequences of Tertiary sedimentary rocks. The Eocene-Oligocene basin lies within the northern Rocky Mountain Basin and Range province. Geologic mapping in five and a half 7.5 minute quadrangles indicates that at least three distinct phases of extension characterize the Cenozoic tectonic evolution of Grasshopper basin from approximately 46 Ma toMa. The significant phases of extension in Grasshopper basin were phases 1 and 3. During the first phase of extension (46-27 Ma) the nonplanar Muddy-Grasshopper fault was initiated and 90% of the basin fill was deposited. At least 7 km of dip-slip displacement along this fault controlled the deposition of the Medicine Lodge beds (3.5 km thick) and development of a transverse fold train and a longitudinal anticline. The second phase of extension (late Eocene-early Oligocene) resulted in northwest-southeast trending extensional structures and was probably coincident with deformation along the Lemhi Pass fault (20 km to the southwest). The third phase of deformation (early Oligocene-middle Miocene) dismembered the once larger protobasin into smaller subbasins and tilted the northwest-dipping limb of the longitudinal anticline. The structures formed during this phase have north-south and northeast trends. Little sediment was deposited during phases 2 and 3. Overall >85% E-W extension accrued. Extensional folds are common in Grasshopper basin and formed during all three phases of extension. One orthogonal fold set was recorded. Two-dimensional kinematic analysis of the longitudinal Bachelor Mountain anticline shows that this fold is a double-­rollover that probably developed above a longitudinal ramp in the Muddy-Grasshopper fault. The transverse folds are the result of the changing strike of the downward­-flattening Muddy-Grasshopper fault. A transverse syncline developed above a convex up part of the fault whereas a transverse anticline formed above a concave up part of the fault that reflects changes in the strike of the fault. Three-dimensional inclined shear probably created this geometry.
25

Preparation of nano-cellular foams from nanostructured polymer materials by means of CO2 foaming process / Élaboration de mousses nano-cellulaires à partir de polymères nano-structurés via un procédé de moussage physique au CO2

Forest, Charlène 21 November 2014 (has links)
Cette étude porte sur l'élaboration de matériaux polymères nano-cellulaires via un procédé batch de moussage au CO2. Pour obtenir de tels matériaux, le moussage est provoqué dans des matériaux polymères nano-structurés afin de favoriser la nucléation hétérogène et d'obtenir des taux de nucléation et des densités de cellules élevées. Le moussage de terpolymères ABS et de PMMAs nanostructurés a été étudié, dans le but de produire des mousses nano-cellulaires avec une faible densité (inférieure à 0.3 g.cm-3) et une taille moyenne de cellules inférieure à 100 nm, correspondant aux morphologies de mousses requises pour obtenir des matériaux super isolants thermiquement. Le phénomène de nucléation, et donc la densité de cellules, sont apparus comme dépendant directement de la concentration et de la morphologie des agents nucléants, qui correspondent dans cette étude à des phases polymères immiscibles dispersées. L'élaboration de matériaux nano cellulaires a nécessité la compréhension des mécanismes de croissances de cellules, du rôle du CO2 en tant qu'agent gonflant et plastifiant ainsi que l'optimisation du procédé de moussage. Plus précisément, l'influence du comportement viscoélastique des matériaux polymères ainsi que celle des forces de surface sur la formation de cellules a également été étudié. Il a été montré que la formation de mousse se produisait dans un milieu viscoélastique, avec un comportement variant entre celui d'un solide et d'un liquide viscoélastique, et ce en fonction de la température et de la masses molaire des polymères / This work focuses on the fabrication of nano-cellular polymer materials by means of a CO2 batch foaming process. To produce such materials, the foaming has to be induced in nano-structured polymer materials in order to favour heterogeneous nucleation and thus to obtain high nucleation rate and high cell density. The foaming of ABS terpolymers and nanostructured PMMAs was investigated, with the aim of producing nano-cellular foams with low density (lower than 0.3 g.cm-3) and an average cell size of 100 nm, which corresponds to required foam morphologies for super thermal insulating applications. It has been shown that nucleation, and thus cell density, directly depends on the content and morphology of nucleating agents, corresponding to dispersed polymer immiscible phases. The production of nano-cellular materials required the understanding of cell growth mechanisms, the role of CO2 as blowing agent and plasticiser and process optimisation. Specifically, the influence of viscoelastic behaviour of polymer materials and surface forces on cell formation was also investigated. It was found that the foaming occurred in viscoelastic media, with transitional behaviour between solid and liquid, depending on foaming temperature and molar mass of polymers
26

Extensional-flow-induced Crystallization of Polypropylene

Bischoff White, Erica E 01 January 2011 (has links) (PDF)
A filament stretching extensional rheometer was used to investigate the effect of uniaxial flow on the crystallization of polypropylene. Samples were heated to a temperature above the melt temperature to erase their thermal and mechanical histories. The Janeschitz-Kriegl protocol was applied and samples were stretched at various extension rates to a final strain of e = 3.0. Differential scanning calorimetry was applied to crystallized samples to measure the degree of crystallinity. The results showed that a minimum extension rate, corresponding to a Weissenberg number of approximately Wi = 1, is required for an increase in percent crystallization to occur. Below this Weissenberg number, the flow is not strong enough to align the tubes of constrained polymer chains and as a result there is no change in the final percent crystallization. An extension rate was also found for which percent crystallization is maximized. The increase in crystallinity is likely due to flow-induced orientation and alignment of tubes of constrained polymer chains. Polarized-light microscopy verified an increase in number and decrease in size of spherulites with increasing extension rate. Small angle X-ray scattering showed a 7% decrease in inter-lamellar spacing at the transition to flow-induced increase in crystallization. Crystallization kinetics were examined by observing the time required for melts to crystallize under uniaxial flow. The crystallization time decreased with increasing extension rate, even for extension rates where no increase in percent crystallization was observed. These results demonstrate that the speed of crystallization kinetics is greatly enhanced by the application of extensional flow.
27

Geology of the Birdseye 7.5-Minute Quadrangle, Utah County, Utah:Â Implications for Mid-Cenozoic Extension and Deposition of the Moroni Formation

Bagshaw, Don L. 12 December 2013 (has links) (PDF)
Geologic structures within the Birdseye 7.5 minute quadrangle Utah County, Utah have been related by previous workers to both the Jurassic Arapien Shale diapirism and to the mid-Cenozoic extensional collapse of the Charleston-Nebo Thrust. Whichever model proves valid, it will have implications for oil exploration and interpretation of the subsurface geologic structure in the region. A detailed map of the quadrangle was constructed to better constrain which mechanism was responsible for the deformation. Exposures of Arapien Shale near, and within the Birdseye quadrangle show no evidence of diapiric movement. Arapien involvement in the deformation of Tertiary rocks in the center of the quadrangle is therefore unlikely. Changes in the pattern of sedimentation of Eocene age rocks suggest a change in tectonics during this time. Restoration of the Eocene strata shows that the most plausible mechanism for this deformation is extension along reactivated thrusts in the Arapien Shale, Thaynes Formation, and Woodside Shale, related to Basin and Range extension. The Moroni Formation, a prominent Tertiary volcanic unit present throughout the Birdseye quadrangle, has been used to justify Eocene extension. Deformation with the formation was found to be present only along the Thistle Canyon normal fault, constraining movement along the fault to the Eocene and later. Dip and facies relationships present within the formation mainly are a result of paleotopography rather than extension. Several distinctive units were mapped within the formation, including lahar and fluvial deposits, as well as two different ash-flow tuffs. A depletion in nickel and chromium, an unusually ferroan composition, and distinctive Fe/Ti ratios suggest that the volcaniclastic rocks of the Moroni Formation are similar to volcanic rocks in the Slate Jack Canyon and Goshen quadrangles which lie about 35 km to the west. This implies that the ignimbrites and volcanic clasts in the Moroni Formation were sourced from the East Tintic volcanic center. It further implies that any mid-Tertiary extension between the East Tintic center and the Birdseye quadrangle did not create barriers to sedimentation and was limited in extent.
28

A viscoelastic constitutive model for thixotropic yield stress fluids: asymptotic and numerical studies of extension

Grant, Holly Victoria 17 November 2017 (has links)
This dissertation establishes a mathematical framework for analyzing a viscoelastic model that displays thixotropic behavior as a model parameter gets very small. The model is the partially extending strand convection model, originally derived for polymeric melts that have long strands that get in the way of fully retracting. A Newtonian solvent is added. The uniaxial and equibiaxial extensional flows are studied using combined asymptotic analysis and numerical simulations. An initial value problem with a prescribed elongational stress is solved in the limit of large relaxation time. This gives rise to multiple time scales. If the initial stress is less than a critical value, the initial elastic elongation is followed by settling to an unyielded state at the slow time scale. If the initial stress is larger than the critical value, then yielding ensues. The extensional flows produce delayed yielding and hysteresis, both associated with thixotropy in complex fluids. / Ph. D.
29

[pt] DEGRADAÇÃO MECÂNICA DE SOLUÇÕES POLIMÉRICAS EM FLUXO LAMINAR EXTENSIONAL / [en] MECHANICAL DEGRADATION OF POLYMER SOLUTIONS IN EXTENSIONAL LAMINAR FLOW

LUA SELENE DA SILVA ALMEIDA 28 June 2021 (has links)
[pt] Devido ao seu comportamento físico-químico, os polímeros solúveis em água são utilizados em várias fases de perfuração, completação, e produção de poços de petróleo. Portanto, é fundamental prever e controlar o comportamento em meio poroso para entender o desempenho do polímero. Experimentos foram conduzidos para estudar a degradação de uma solução aquosa semi-diluída de PEO, usando dois capilares com diâmetros de entrada diferentes (100 micrômetros e 200 micrômetros) ambos com constrição de 50 micrômetros, criando fluxos transientes rápidos em seu centro. Diferentes vazões foram impostas a fim de observar diferentes taxas de cisalhamento e de alongamento no sistema. O efluente do fluxo foi coletado e reinjetado, e suas propriedades reológicas foram utilizadas como proxies para a degradação. Observamos que, para a contração mais abrupta, a vazão mínima necessária para degradar a solução é menor. Este resultado, analisado apenas sob a perspectiva da taxa de cisalhamento, não é razoável, já que a taxa de cisalhamento na constrição a que o polímero é submetido é igual em ambos os capilares. Portanto, inferimos que a brusquidão da contração desempenha um papel na degradação, o que significa que a taxa de alongamento pode ser responsável pela menor taxa de fluxo crítico. Também foi observado um padrão de como ocorre a degradação com as injeções subsequentes. Podemos inferir que injeções subsequentes causam degradação incremental antes de se aproximar de um patamar de estabilização e que vazões mais altas geram patamares de degradação mais baixos. / [en] Due to their physical-chemical behavior, water-soluble polymers are used extensively in various phases of drilling, completion, workover, and production of oil and gas wells. Therefore, it is fundamental to predict and to control in-situ porous medium behavior in order to understand polymer performance. Experiments were conducted to study the degradation of a semi diluted (2000 ppm) aqueous solution of PEO, using two capillaries with different entrance diameter (100 micrometers and 200 micrometers) both with 50 micrometers radius constriction, creating Fast-Transient Flows in their center. Different injection rates were imposed in order to observe different shear and extensional rates in the system. The effluent of the flow was collected, and reinjected, and rheological properties of the fluids were used as proxies for the degradation of the solution. We observed that for the more abrupt contraction, the minimum flow rate needed for degrading the polymer solution is lower. This result, when analyzed purely under shear rate perspective, is not reasonable, since the constriction shear rates to which the polymer is subjected are equal at both capillaries. Therefore, we inferred that the abruptness of the contraction plays a role in the degradation, which means elongational rate may be responsible for the lower critical flow rate. It was also observed a pattern for how the degradation occurs with subsequent injections. We could infer that subsequent injections cause incremental degradation before approaching a stabilization plateau and that higher flow rates generated lower degradation plateaus.
30

Geocronologia da região de Gondola-Nhamatanda (Centro de Moçambique)

Manjate, Vicente Albino 17 January 2012 (has links)
A região de Gondola-Nhamatanda localiza-se na parte limítrofe entre as províncias de Manica e Sofala, centro de Moçambique. Ela está geologicamente inserida no complexo de Bárue (Grupo de Chimoio) e na cobertura fanerozoica. O Complexo de Bárue é composto pelos Grupos supracrustais de Macossa e Chimoio intrudidos por rochas plutônicas de várias composições. Enquanto que a cobertura fanerozoica consiste de sedimentos terrestres e rochas vulcânicas associadas pertencentes ao Supergrupo do Karoo e à sequências do rifte Este Africano. A área de trabalho foi estudada em termos de petrografia; geoquímica de elementos maiores, traço e de terras raras; geocronologia e geologia isotópica pelos métdos U -Pb em zircão, Rb-Sr e Sm-Nd em rocha total e Rb-Sr em minerais para o granito de Inchope, quartzo-sienito do monte Chissui e fonolito do monte Xiluvo. Este estudo permitíu determinar os litotipos que intrudiram o grupo supracrustal de Chimoio , suas idades de cristalização e de diferenciação dos magmas que formaram seus protólitos e ainda o enquadramento tectônico. As rochas estudadas são basicamente calci -alcalinas com variações de meta à peraluminoso para os granitoides e quartzo-sienito e peralcalino para o fonolito do monte Xiluvo. Os granitoides do grupo de Chimoio foram cristalizados no Mesoproterozoico (idades U-Pb e Rb-Sr) a partir de protólitos Paleoproterozoicos (\'T IND.DM\' = 1,7 - 2,3 Ga); por sua vez, as rochas vulcânicas (fonolitos) do monte Xiluvo cristalizaram rápidamente no Câmbrico (idade Rb-Sr) dum protólito do Neoproterozoico-Câmbrico (\'T IND.DM\' = 0,54 - 0,56 Ga). Os dados isotópicos obtidos no presente estudo sugerem que as rochas do cinturão de Moçambique foram geradas por fusão parcial que provavelmente envolveu mistura ( valores negativos de ?Nd ) da crosta arqueana / paleoproterozoica e magma mesoproterozoico a 1100 Ma e sofreram retrabalhamento marcado pela aglutinação do Gondwana (orogenia Pan-Africana) e tafrogênese marcada pela fraturação do Gondwana (Rifte Este Africano ). / The region of Gondola-Nhamatanda is located at the border between the provinces of Manica and Sofala, central part of Moçambique. It is geologically inserted in the Bárue complex and the Phanerozoic cover. The Bárue complex is composed of the Macossa and Chimoio supracrustal groups intruded by plutonic rocks of various compositions, whereas the Phanerozoic cover consists of terrestrial sediments and volcanic rocks belonging to the Karoo Super-group and East African Rift Sequences. The work area was studied in terms of petrography; geochemistry of major elements, trace and rare earth elements; geochronology and isotope geology by the methods U -Pb in zircon, Rb-Sr and Sm-Nd in whole rock and Rb-Sr in minerals for the Inchope granite, Chissui mountain Quartzo-sienito and Xiluvo mountain phonolite. This study allowed to determine the lithotypes that intruded the Chimoio supracrustal group, its crystallization ages and the differentiation ages of the magmas that formed the protoliths and the tectonic framework. The studied rocks are basically calc-alkaline varying from meta to peraluminous for the granitoids and quartz-sienite and peralkaline for the mount Xiluvo phonolite. The Chimoio Group granitoids had been crystallized in the Mesoproterozoic (U-Pb and Rb-Sr ages) from Paleoproterozoic protoliths (\'T IND.DM\' = 1.7 - 2.4Ga); on the other hand, the volcanic rocks (phonolites) of the Xiluvo mount had crystallized fast in the Cambrian (Rb-Sr age) from a Neoproterozoic-Cambrian protolith (\'T IND.DM\' = 0.54 - 0.56Ga). The isotopic data, in the present study , suggest that the rocks of the Mozambique belt had been generated by partial melting that probably involved the mixture of the archean/paleoproterozoic crust and the Mesoproterozoic magma at 1100Ma and had suffered reworking marked by the Gondwana amalgamation (Pan-African orogeny) and extensional processes marked by the Gondwana break up (East African Rift).

Page generated in 0.0845 seconds