11 |
Vliv stárnutí na změny extracelulární matrix a vlastnosti extracelulárního prostoru v mozku / The role of ageing in the changes of the brain extracellular matrix and extracellular space propertiesKamenická, Monika January 2018 (has links)
The process of aging causes the major changes in nervous tissue such as changes in the size of brain, architecture of glial cells and extracellular matrix. The size of brain is on the decrease as consequence of aging and there is a change of molecules as well as morphology at all levels. Extracellular space (ECS) is interstitium important especially in communication between cells mediated by diffusion. The limit of diffusion in extracellular space is given by size of ECS, which is discribed by volume fraction and tortuosity, that reflect amount of diffusion barriers. The changes of ECS diffusion parameters during aging were measured by real-time iontophoretic method in four parts of brain (cortex - Cx, hippocampus - Hp, inferior colliculus - IC and corpus trapezoideum - TB). Further, we studied influence of deficiency of Bral2 link protein at differences of ECS diffusion parameters and importance of Bral2 protein at aging and regulation mechanisms of cytotoxic brain edema. Our results show, that aging leads to decreasing of ECS volume v Cx and Hp, but it was not observed in IC and TB, where the intact perineuronal nets act like protecting shield against the degenerative disease induced by aging. However, small differences in composition of perineuronal nets, deficiency of Bral2 link protein, may...
|
12 |
Dynamic extracellular space alters spatiotemporal distribution of chemical signals in brainHrabetova, S., Hrabe, J. 06 February 2020 (has links)
Brain can be considered as a porous medium. The brain cells form a solid phase while the liquid-filled
extracellular space (ECS) forms a porous phase that surrounds each individual cell. Brain ECS is of a
fundamental importance for brain function [1]. It serves as a reservoir for ions and a channel for
diffusion-mediated transport of biologically significant molecules and therapeutics. ECS volume is the
main factor governing the extracellular concentrations of these substances. Any ECS volume change
may lead to a change in concentration of ions and transported substances, and this has consequences for
brain function.
|
13 |
Úloha spojovacích proteinů při stabilizaci extracelulární matrix v mozku a při vytváření a udržování perineurálních sítí / The role of link proteins in the stabilization of the brain extracellular matrix and in formation and maintaining of the perineuronal netsSuchá, Petra January 2017 (has links)
The brain extracellular space (ECS) contains specified macromolecules forming the extracellular matrix (ECM), containing a high amount of negative charges that could bind water or other soluble ions and molecules diffusing within the ECS. In specific brain areas, the ECM molecules form a condensed, reticular-like structure of perineuronal nets (PNNs). It has been found that PNNs appear at the end of the critical period, when they stabilize the synapses and terminate their plasticity and may have also neuroprotective function. To study the role of brain link protein 2 (Bral2) in stabilizing the ECM complexes, we employed the real-time iontophoretic method and immunohistochemical analysis to show the difference in the ECS diffusion parameters and level of expression of the ECM molecules between the wild type and Bral2-deficient mice. We also compared changes in the ECS diffusion parameters induced by Bral2 deficiency with those appeared after enzymatic destruction of the ECM by the chondroitinase ABC (chABC). In the Bral2-deficient mice, we discovered significantly decreased values of tortuosity in the trapezoid body. This difference was age related and did not manifest itself in young mice. Immunohistochemical analysis showed that inferior colliculus does not contain Bral2-brevican based...
|
14 |
Quantification of microscopic brain structures using diffusion magnetic resonanceLam, Wilfred W. January 2014 (has links)
Diffusion-weighted magnetic resonance imaging can be used to estimate microstructural parameters of white matter in the brain. Two complementary techniques are investigated: the use of the temporal diffusion spectrum to explore small length scales and the STEAM technique to probe larger features. The diffusion spectrum has the potential to be more sensitive to small pores compared to conventional time-dependent diffusion. However, analytical expressions for the diffusion spectrum of particles only exist for simple geometries such as cylinders, which are often used as a model for intra-axonal diffusion. We propose a mathematical model for the extra-axonal space with parameters that are related to the microstructural properties of pore size, tortuosity, and surface-to-volume ratio. Measurements were made with an extra-axonal space phantom to validate the model. Fitted values for the phantom pore size match those from simulation. We extend the model to include the intra-axonal signal contribution. However, the parameters used to describe the intra- and extra-axonal spaces are related and it is important to remove redundant parameters to avoid overparameterization, which would make the model less robust. We propose analytical expressions to simplify the model. The model was then applied to measurements on fixed corpus callosum, which is a model system consisting of parallel axons. The estimated values of the axon volume fraction and mean and standard deviation of the axon radius distribution are comparable to those found in literature. Temporal diffusion spectra are useful for measuring the geometric properties of small spaces such as axon radii. However, longer diffusion times accessible using the STEAM sequence are necessary to probe structures with longer diffusion distances such as those parallel to the direction of axons. We used a model from the literature originally developed for use with animal magnetic resonance scanners and simplified it to quantify axial hindrance from data acquired on healthy volunteers in a clinical scanner. The interpretation of axial hindrance, which is a largely unexplored area of research, is discussed.
|
15 |
Proteína dissulfeto isomerase plasmática: detecção e correlação com assinaturas proteômicas ligadas a distintos fenótipos endoteliais em indivíduos saudáveis / Protein disulfide isomerase plasma levels in healthy humans reveal proteomic signatures involved in contrasting endothelial phenotypesOliveira, Percíllia Victória Santos de 05 June 2019 (has links)
A Dissulfeto Isomerase Proteica (PDI) é uma chaperona ditiol-dissulfeto oxidoredutase da superfamília tiorredoxina que catalisa o enovelamento de proteínas secretadas ou de membrana por meio da introdução, redução ou isomerização de pontes dissulfeto. A PDI é primariamente localizada no lúmen do retículo endoplasmático, no entanto a presença de uma pequena fração da PDI na superfície celular e no meio extracelular tem sido documentada em diversos tipos celulares. Particularmente em plaquetas e células endoteliais, a PDI epi/pericelular (pecPDI) está envolvida em diversos processos incluindo ativação de plaquetas/trombose, infecções virais e remodelamento vascular. A ausência de PDI (e outras tiol isomerases) na circulação tem sido proposta como mecanismo para prevenir trombose na ausência de lesão vascular. No entanto, esta questão permanece obscura e existe pouca informação sobre a concentração circulante da PDI e outras tiol isomerases vasculares. Neste estudo, investigamos a ocorrência e implicações fisiológicas de um pool circulante de PDI em indivíduos saudáveis e validamos um ensaio para detecção da PDI. Os resultados mostraram um pool detectável de PDI no plasma por ELISA, confirmados por imunoprecipitação e ensaio de atividade (inibição da redução da sonda di-eosina-GSSG pela rutina, um inibidor específico da PDI). A concentração de PDI no plasma (mediana=330 pg/mL) indicam uma alta variabibilidade interindividual, com valores muito baixos/indetectáveis (plasmas pobres em PDI [PP-PDI], definidos como <= 330 pg/mL) até valores superiores a 1000 pg/mL (plasmas ricos em PDI [PR-PDI], designados como > 330 pg/mL). Por outro lado, um resultado importante foi o fato de que valores de PDI mostraram variabilidade intraindividual muito baixa ao longo do tempo, detectada através de medidas repetidas em diferentes ocasiões e/ou condições. A fração de PDI presente em micropartículas plasmáticas foi variável, mas em geral pequena em relação ao pool total de PDI. O pool da PDI no plasma está majoritariamente reduzido (60-80%) sem diferenças entre os grupos PP-PDI e PR-PDI. Importante, os valores de PDI associaram-se a distintos perfis proteômicos plasmáticos. Enquanto os PR-PDI se associaram preferencialmente a proteínas relacionadas a diferenciação celular, processamento de proteínas, funções housekeepings, entre outras, os PP-PDI mostraram expressão diferencial de proteínas associadas a coagulação, respostas inflamatórias e imunoativação. A atividade de plaquetas medida por agregação foi semelhante entre os indivíduos com PP-PDI vs. PR-PDI. No entanto, a PDI solúvel foi diminuída após agregação plaquetária na maioria dos indivíduos em ambos os grupos, sugerindo captura devida a exposição de moléculas adesivas. Em outras séries de experimentos, mostramos que tais perfis proteômicos plasmáticos se correlacionaram ao fenótipo e função endotelial. Células endoteliais em cultura incubadas com PP-PDI ou PR-PDI recapitularam padrões de expressão gênica e de secreção de proteínas similares aos perfis plasmáticos correspondentes. Além disso, as assinaturas proteômicas identificadas em ambos os tipos de plasma traduziram-se em distintas respostas funcionais endoteliais. Os PP-PDI promoveram comprometimento da adesão de células endoteliais à fibronectina e perturbaram o padrão de migração celular associado à reparação de lesão endotelial. Em contraste, os PR-PDI não afetaram significativamente a adesão celular e sustentaram um padrão de migração organizado. Em outra população de pacientes com eventos cardiovasculares, os valores de PDI no plasma (mediana= 35 pg/mL) foram significativamente inferiores aos de indivíduos saudáveis. Em conclusão, o pool detectável de PDI presente no plasma se associou a distintos perfis proteômicos e parece se comportar como um indicador/ marcador de assinaturas proteômicas relacionadas à função e sinalização endotelial. Este é o primeiro estudo descrevendo valores circulantes de PDI diretamente relacionados a distintos fenótipos endoteliais / Protein disulfide isomerase (PDI) is a dithiol-disulfide oxidoreductase chaperone from thioredoxin superfamily which catalyzes introduction, reduction or isomerization of disulfide bonds in nascent proteins, typically destined to extracellular secretion or membrane insertion. PDI is primarily located into the endoplasmic reticulum; however, there are clear evidences for the presence of a small PDI fraction at the cell surface and extracellular milieu in several cell types. Particularly in platelets and endothelial cells, such peri/epicellular pool of PDIA1 (pecPDI) is involved in distinct processes including platelet activation/thrombosis, viral infection and vascular remodeling. The absence of PDI (and other thiol isomerases) from circulating plasma has been proposed as a mechanism to prevent thrombogenesis in the absence of vascular injury. However, this question remains unclear, as there is little information on the circulating levels of PDI and other vascular thiol isomerases. Here we investigated the occurrence and physiological significance of a circulating pool of PDI in healthy humans. We validated an assay for detecting PDI in plasma of healthy individuals. The results showed a detectable pool of plasma PDI by ELISA, confirmed by immunoprecipitation and activity assay (dieosin-GSSG inhibitable by rutin, a specific PDI inhibitor). PDI levels (median= 330 pg/mL) exhibited high interindividual variability, ranging from undetectable/low (PDI-poor plasma, defined as <= 330 pg/mL) until 1000 pg/mL (PDI-rich plasma, > 330 pg/mL). Remarkably, opposite to interindividual variability, the intra-individual variability was quite low, so that values assessed under distinct conditions over time were close and reproducible. The majority (60-80%) of plasma PDI is in the reduced state, without any difference among individuals with PDIpoor and PDI-rich plasma. Importantly, plasma PDI levels could discriminate between distinct plasma proteome signatures, with PDI-rich plasma differentially expressing proteins related to cell differentiation, protein processing, housekeeping functions and others, while PDI-poor plasma differentially displayed proteins associated with coagulation, inflammatory responses and immunoactivation. Platelet activity assessed by aggregation was similar between PDI-poor vs. PDI-rich plasma. However, soluble PDI was decreased after platelet activation in both groups, suggesting sequestration of plateletderived PDI by its potential substrates. In other set of experiments, we showed that such protein signatures closely correlated with endothelial function and phenotype, since cultured endothelial cells incubated with PDI-poor or PDI-rich plasma recapitulated gene expression and secretome patterns in line with their corresponding plasma signatures. Furthermore, such signatures translated into functional responses, with PDI-poor plasma promoting impairment of endothelial adhesion to fibronectin and a disturbed pattern of wound-associated migration and recovery area. In contrast, PDI-rich plasma did not significantly affect cell adhesion and supported organized endothelial migration. In another dataset, patients with cardiovascular events had lower PDI levels (median= 35 pg/mL) vs. healthy individuals. In conclusion, a PDI pool detectable in plasma from healthy individuals is associated with distinct proteomic profiles and seems to behave as an indicator/marker of proteomic signatures related with endothelial function and signaling. This is the first study describing PDI levels as reporters of specific plasma proteome signatures directly promoting contrasting endothelial phenotypes and functional responses
|
16 |
Estudo da rota de externalização da dissulfeto isomerase protéica (PDIA1) em células endoteliais / Study of protein disulfide isomerase (PDIA1) externalization route in endothelial cellsSilva, Thaís Larissa Araujo de Oliveira 19 August 2015 (has links)
Dissulfeto isomerase protéica (PDIA1 ou PDI) é uma chaperona e ditiol-dissulfeto oxido-redutase residente do reticulo endoplasmático (RE). PDI é essencial à regulação da proteostase por ter função no enovelamento oxidativo de proteínas e na via de degradação associada ao RE (ERAD). Além disso, PDI interage fisicamente e regula a atividade de NADPH oxidases, e fora da célula é um regulador redox essencial à atividade de proteínas extracelulares. Este pool epi/pericelular da PDI (pecPDI) regula função de proteínas de membrana/secretadas, como integrinas, glicoproteínas gp120 do virus HIV e outras, com múltiplas funções que incluem: trombose, ativação plaquetária, adesão celular, infecção viral e remodelamento vascular. A rota de externalização da PDI permanece obscura, e seu conhecimento pode indicar mecanismos dos efeitos (fisio)patológicos da PDI. A secreção da PDI pela rota RE-Golgi foi sugerida em células endoteliais infectadas pelo vírus da dengue, células pancreáticas e tireoideanas. No entanto, uma varredura sistemática das possíveis rotas de externalização da PDI não foi previamente realizada. Neste estudo, mostramos que células endoteliais (EC) externalizam constitutivamente, por rotas distintas, dois pools de PDI, de superfície celular e solúvel, enquanto na EC não estimulada PDI não foi detectada significativamente em micropartículas. PDI externalizada corresponde a ca.1,4% do pool total de PDI celular. Tanto a PDI de superfície celular como a solúvel foram majoritariamente secretadas pela via de secreção não-convencional do tipo IV independente de GRASP. Contudo, a via de secreção clássica também contribui para externalização basal da PDI de superfície celular, mas não da solúvel basal ou estimulada por PMA, ATP e trombina indicando que todas envolvem escape do Golgi. Além disso, a externalização constitutiva da PDI de superfície em célula muscular lisa vascular também ocorre por via independente de Golgi. Externalização da PDI não foi detectavelmente mediada pela secreção não-convencional do tipo I, II, III, lisossomos secretórios, endossoma de reciclagem e transporte ativo (dependente de ATP) em EC. Considerando que chaperonas são vias essenciais de resposta a estresses, investigamos o efeito de estresse do RE e choque térmico na pecPDI. Estresse do RE não altera a PDI de superfície celular, mas aumenta PDI solúvel. Ambos os pools de PDI não foram alterados por choque térmico, embora a recuperação desse estresse diminua a secreção de PDI. Estes dados sugerem que a liberação de PDI é um processo regulado, dependente da natureza do estresse. Bloqueio da síntese de proteínas com cicloheximida não altera pecPDI, indicando que PDI recém-sintetizada não é preferencialmente externalizada e que o tráfego da PDI independe de outras proteínas recém-sintetizadas. Um aspecto importante do estudo foi indicar uma resiliência da pecPDI à modulação individual de distintas vias secretoras, consistente com uma estrita auto-regulação e possibilidade de vias sinérgicas e complementares. Estes resultados indicam que a externalização da PDI de superfície e PDI secretada possam ser externalizadas por mecanismos independentes. Estes processos compõem um processo regulado estritamente, consistente com papel homeostático da pecPDI / Protein disulfide isomerase (PDIA1 or PDI) is dithiol-disulfide oxireductase chaperone resident in the endoplasmic reticulum (ER). PDI is essential for proteostasis, due to its support of oxidative protein folding and ER-associated protein degradation (ERAD). In addition, PDI associates with NADPH oxidase(s) and regulate its activity, while outside of the cell, PDI redox-dependently modulates extracellular proteins. This epi/pericellular PDI (pecPDI) pool is known to regulate membrane/secreted proteins such as integrins, HIV glycoprotein gp120 and others, with functions that involve thrombosis, platelet function, cell adhesion, viral infection and vascular remodeling. PDI externalization route remains enigmatic and its elucidation can help understand some (patho)physiological PDI effects. An ER-Golgi route for PDI secretion has been as described on dengue virus-infected endothelial cells pancreatic and thyroid) cells. However, none of these papers addressed PDI secretion routes in a systematic fashion. Here, we show that endothelial cells (EC) constitutively externalize, through different routes, two PDI pools, a cell-surface and a secreted one, while in nonstimulated ECs PDI was not significantly detected in microparticles. Externalized PDI corresponds to < 2% of total cellular PDI pool. Both cell-surface and soluble PDI were predominantly externalized through unconventional type IV GRASP-independent pathway(s). However, the classical secretory pathway also contributes to basal cell-surface, but not soluble, PDI externalization, as PMA, ATP or thrombin-stimulated secretion also involve Golgi bypass. Furthermore, constitutive cell-surface PDI externalization in vascular smooth muscle cells also occurs in a Golgi-independent way. PDI externalization was not detectably mediated by non-conventional type I, II and III secretion routes, secretory lysosomes, recycling endosomes and ATP dependent active transport in EC. Since chaperones are essential for cellular stress response, we assessed the effects of ER stress and heat-shock on pecPDI. ER stress did not affect cell-surface PDI but increased the soluble pool. Both PDI pools were unaltered by heat shock, while stress recovery decreased PDI secretion. These data suggest that PDI release is finely tuned and dependent on the type of stress. Blockade of protein synthesis with cycloheximide did not change pecPDI levels, suggesting that newly-synthesized PDI is not preferentially externalized and that PDI traffic does not require newly-synthesized proteins. An important aspect of the study was the evidence for pecPDI resilience to individual modulation of distinct secretion routes, consistent with strict auto-regulation and possible synergic or complementary pathways. Overall, our data suggest that cell-surface and secreted PDI pool externalization are regulated through independent mechanisms, which in both cases involve Type IV non-conventional routes, with some minor contribution of Golgi-dependent secretory pathway. These patterns compose a strictly regulated process, consistent with an important homeostatic role for pecPDI
|
17 |
Estudo da rota de externalização da dissulfeto isomerase protéica (PDIA1) em células endoteliais / Study of protein disulfide isomerase (PDIA1) externalization route in endothelial cellsThaís Larissa Araujo de Oliveira Silva 19 August 2015 (has links)
Dissulfeto isomerase protéica (PDIA1 ou PDI) é uma chaperona e ditiol-dissulfeto oxido-redutase residente do reticulo endoplasmático (RE). PDI é essencial à regulação da proteostase por ter função no enovelamento oxidativo de proteínas e na via de degradação associada ao RE (ERAD). Além disso, PDI interage fisicamente e regula a atividade de NADPH oxidases, e fora da célula é um regulador redox essencial à atividade de proteínas extracelulares. Este pool epi/pericelular da PDI (pecPDI) regula função de proteínas de membrana/secretadas, como integrinas, glicoproteínas gp120 do virus HIV e outras, com múltiplas funções que incluem: trombose, ativação plaquetária, adesão celular, infecção viral e remodelamento vascular. A rota de externalização da PDI permanece obscura, e seu conhecimento pode indicar mecanismos dos efeitos (fisio)patológicos da PDI. A secreção da PDI pela rota RE-Golgi foi sugerida em células endoteliais infectadas pelo vírus da dengue, células pancreáticas e tireoideanas. No entanto, uma varredura sistemática das possíveis rotas de externalização da PDI não foi previamente realizada. Neste estudo, mostramos que células endoteliais (EC) externalizam constitutivamente, por rotas distintas, dois pools de PDI, de superfície celular e solúvel, enquanto na EC não estimulada PDI não foi detectada significativamente em micropartículas. PDI externalizada corresponde a ca.1,4% do pool total de PDI celular. Tanto a PDI de superfície celular como a solúvel foram majoritariamente secretadas pela via de secreção não-convencional do tipo IV independente de GRASP. Contudo, a via de secreção clássica também contribui para externalização basal da PDI de superfície celular, mas não da solúvel basal ou estimulada por PMA, ATP e trombina indicando que todas envolvem escape do Golgi. Além disso, a externalização constitutiva da PDI de superfície em célula muscular lisa vascular também ocorre por via independente de Golgi. Externalização da PDI não foi detectavelmente mediada pela secreção não-convencional do tipo I, II, III, lisossomos secretórios, endossoma de reciclagem e transporte ativo (dependente de ATP) em EC. Considerando que chaperonas são vias essenciais de resposta a estresses, investigamos o efeito de estresse do RE e choque térmico na pecPDI. Estresse do RE não altera a PDI de superfície celular, mas aumenta PDI solúvel. Ambos os pools de PDI não foram alterados por choque térmico, embora a recuperação desse estresse diminua a secreção de PDI. Estes dados sugerem que a liberação de PDI é um processo regulado, dependente da natureza do estresse. Bloqueio da síntese de proteínas com cicloheximida não altera pecPDI, indicando que PDI recém-sintetizada não é preferencialmente externalizada e que o tráfego da PDI independe de outras proteínas recém-sintetizadas. Um aspecto importante do estudo foi indicar uma resiliência da pecPDI à modulação individual de distintas vias secretoras, consistente com uma estrita auto-regulação e possibilidade de vias sinérgicas e complementares. Estes resultados indicam que a externalização da PDI de superfície e PDI secretada possam ser externalizadas por mecanismos independentes. Estes processos compõem um processo regulado estritamente, consistente com papel homeostático da pecPDI / Protein disulfide isomerase (PDIA1 or PDI) is dithiol-disulfide oxireductase chaperone resident in the endoplasmic reticulum (ER). PDI is essential for proteostasis, due to its support of oxidative protein folding and ER-associated protein degradation (ERAD). In addition, PDI associates with NADPH oxidase(s) and regulate its activity, while outside of the cell, PDI redox-dependently modulates extracellular proteins. This epi/pericellular PDI (pecPDI) pool is known to regulate membrane/secreted proteins such as integrins, HIV glycoprotein gp120 and others, with functions that involve thrombosis, platelet function, cell adhesion, viral infection and vascular remodeling. PDI externalization route remains enigmatic and its elucidation can help understand some (patho)physiological PDI effects. An ER-Golgi route for PDI secretion has been as described on dengue virus-infected endothelial cells pancreatic and thyroid) cells. However, none of these papers addressed PDI secretion routes in a systematic fashion. Here, we show that endothelial cells (EC) constitutively externalize, through different routes, two PDI pools, a cell-surface and a secreted one, while in nonstimulated ECs PDI was not significantly detected in microparticles. Externalized PDI corresponds to < 2% of total cellular PDI pool. Both cell-surface and soluble PDI were predominantly externalized through unconventional type IV GRASP-independent pathway(s). However, the classical secretory pathway also contributes to basal cell-surface, but not soluble, PDI externalization, as PMA, ATP or thrombin-stimulated secretion also involve Golgi bypass. Furthermore, constitutive cell-surface PDI externalization in vascular smooth muscle cells also occurs in a Golgi-independent way. PDI externalization was not detectably mediated by non-conventional type I, II and III secretion routes, secretory lysosomes, recycling endosomes and ATP dependent active transport in EC. Since chaperones are essential for cellular stress response, we assessed the effects of ER stress and heat-shock on pecPDI. ER stress did not affect cell-surface PDI but increased the soluble pool. Both PDI pools were unaltered by heat shock, while stress recovery decreased PDI secretion. These data suggest that PDI release is finely tuned and dependent on the type of stress. Blockade of protein synthesis with cycloheximide did not change pecPDI levels, suggesting that newly-synthesized PDI is not preferentially externalized and that PDI traffic does not require newly-synthesized proteins. An important aspect of the study was the evidence for pecPDI resilience to individual modulation of distinct secretion routes, consistent with strict auto-regulation and possible synergic or complementary pathways. Overall, our data suggest that cell-surface and secreted PDI pool externalization are regulated through independent mechanisms, which in both cases involve Type IV non-conventional routes, with some minor contribution of Golgi-dependent secretory pathway. These patterns compose a strictly regulated process, consistent with an important homeostatic role for pecPDI
|
18 |
"Avaliação do espaço intercelular dilatado da mucosa esofágica antes e após infunsão de ácido clorídrico: marcador da doença do refluxo gastroesofágico (DRGE)" / Evaluation of the extended intercellular space of the esophagic mucous membrane before and after infusion of chloridric acid : marker of disease of gastroesophagic refluxMatos, Ricardo Tedeschi 27 April 2006 (has links)
O objetivo foi evidenciar a presença do espaço intercelular dilatado do epitélio esofágico após a infusão de ácido clorídrico (HCl) à 0,1N comparando com a infusão de soro fisiológico (SF) em pacientes sem sintomas típicos da DRGE com mucosa esofágica normal e compará-los com os de sintomas típicos e esofagite erosiva. Foram entrevistados e realizaram o exame de endoscopia digestiva alta 60 pacientes destes, 29 foram incluídos no estudo sendo 18 com esôfago normal (9 foram infundidos SF e 9 HCl) e 11 com esofagite erosiva (6 foram infundidos SF e 5 HCl) e foram realizados 4 biópsias da mucosa esofágica (2 antes e 2 depois das infusões). Não foi encontrado diferença estatisticamente significante no espaço intercelular da mucosa esofágica dos pacientes com e sem esofagite erosiva com ácido clorídrico ou soro fisiológico não sendo um marcador da DRGE / The purpose was to prove the presence of extended intercellular space of the esophagic epithelium after chloridric acid infusion (HCI) to 0,1N comparing to the physiologic serum infusion (PS) in patients without typical symptoms of DGER with normal esophagic mucous membrane and compare them to ones with typical symptoms and erosive esophagitis. 60 patients were interviewed and took the high digestive endoscopy; 29 were included in the research, among them 18 with normal esophagus (9 were infused PS, and 9 HCI) and 11 with erosive esophagitis (6 were infused PS and 5 HCI); 4 biopsies of esophagic mucous membrane were made (2 before and 2 after infusions). It was not found any statistically meaningful difference in intercellular space of esophagic mucous membrane in patients with or without erosive esophagitis with chloridric acid or physiologic serum, and thus it is not a DGER
|
19 |
"Avaliação do espaço intercelular dilatado da mucosa esofágica antes e após infunsão de ácido clorídrico: marcador da doença do refluxo gastroesofágico (DRGE)" / Evaluation of the extended intercellular space of the esophagic mucous membrane before and after infusion of chloridric acid : marker of disease of gastroesophagic refluxRicardo Tedeschi Matos 27 April 2006 (has links)
O objetivo foi evidenciar a presença do espaço intercelular dilatado do epitélio esofágico após a infusão de ácido clorídrico (HCl) à 0,1N comparando com a infusão de soro fisiológico (SF) em pacientes sem sintomas típicos da DRGE com mucosa esofágica normal e compará-los com os de sintomas típicos e esofagite erosiva. Foram entrevistados e realizaram o exame de endoscopia digestiva alta 60 pacientes destes, 29 foram incluídos no estudo sendo 18 com esôfago normal (9 foram infundidos SF e 9 HCl) e 11 com esofagite erosiva (6 foram infundidos SF e 5 HCl) e foram realizados 4 biópsias da mucosa esofágica (2 antes e 2 depois das infusões). Não foi encontrado diferença estatisticamente significante no espaço intercelular da mucosa esofágica dos pacientes com e sem esofagite erosiva com ácido clorídrico ou soro fisiológico não sendo um marcador da DRGE / The purpose was to prove the presence of extended intercellular space of the esophagic epithelium after chloridric acid infusion (HCI) to 0,1N comparing to the physiologic serum infusion (PS) in patients without typical symptoms of DGER with normal esophagic mucous membrane and compare them to ones with typical symptoms and erosive esophagitis. 60 patients were interviewed and took the high digestive endoscopy; 29 were included in the research, among them 18 with normal esophagus (9 were infused PS, and 9 HCI) and 11 with erosive esophagitis (6 were infused PS and 5 HCI); 4 biopsies of esophagic mucous membrane were made (2 before and 2 after infusions). It was not found any statistically meaningful difference in intercellular space of esophagic mucous membrane in patients with or without erosive esophagitis with chloridric acid or physiologic serum, and thus it is not a DGER
|
20 |
Dissulfeto isomerase proteica como via integrativa entre estresse oxidativo e resposta a proteínas mal-enoveladas na reparação à lesão vascular / Protein disulfide isomerase as an integrative way between oxidative stress and unfolded protein response during vascular repair to injuryTanaka, Leonardo Yuji 23 January 2014 (has links)
O remodelamento vascular é um determinante fundamental do lúmen em doenças vasculares, porém os mecanismos envolvidos não estão completamente elucidados. Nós investigamos o papel da chaperona redox residente do retículo endoplasmático Dissulfeto Isomerase Proteica (PDI) e sua fração localizada na superfície celular (peri/epicelular=pecPDI) no calibre e arquitetura vascular durante reparação à lesão. Em artérias ilíacas de coelho submetidas à lesão in vivo, houve importante aumento do mRNA e expressão proteica (~25x aumento 14 dias pós-lesão vs. controle) da PDI. O silenciamento da PDI por siRNA (cultura de órgãos) acentuou o estresse do retículo e apoptose, diferentemente da inibição da pecPDI com anticorpo neutralizante (PDI Ab). Bloqueio in vivo da pecPDI por aplicação de gel perivascular contendo PDI Ab no 12° dia após lesão, com análise após 48 h, promoveu ca.25% redução no calibre vascular analisado por arteriografia e diminuição similar na área total do vaso detectada por tomografia de coerência óptica. Neste processo, não ocorreu alteração no tamanho da neoíntima, indicando assim, que PDI Ab acentuou remodelamento constrictivo. Neutralização da pecPDI promoveu importantes alterações na arquitetura da matriz de colágeno e citoesqueleto, resultando em fibras com orientação invertida e desorganizadas. Diminuição na produção de espécies reativas de oxigênio e óxidos de nitrogênio também ocorreu. Análise de propriedades viscoelásticas nas artérias indicou redução na ductilidade vascular, evidenciada pela menor distância para ruptura. As alterações subcelulares no citoesqueleto observadas in vivo após PDI Ab foram recapituladas em um modelo de estiramento cíclico em células musculares lisas vasculares, com importante redução na formação das fibras de estresse. Em modelo de migração randômica de células musculares lisas, a exposição a PDI Ab reduziu a resiliência de regulação da polaridade. Embora a neutralização da pecPDI não tenha afetado a atividade global de RhoA, ela promoveu alterações no padrão de marcação em resposta ao estiramento, na redistribuição de RhoA na superfície celular e na associação com regiões contendo caveolina. Além disso, em aterosclerose nativa em humanos, a expressão da PDI correlacionou-se inversamente com remodelamento constrictivo. Dessa forma, PDI é fortemente expressa após a lesão e sua fração peri/epicelular remodela a arquitetura da matriz e citoesqueleto, promovendo um efeito anti-remodelamento constrictivo / Whole-vessel remodeling is a critical lumen caliber determinant in vascular disease, but underlying mechanisms are poorly understood. We investigated the role of endoplasmic reticulum chaperone Protein Disulfide Isomerase(PDI) and cell-surface PDI(peri/epicellular=pecPDI) pool in vascular caliber and architecture during vascular repair after injury(AI). After rabbit iliac artery balloon injury, there was marked increase in PDI mRNA and protein (25-fold vs. basal at day 14AI), with increase in both intracellular and pecPDI. Silencing PDI by siRNA (organ culture) induced ER stress augmentation and apoptosis, contrarily to pecPDI neutralization with PDI-antibody(PDI Ab). PecPDI neutralization in vivo with PDIAb-containing perivascular gel from days 12-14AI promoted ca.25% decrease in vascular caliber at arteriography and similar decreases in total vessel circumference at optical coherence tomography, without changing neointima, indicating increased constrictive remodeling. PecPDI neutralization promoted marked changes in collagen and cytoskeleton architecture, with inverted fiber orientation and disorganization. Decreased ROS and nitrogen oxide production also occurred. Viscoelastic artery properties assessment showed decreased ductility, evidenced by decreased distance to rupture. Subcellular cytoskeletal disruption by PDI Ab was recapitulated in vascular smooth muscle cell stretch model, with marked decrease in stress fiber buildup. Also, PDI Ab incubation promoted decreased regulation resilience of vascular smooth muscle migration properties. While pecPDI neutralization did not affect global RhoA activity, there was altered RhoA redistribution to the cell surface and association with caveolin-containing clusters, which mislocalized after stretch. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling. Thus, strongly-expressed PDI after injury reshapes matrix and cytoskeleton architecture to support an anticonstrictive remodeling effect
|
Page generated in 0.0711 seconds