• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 257
  • 108
  • 61
  • 38
  • 17
  • 10
  • 8
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 598
  • 543
  • 353
  • 80
  • 59
  • 52
  • 52
  • 50
  • 48
  • 43
  • 40
  • 38
  • 34
  • 33
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Contribution à l'identification de facteurs de résistance au paludisme à Plasmodium fasciparum chez l'homme : Analyses d'association familiale et d'interaction génétique de l'IL12B, de HS3ST3A1, de HS3ST3B1 et de l'HBB

Atkinson, Alexandre 24 June 2011 (has links)
Le paludisme tue un enfant toutes les 30 secondes en Afrique et 1 à 3 millions de personnes par an. Deux milliards d'individus sont exposés et on estime à 500 millions le nombre de cas cliniques survenant chaque année. Le paludisme étant une maladie multifactorielle, son évolution est soumise à l'influence d'effets environnementaux, à des variables telles que l'âge de l'individu, ainsi qu'à une combinaison de facteurs génétiques. De nombreux arguments sont en faveur d’un contrôle génétique de la résistance au paludisme, mais les gènes impliqués restent encore mal connus. Afin d’identifier de nouveaux gènes de résistance ou de susceptibilité au paludisme à Plasmodium falciparum, nous avons réalisé différentes études génétiques dans deux populations vivant en zone d’endémie palustre au Burkina Faso. Ainsi, des polymorphismes du gène IL12B situé dans une région chromosomique liée au paludisme (5q31-q33) ont été génotypés puis analysés. Nous n’avons pas décelé d’association allélique, mais ce travail a permis de confirmer l’existence d’une liaison génétique dans ce locus. Les données issues du génotypage du gène IL12B ainsi que celles d’études antérieures ont été utilisées pour évaluer les interactions génétiques entre la mutation provoquant l’hémoglobine C et 11 autres polymorphismes situés dans 5 gènes précédemment associés à la résistance au paludisme. En utilisant 3 phénotypes liés à l’infection palustre, nous avons ainsi pu observer 43 combinaisons multilocus significatives incluant des polymorphismes des gènes IL12B, IL4, TNF, NCR3 et LTA. Ces résultats d’interactions démontrent l’intérêt de développer ce type d’approches pour élucider le contrôle génétique de la résistance humaine au paludisme.Une approche par clonage positionnel, suivie d’une approche « gène candidat » nous a permis de mettre en évidence une liaison génétique entre la région 17p11-p13 et la parasitémie, puis une association allélique entre les gènes candidats HS3ST3A1 et HS3ST3B1 et la parasitémie. Ces gènes codent pour des isoenzymes transférant un groupement sulfate à des protéoglycanes afin de former des molécules d’héparane sulfates. L’implication potentielle de ces récepteurs, dans le contrôle génétique du paludisme suggère le rôle déterminant qu’ils pourraient jouer dans le déclenchement de l’infection, et fournit un nouveau terrain d’investigation pour l’identification de gènes contrôlant l’évolution de l’infection palustre. A notre connaissance, il s’agit de la première étude d’association entre un phénotype lié à l’infection palustre et des gènes impliqués dans la synthèse des héparane sulfates. / Malaria kills a child every 30 seconds in Africa and 1 to 3 million people per year. Two billion people are exposed and an estimated 500 million of clinical cases occur each year. Malaria being a multifactorial disease, its evolution is subject to the influence of environmental effects, variables such as age of the individual, and a combination of genetic factors. Many arguments are in favor of a genetic control of resistance to malaria, but the genes involved are still poorly understood. In order to identify new genes for resistance or susceptibility to Plasmodium falciparum, we performed genetic studies in two different populations living in malaria endemic area in Burkina Faso. Thus, polymorphisms of the IL12B gene located in a chromosomal region associated with malaria (5q31-q33) were genotyped and analyzed. We did not detect allelic association, but this work has confirmed the existence of a genetic linkage at this locus. Genotype data from IL12B gene and those of previous studies were used to evaluate interactions between the genetic mutation causing hemoglobin C and 11 other polymorphisms located in five genes previously associated with resistance to malaria. Using 3 phenotypes related to malaria infection, we were able to observe 43 significant multilocus combinations including IL12B gene polymorphisms, IL4, TNF, LTA and NCR3. These results demonstrate the interest to develop such approaches for elucidating the genetic control of human resistance to malaria. A positional cloning approach followed by a "candidate gene" approach allowed us to identify a genetic link between the region 17p11-p13 and parasitemia, and allelic association between candidate genes HS3ST3A1 and HS3ST3B1 and parasitemia. These genes encode isoenzymes transferring a sulfate group to proteoglycans to form molecules of heparan sulfates. The potential involvement of these receptors in the genetic control of malaria suggests the crucial role they might play in the onset of infection, and provides a new field of investigation for the identification of genes controlling the development of malaria infection. To our knowledge this is the first study of association between a phenotype associated with malaria infection and genes involved in the synthesis of heparan sulfates.
352

Métacaspases : cibles thérapeutiques contre le paludisme / Metacaspases : New Targets for Malaria Treatment

Sow, Fatimata 09 December 2016 (has links)
Le paludisme reste une des principales causes de mortalité infantile dans le monde tropical. L'émergence continue des résistances du parasite aux anti-paludiques constitue un sérieux problème de santé publique. La recherche de nouvelles cibles thérapeutiques, basée sur une connaissance plus approfondie des mécanismes moléculaires de la vie du parasite, est une nécessité permanente dans un paradigme de « reine rouge » qui s'applique parfaitement à la capacité d'adaptation du parasite. La découverte récente d'une métacaspase de Plasmodium falciparum (PfMCA1) et la mise en évidence de son rôle potentiel dans l'apoptose du parasite, fait qu'elle est une cible thérapeutique contre le paludisme. Dans le but de mieux approfondir les connaissances sur cette protéine cible, nous avons voulu, dans un premier temps, déterminer la structure tridimensionnelle de PfMCA1, afin de confirmer les différentes structures prédites in silico, et chercher de nouvelles molécules candidates par le docking moléculaire. Cependant cet objectif n'a pas pu être atteint, à cause d'un phénomène d'autoclivage de la protéine suite à son expression, ce qui fait que nous n'avons pas réussi à récupérer la protéine. Dans un second temps, nous avons étudié la métacaspase de Plasmodium vivax (PvMCA1) en comparaison avec PfMCA1, et nous avons montré que les résidus histidine et cystéine dans la dyade catalytique sont bien conservés. Nous avons identifié un deuxième site potentiel dans le domaine catalytique de PvMCA1. A partir d'échantillons collectés en Mauritanie, au Soudan et à Oman, nous avons montré que les résidus histidine et cystéine, ainsi, que les résidus du second site du domaine catalytique de PvMCA1 sont très variables. Les mutations de ces résidus doivent faire l'objet d'étude approfondie de leurs effets sur la fonction de la protéine PvMCA1. Ce polymorphisme trouvé dans les résidus catalytiques de PvMCA1, doit-être évalué comme marqueurs moléculaires de résistance / Malaria remains one of the main causes of infant mortality in the tropical world.The continuous emergence of parasite resistant to drug treatment is a serious threat to public health. Exploring new therapeutics targets based on depth knowledge on molecular mechanism of the parasite’s life is utmost needed in a paradigm of « red queen», which applies perfectly on the ability of the parasitic adaptation. The recent discovery of metacaspase of Plasmodium falciparum (PfMCA1) and the demonstration of its potential role in apoptosis, make it a therapeutic target against malaria. In order to increase knowledge about this protein, we planned, to determine the three-dimensional structure of PfMCA1, to confirm the different structures predicted in silico, and to look for new drug using molecular docking. However, this goal was not reached, since autoprocessing occurred during expression, and we failed to obtain the full-length protein. Then we studied the metacaspase of Plasmodium vivax (PvMCA1) in comparison with PfMCA1 and, we shown that histidine and cysteine residues in the dyad catalytic are well conserved. We have identified a second potential site in the catalytic domain of PvMCA1. We shown that residues in both putative sites are highly polymorphic in samples from Mauritania, Sudan and Oman. Mutations on these residues need to be deeply studied for their effects on the PvMCA1 function. This polymorphism found in catalytic residues of PvMCA1should be evaluated as new molecular marker of resistance
353

Studies On Heat Shock Protein 60 From Plasmodium Falciparum

Padma Priya, P 07 1900 (has links)
Malaria is caused by a protozoan parasite belonging to the genus Plasmodia. Plasmodium falciparum is responsible for the fatal form of human malaria. Spread of drug resistant parasites warrants for sound biological understanding of the parasite at both cellular and biochemical level. Heat shock proteins are highly conserved group of proteins required for correct folding, transport, and degradation of substrate proteins in vivo. Hsp60 is found in eubacteria, mitochondria, and chloroplasts, where in cooperation with Hsp10, it participates in protein folding. Keeping in mind the central importance of chaperones in biological processes, our lab has been interested in examining roles of heat shock proteins in malarial parasite during its asexual growth in human erythrocytes. During its life cycle, the parasite continually shuttles between a cold-blooded insect vector with the body temperature of 27°C and a warm-blooded human host with the body temperature of 37°C and parasite experiences episodes of heat shock periodically. Therefore malaria parasite serves as good model to study heat shock protein functions. Like all biological systems, the malaria parasite expresses several chaperones including proteins of the Hsp40, Hsp60, Hsp70, Hsp90 and Hsp100 families. Towards this we have systematically characterized different families of stress proteins Hsp40, Hsp60, Hsp70, Hsp90 as well as Hsp100. In addition to cloning their genes we have studied their expression, localization, abundance, complexes and their biological roles. Earlier studies from our lab showed PfHsp90 is essential for parasite growth and survival in human erythrocytes. Our present study attempts to study heat shock protein 60 of the malarial parasite (PfHsp60). In this connection we have been successful to clone and express PfHsp60 gene from Plasmodium falciparum in E. coli and to raise antibodies specific to PfHsp60. We have examined its expression and import in the mitochondrion of malarial parasite during its asexual growth in human erythrocytes. Analysis of the total parasite lysates resolved by two-dimensional gel electrophoresis followed by western blotting using specific antibodies showed PfHsp60 exhibits an isoelectric point corresponding to its signal uncleaved precursor (pI - 6.2). Mass spectrometric analysis of the spot corresponding to precursor PfHsp60 confirmed the presence of signal peptide region. Co-immunoprecipitation analysis of total parasite lysates with antibodies specific to PfHsp60 showed precursor PfHsp60 to be associated with PfHsp70 and PfHsp90. Co-immunoprecipitation from the mitochondrial and cytoplasmic fraction confirmed the position of mature PfHsp60. Indirect immunofluorescence analysis also showed presence of a pool of PfHsp60 in the cytoplasm of the parasite, in addition to its expected localization in the mitochondrion. Treatment of parasite infected erythrocytes with an inhibitor of Hsp90 disrupted its association with cytoplasmic chaperones and targeted precursor Pfhsp60 for intracellular degradation. On the other hand treatment with the mitochondrial import inhibitor further inhibited the import of precursor PfHsp60 into the mitochondrion and stabilized its interaction with cytosolic chaperones. Previous reports have shown that there are four fold accumulations of PfHsp60 transcripts in heat shocked parasites. However, the expression of PfHsp60 was not induced upon heat shock in the blood stages of P.falciparum. Biochemical data indicate that the mitochondrion is not the source of ATP in the parasite. Furthermore the genome does not seem to encode the critical subunits of Fo-F1 ATP synthase. Yet, the active mitochondrial electron transport chain serves for regeneration of ubiquinone required for pyrimidine biosynthesis. The active electron transport chain is critical for parasite survival. Recent study with the lab-grown 3D7 strain of malaria parasite concluded that mitochondria are not required for energy conversion. Transcriptome analysis of the parasite derived directly from blood samples of infected patients showed that genes encoding the proteins of mitochondrial biogenesis, oxidative phosphorylation, respiration and highlighted the mean expression level for PfHsp60 is dramatically up regulated in parasites. Gene up regulation doesn’t always translate to increase in protein function or metabolic up regulation. When we analyzed the total parasite lysates of field isolates resolved by two-dimensional gel electrophoresis also showed presence of the precursor form of Pfhsp60 in the cytoplasm of the parasite. Overall, our observations indicated accumulation of precursor PfHsp60 in the parasite cytoplasm suggesting an inefficient mitochondrial protein import in the malarial parasite. The defect in mitochondrial protein import is possibly reflective of the compromised energy state of the parasite mitochondrion. This fits with the model that has been reported in mutant strains of yeast, Saccharomyces cerevisiae lacking functional F o-F1-ATPase. These strains were found to grow very poorly under anaerobic conditions and are known to accumulate Hsp60 protein in the cytoplasm mainly its precursor form. Under optimal growth conditions most eukaryotes maintain close co-ordination between gene expression, translation and translocation efficiently. As a result, mitochondrial precursor proteins are usually not found to accumulate in the cytoplasm. To our knowledge this the first report suggesting an inefficient co-ordination in the synthesis and translocation of precursor PfHsp60 and possibly other proteins during asexual growth of malarial parasite in human erythrocytes under optimal growth conditions. Finally, expression of the PfHsp60 gene in E.coli resulted in its association with bacterial GroEL subunits co-fractionating with a size of 920 kDa, corresponding to the tetra decameric form. The observation indicated possible existence of a hybrid chaperonin complex consisting of subunits from ectopically expressed PfHsp60 and endogenous GroEL.
354

Components Of Fatty Acid Synthesis In Plasmodium Falciparum

Sharma, Shilpi 10 1900 (has links)
The disease malaria afflicts more than a billion people and kills almost one to three million of them every year. Of the four species of Plasmodium affecting man viz., P. falciparum, P. vivax, P. ovale and P. malariae, Plasmodium falciparum is the deadliest as it causes cerebral malaria. The situation has become worse with the continuous emergence of drug resistance in the parasite. Therefore, improving existing drugs and deciphering new pathways for drug development are the need of the hour. The discovery of the type II fatty acid biosynthesis pathway in Plasmodium falciparum (Surolia and Surolia, 2001) has opened up new avenues for the development of new antimalarials as this pathway is entirely different from the human host in which type I pathway exists. Although many biochemical pathways such as the purine, pyrimidine and carbohydrate metabolic pathways, and the phospholipid, folate and heme biosynthetic pathways operate in the malaria parasite and are being investigated for their amenability as antimalarial therapeutic targets, no antimalarial of commercial use based on the direct use of these biochemical pathways as targets has emerged so far. This is due to the fact that the structure and function of the targets of these drugs overlaps with that of the human host. A description of such pathways forms the Chapter 1 of the thesis. This is followed by a description of the discovery and the importance of fatty acid biosynthesis pathway and the available literature on the various enzymes that are targets of potential antimalarials. Three isoforms are known for condensing enzymes - FabH which functions in initiation, and FabB and FabF which function in elongation. These isoforms differ in their biochemical properties and have unique roles to play in deciding the membrane composition of any organism. This aspect is also discussed in this chapter. Cloning and expression of -ketoacyl-ACP synthase, FabB/F from Plasmodium falciparum is described in Chapter 2. PfFabB/F is coded by the nuclear genome and is targeted to the apicoplast. The gene is coded by the locus MAL6P1.165 and the putative amino acid sequence of the protein exists in PlasmoDB. All apicoplast targeted proteins have a characteristic bipartite leader sequence consisting of a signal and a transit peptide sequence (Waller et al., 1998). Since the mature protein start site was not known and none of the software packages could predict the site, I aligned the PfFabB/F sequence with the sequences of other -ketoacyl-ACP synthases. On the basis of similarity with E. coli synthases and the mature protein start site of plant synthases, I cloned the first construct of PfFabB/F. The sequence was amplified by PCR and ligated in pET as well as pGEX vector. Expression in various hosts under different temperature and induction conditions could not solubilize the protein in significant quantities and most of the protein was found in inclusion bodies. Next I expressed the sequence with five more amino acids towards the N-terminal and expressed it as an N- terminal NusA fusion. The protein was purified by single step Ni-NTA affinity chromatography. Along with the full length protein (108 kDa), a truncated version of the protein was also obtained. The identity of the protein was confirmed by western blotting using anti-His antibody and anti-FabB/F antibody. In Chapter 3, the substrate specificity of PfFabB/F has been elucidated. PfFabB/F condenses malonyl-ACP with a range of acyl-ACPs. In vivo, acyl carrier protein (ACP) shuttles the acyl substrates between various enzymes of the fatty acid biosynthesis pathway. Enzymes of the pathway other than synthases can accept substrate analogs like acyl-CoA and acyl-NAC’s also in vitro. Acyl-ACPs are not very stable species and thus are not commercially available. Therefore, they have to be synthesized. Since malonyl-ACP could not be synthesized by chemical means, enzymatic synthesis of acyl-ACPs was done. Acyl-ACP synthetase (Aas) or holo-ACP synthase (ACPS) can be used for enzymatic synthesis. Aas is specific only for longer chain substrates; therefore, I decided to use holo-ACP synthase, an enzyme responsible for converting apo-ACP to holo-ACP in the presence of CoA in vivo (Lambalot and Walsch, 1995). When acyl-CoAs are supplied in place of CoA, acyl-ACP is produced. Malonyl-ACP and acyl-ACPs (C4-C16:1) were thus synthesized using holo-ACP synthase from E. coli. The reaction went to almost 95% completion, indicating broad substrate specificity of this enzyme. Bacterial or plant acyl-ACPs of different chain lengths can be resolved by Conformation Sensitive PAGE (Heath and Rock, 1995, Post- Beittenmiller et al., 1991). However, Pfacyl-ACPs synthesized using ACPS did not show any significant shift on CS-PAGE. Therefore I resorted to MALDI-TOF (Matrix Assisted Laser Desorption and Ionization- Time Of Flight) for monitoring the PfFabB/F condensation reactions. PfFabB/F condensed C4-C12-ACPs with malonyl-ACP to their corresponding -ketoacyl-ACP products, with C6, C8 and C10-ACPs being most readily elongated. C14-ACP was very sluggishly elongated, and C16 and C16:1-ACPs were not elongated at all. The condensation reaction was also followed by autoradiography using14C labeled malonyl-ACP, exploiting the clear mobility shift between malonyl-ACP and the other acyl-ACPs. The inhibitory effect of cerulenin, a known inhibitor of condensing enzymes was also checked. PfFabB/F also exhibited malonyl decarboxylase activity resulting in the production of acetyl-ACP in the absence of any significant condensation activity. All the enzymes of fatty acid synthesis pathway required to complete a cycle were assembled together for the in vitro reconstitution of Plasmodium fatty acid synthesis cycle which is described in Chapter 4. Earlier studies of Surolia & Surolia have shown that C12 and C14 fatty acids are the major constituents of Plasmodium lipids. One of my objectives was to determine the maximum length of the acyl ACP product that is synthesized when all the functionally active enzymes of fatty acid synthesis are put together (Kapoor et. al, 2001, Sharma et al., 2003, Karmodiya and Surolia, 2006). Condensing enzymes have a deterministic role in the fatty acid composition as they catalyze the only irreversible step in fatty acid biosynthesis. By analyzing products of the elongation cycle by mass spectrometry it was apparent that C14-ACP is the longest species formed. As already mentioned, PfFabB/F readily elongates C12-ACP but C14-ACP is weakly elongated. Thus the end product of the Plasmodium FAB pathway is influenced by the substrate specificity of PfFabB/F. This confirms the role of PfFabB/F as a decisive enzyme in determining the length of fatty acids synthesized. The inhibition of the cycle by cerulenin and triclosan is also described in this chapter. Chapter 5 describes the ability of the PffabB/F gene to complement for the mutation of condensing enzymes in CY244 cells (fabBtsfabF-, Yasuno et al., 2004). CY244 cells were transformed with pBAD alone or PfFabB/F cloned in pBAD vector (pBADPffabB/F) and the growth was monitored at non-permissive temperature. The product of PfFabB/F could rescue the growth of mutant cells at high temperature but only in the presence of oleic acid. FabB and FabF are the isoforms of condensing enzymes involved in elongation of the fatty acid synthesis cycle but they have a unique role to play (Garwin et al., 1980). FabB is responsible for unsaturated fatty acid synthesis, and fabB-mutants require oleic acid supplementation for growth. FabF is utilized in temperature regulation of membrane fluidity and E. coli FabF elevates the level of C18:1 or cis-vaccenic acid at lower growth temperature but FabF-mutants have no growth phenotype (Ulrich et al., 1983). Rescue of CY244 cells in the presence of oleic acid supplementation indicated that the PffabB/F gene behaves like FabF and not FabB. Analysis of the fatty acid composition of membrane lipids of CY244 cells transformed with pBAD vector or pBADPffabB/F by GC-MS demonstrated no elevated levels of cis-vaccenic acid in transformed cells. This observation is in agreement with the in vitro determined substrate specificity data which shows that PfFabB/F does not elongate C16:1ACP. The thesis ends with a summary of the findings in Chapter 6 in the context of FabB and FabF enzymes known from other sources. 2, 4, 4’-Trichloro-2’hydroxydiphenylether, commonly known as triclosan, has been used as a topical antibacterial agent for decades. I determined its efficacy in treating acute systemic bacterial infection in mouse model. Triclosan, as compared to other well known antibiotics, could extend the survival time of mice by 48 hours. This work is described in Appendix I. (Sharma et al., 2003)
355

Structural Studies On The Enzymes FabI And FabZ Of Plasmodium Falciparum

Pidugu, Lakshmi Swarna Mukhi 09 1900 (has links)
The thesis deals with X-ray crystallographic analysis of two enzymes involved in the fatty acid biosynthesis pathway, known as Fatty Acid Synthase or FAS, of the malarial parasite, Plasmodium falciparum, in order to understand their functions at the atomic level and to provide structural basis for the rational design of antimalarial compounds. Targeting highly specific and well-characterized biochemical pathways to develop effective therapeutic agents has the advantage of designing new drugs or modifying the existing ones based on the details of the known features of the processes. Knowledge of the three-dimensional structures of the molecules involved in the reactions will enhance the capabilities of this procedure. The recently identified fatty acid biosynthesis pathway in Plasmodium falciparum is undoubtedly an attractive target for drug development as it differs from that in humans. In the malarial parasite, each reaction of the pathway is catalyzed by a specific enzyme whereas in humans, the synthesis is carried out by a single multidomain enzyme. Essentially each step in the FAS of P. falciparum can be a potential target to prevent the growth of the parasite as the fatty acids are essential for the formation of the cell membrane which is vital for its survival. All the reactions of this pathway have been well-characterized. Nevertheless, there is a dearth of structural information of the proteins involved in performing various functions in this pathway. When this work was initiated, crystal structures of none of these proteins were reported. The current work on the plasmodial FAS proteins has been undertaken with a view to obtain precise structural details of their reaction and inhibition mechanisms. The introductory chapter of the thesis includes a discussion on malaria, the fatty acid biosynthesis in various organisms and an overview of the structural features of the enzymes involved in the pathway that have been characterized from other organisms.The second chapter includes the tools of X-ray crystallography that were used for structural studies of the present work. It also discusses the other computational and biophysical methods used to further characterize the enzymes under study. FabI, the enoyl acyl carrier protein reductase, that regulates the third step in FAS has been crystallized as a binary complex with its cofactor NADH and as a ternary complex with NAD+and triclosan. The crystal structures of the binary and the ternary complexes have been determined at 2.5 and 2.2 ˚A, respectively. The mode of binding of the cofactor and the inhibitor triclosan to the enzyme with details of the interactions between them could be clearly obtained from these structures. Each subunit of the tetrameric FabI has the classical Rossmann fold. We carried out a thorough analysis of this structure and compared it with the FabI structures from various sources, four microbial (Escherichia coli, Mycobacterium tuberculosis and Helicobacter pylori) and one plant (Brassica napus), and arrived at a number of significant conclusions: Though the tertiary and the quaternary structures of the enzymes from different sources are similar, the substrate binding loop shows significant changes. The position and nature of the loop are strongly correlated to the affinity of triclosan to the enzyme. Small to major changes in the structure of the enzyme occur to enhance ligand binding. Water molecules play an important role in enzyme-ligand interactions. The crystal structure has also confirmed our previous prediction based on modeling studies of the enzyme that the introduction of bulkier groups at carbon 4’ of triclosan is likely to improve its efficacy as an inhibitor of FabI of P. falciparum. It has also provided the structural basis for its preference to bind to the coenzyme NADH but not to NADPH which was also predicted by our modeling studies. Chapters 3 and 4 discuss the structure solution and a comparative analysis of the crystal structures of FabIs from various sources. The crystal structure of FabZ, the β-hydroxyacyl acyl carrier protein dehydratase of P. falciparum, has been determined at a resolution of 2.4 ˚A. Each subunit of FabZ has a hotdog fold with one long central α-helix surrounded by a six-stranded antiparallel β-sheet. FabZ has been found to exist as a homodimer in the crystals of the present study in contrast to the hexameric form which is a trimer of dimers crystallized in a different condition, reported while we completed the structure of the dimeric form. In the dimeric form, the architecture of the catalytic site has been drastically altered with two catalytic histidine residues moving away from the catalytic site caused by two cis to trans peptide flips compared to the hexameric form. These alterations not only prevent the formation of a hexamer but also distort the active site geometry resulting in a dimeric form of FabZ that is incapable of substrate-binding. The dimeric state and an altered catalytic site architecture make the dimeric FabZ presented in the thesis distinctly different from the FabZ structures described so far. This is the first observation and report of the existence of an inactive form of the enzyme and its unique structural features. Further analysis using dynamic light scattering and size exclusion chromatographic studies have shown that a pH-related conformational switching occurs between the inactive dimers and active hexamers of FabZ in P. falciparum. These findings open alternate and entirely new strategies to design inhibitors to make FabZ inactive. FabZ crystals show polymorphism with varying length of its longest cell axis. We could collect X-ray diffraction data for three of these forms. An analysis of these forms revealed that three flexible loops of the structure including those containing the peptide flips compete for the space between two symmetry-related molecules. In the form with the longest cell axis, the loops have the highest stability resulting in a better diffraction from the crystal. We also performed docking studies with two previously characterized inhibitors of FabZ. The docking showed that the inhibitors bind strongly at the active site each one making a number of different interactions with the catalytic residues. Observations from our docking studies are in excellent agreement with and strongly supported by chemical modification and fluorimetric analysis of the wild type enzyme and its mutants. Chapters 5 and 6 explain in detail about the structure solution of dimeric form of PfFabZ, the pH induced conformational flipping of two cis-trans peptide flips that lead to different oligomeric states, and the structural basis for these oligomeric shifts. The mechanism of action of PfFabZ inhibitors NAS-21 and NAS-91 are also discussed in detail. Intrigued by the hot dog fold of the Fab enzyme, we have analyzed and compared proteins having this fold in their structures. It has been observed that the fold is often associated with fatty acids. However, the sequences, the quaternary structures, substrate specificities and the reactions that the proteins catalyze are quite diverse. The consensus sequence motifs lining the interface of quaternary association and at active site clearly indicated that the information for different modes of quaternary associations is embedded in the sequences itself. The diversity in function and quaternary association of hot dog fold proteins and their structure-function relationships are discussed in chapter 7. Malaria affects hundreds of millions of people worldwide causing about two million deaths every year. In spite of the commendable success of the available antimalarials, it has not been possible to contain the disease completely as the protozoan has become resistant to a majority of frontline drugs. The structural studies presented here should enhance the current biochemical knowledge to develop selective and more potent inhibitors of the pathway and contribute to the ongoing efforts to fight the disease.
356

Functional characterization of cytochrome b₅ reductase and its electron acceptor cytochrome b₅ in Plasmodium falciparum

Malvisi, Lucio. January 2009 (has links)
Thesis (M.S.P.H.)--University of South Florida, 2009. / Title from PDF of title page. Document formatted into pages; contains 114 pages. Includes bibliographical references.
357

Characterization of ABC transporters in both mammalian cells (ABCG2, ABCC2) and Plasmodium falciparum (Pgh1)

Leimanis, Mara L. January 1900 (has links)
Thesis (Ph.D.). / Written for the Institute of Parasitology. Title from title page of PDF (viewed 2008/02/12). Includes bibliographical references.
358

Protéine kinase AMP cyclique dépendante et cycle de Plasmodium falciparum / CAMP-dependent protein kinase and plasmodium falciparum life cycle

Wurtz, Nathalie 12 July 2010 (has links)
L'aggravation actuelle du risque lié au paludisme résulte du développement du phénomène de résistance de souches de Plasmodium falciparum aux molécules antipaludiques. Une telle situation et l’absence de vaccin efficace nécessitent le développement de nouvelles stratégies antiparasitaires. Jusqu’à présent, les mécanismes moléculaires qui contrôlent le cycle parasitaire sont méconnus. Chez la plupart des eucaryotes, les protéine kinases sont impliquées dans des fonctions cellulaires essentielleset constituent une cible privilégiée pour la conception de nouveaux médicaments. Dans cecadre, nous nous sommes intéressés à la voie de transduction de l’AMP cyclique et en particulier à la sous-unité catalytique de la protéine kinase AMPc dépendante (PfPKAc)dont le rôle essentiel reste mal défini chez P. falciparum. Deux approches complémentaires ont été choisies pour étudier cette kinase :1) au niveau biochimique par le clonage, l’expression, la purification et la caractérisation enzymatique de la PfPKAc. L’objectif était d’obtenir une enzyme active in vitro de façon à pourvoir mesurer les constantes enzymatiques de la PfPKAc et conduire les premiers essais d’inhibitions.2) au niveau cellulaire en analysant les conséquences de l’inhibition par des ARN interférents spécifiques des transcrits de la PfPKAc. Le développement parasitaire mais également le transcriptome global ont été étudiés de manière à préciser les voies métaboliques liées à cette kinase plasmodiale.L’ensemble de ces études précise la compréhension de la voie de transduction de l’AMP cyclique et de la PfPKA qui pourrait conduire au développement de nouvelles voies thérapeutiques. / Nowadays, the increase of risks associated with malaria results from the development of resistance of Plasmodium falciparum strains to antimalarial drugs. This situation and the lack of an effective vaccine require the development of new antimalarial strategies. Untilnow, molecular mechanisms controlling the life cycle of malaria parasites, are still poorly understood. In most eukaryotes, protein kinases are implicated in essential cellular functions and represent attractive targets for the development of new drugs. In this context, we focused on the signaling pathway implicating cAMP and particularly the catalytic subunit of cAMP-dependent protein kinase (PfPKAc), whose function is still unclear in P. falciparum. Two complementary strategies were chosen to study this kinase:1) at the biochemical level by the cloning, expression, purification and enzymatic characterization of the PfPKAc. The objective was to obtain an in vitro active PfPKAc to evaluate the kinetic constants of PfPKAc and to conduct the first inhibition studies.2) at the cellular level by studying the consequences of PfPKAc transcripts inhibition byspecific interfering RNAs. The parasite growth but also the overall transcriptome werestudied to specify the metabolic pathways associated with this plasmodial protein kinase.All of these studies improve the understanding of cAMP transduction pathway and PfPKA,which could allow the development of new therapeutic approaches.
359

Plasmodium falciparum et résistance aux antipaludiques : aperçu et conséquences des facteurs impliqués dans la sélection et la diffusion des parasites résistants / Plasmodium falciparum and resistance to antimalarials

Menard, Sandie 28 March 2017 (has links)
Le paludisme reste l'une des plus redoutables maladies infectieuses avec plus de 200 millions d'infections et près de 430 000 décès chaque année, principalement des enfants de moins de 5 ans vivant en Afrique subsaharienne. L'espèce Plasmodium falciparum est responsable de la grande majorité de la mortalité. Le contrôle de l'endémie palustre reste encore aujourd'hui un problème majeur de santé publique, notamment à cause des résistances aux antipaludiques développées par les parasites. L'apparition de ces résistances s'opère par la pression de sélection médicamenteuse, et leur diffusion progressive se fait principalement via le déplacement des hôtes infectés. Cependant, la dynamique d'émergence, de diffusion et de persistance des parasites résistants résulte d'interactions complexes entre les antipaludiques, l'Homme, le parasite et le vecteur. Le travail présenté ici participe à la démarche de lutte contre le paludisme en proposant tout d'abord un état des lieux de la résistance de Plasmodium aux antipaludiques utilisés au Cameroun, avec des outils moléculaires, phénotypiques et cliniques. Une deuxième partie explore, in vitro, les possibles conséquences d'une utilisation prolongée des dérivés d'artémisinine sur le phénotype de P. falciparum, alors que la résistance à cette molécule est déjà installée. Le modèle in vitro utilisé a permis de mettre en évidence un nouveau profil de pluri-résistance suite à des pressions continues à l'artémisinine. Enfin, une dernière partie de ce travail analyse le rôle du moustique dans l'épidémiologie des résistances et montre que la sporogonie favoriserait la diffusion des allèles minoritaires, résistants ou non, présents chez l'Homme. L'ensemble de ces travaux confirme la multiplicité des facteurs agissants sur la dynamique de résistance et la complexité de leurs interactions rendant toute prévision très spéculative. Même si une meilleure connaissance des phénomènes sociétaux, épidémiologiques, biologiques et pharmacologiques impliqués dans les résistances reste une priorité, la surveillance phénotypique et génotypique régulière sur le terrain apparait à ce jour, le meilleur outil pour adapter au mieux les stratégies de contrôle du paludisme. / Malaria remains one of the most terrible infectious diseases with more than 200 million infections and 430,000 deaths each year, mostly children under five years old in sub-Saharan Africa. Plasmodium falciparum is responsible for the vast majority of malaria mortality cases. Control of malaria still remains a major public health problem, in particular because of resistances to antimalarials that parasites developed. The apparition of these resistances is due to the drug pressure, and their progressive diffusion is mainly via the travelling of infected hosts. However, the dynamics of emergence, diffusion and persistence of resistant parasites result from complex interactions between the antimalarials, the Human, the parasite and the vector. The work presented here participates in the malaria control process by first proposing an inventory of Plasmodium resistance to antimalarials used in Cameroon, thanks to molecular, phenotypic and clinical tools. A second part explores the possible consequences of prolonged use of artemisinin derivatives on the P. falciparum phenotype, in areas where resistance to this molecule is already established. The in vitro model used showed that continuous artemisinin pressures induced a new pluri-resistance profile. Finally, a last part analyses the role of the mosquito in the epidemiology of resistances and shows that the sporogony favours the diffusion of minority alleles, resistant or not, presented in humans. All this work confirms the multiplicity of forces acting on the dynamics of resistances and the complexity of their interactions making any prediction very speculative. Even if better knowledge of the societal, epidemiological, biological and pharmacological phenomena involved in resistances is a priority, regular phenotypic and genotypic surveillance in the field remains the best tool for adapting malaria control strategies.
360

Influence de l’antigène leucocytaire humain (HLA-G) sur la sensibilité au paludisme chez la femme enceinte et le nouveau-né / Human leukocyte antigen (HLA-G) influence on malaria susceptibility in pregnant women and infants

Sadissou, Ibrahim Abiodoun 19 December 2014 (has links)
L’objectif général de cette thèse était d’étudier le rôle de la protéine soluble HLA-G (sHLA- G) dans la variabilité des réponses à l’infection par P. falciparum chez la femme enceinte et son nouveau-né pendant ses deux premières années de vie. Précisément, nous avons étudié, chez les mères pendant la grossesse et leurs nourrissons de la naissance à 2 ans, les relations entre les niveaux de sHLA-G et l’infection palustre au niveau périphérique et placentaire. Nous avons également étudié les polymorphismes génétiques situés dans la région 3’UTR du gène HLA- G chez les mères et leurs nourrissons par la détermination des fréquences alléliques, génotypiques et haplotypiques afin évaluer l’impact de ces polymorphismes sur la cinétique d’expression de sHLA-G dans un contexte d’infection palustre. Nos résultats ont montré une association entre le niveau élevé de sHLA-G chez les nourrissons et l’augmentation du risque d’infection palustre au cours du trimestre suivant. Ces niveaux élevés de sHLA-G dans le sang de cordon ont été également associés au faible poids de naissance du nouveau-né. De même, nous avons trouvé une forte corrélation entre les niveaux de sHLA-G maternels dans le sang périphérique à l’accouchement et ceux de l’enfant dans le sang du cordon à la naissance. Nous avons aussi montré l’existence de trois profils d’expression de sHLA-G chez les individus inclus dans l'étude. Certains individus expriment la protéine à chaque prélèvement (HLA-G ++) alors que d’autres l’expriment par intermittence (HLA-G +-) ou ne l’expriment pas (HLA-G --). Le risque de développer un accès palustre chez les mères était respectivement trois fois plus élevé (p=0,001, OR=3,47;p=0,008, OR=3,14) chez celles appartenant au groupe HLA-G (++) et HLA-G (+-) que le groupe HLA-G (--). L’analyse génétique de la région 3’UTR du gène nous a permis de mettre en évidence huit sites polymorphes dans cette région et de construire six haplotypes correspondant (UTR 1, 2, 3, 4, 5, 6). Nous avons aussi montré chez les mères une association entre l’allèle T en position +3001 (C/T) et une expression plus fréquente de sHLA-G tandis que l’allèle C en position +3003 (T/C) et l’haplotype UTR-4 ont été associés à une expression moins fréquente de la protéine. Ces associations n’ont pas été mises en évidence chez les enfants. L’ensemble de ces résultats suggère l'implication de sHLA-G dans la sensibilité à l'infection palustre. Cette sensibilité serait, en partie, corrélée à l’inhibition des réponses anticorps spécifiquement dirigées contre P. falciparum. sHLA-G pourrait donc à terme devenir un bio-marqueur de susceptibilité au paludisme chez la femme enceinte et chez le nouveau-né au cours des premières années de vie. / The general objective of this thesis was to study the role of soluble HLA-G protein (sHLA-G) in the variability of individual response to malaria during pregnancy and during the first 2 years of infant life. Actually, we assessed the relationships between sHLA-G and malaria infection in peripheral and placental blood. We also investigated the effect of polymorphisms in the 3’UTR region of HLA-G gene in 400 mothers and their infants on the kinetic of sHLA-G expression three times during pregnancy and at 6, 9, 12, 18, 24 months of life in a context of malaria infection. Our results showed that high levels of sHLA-G increased the risk of malaria at the subsequent trimester in infants and were associated with low birth weight. We also showed a strong correlation between the plasmatic sHLA-G level of the mothers at delivery and those of newborns in cord blood. We found that the risk of developing malaria in mothers was respectively three fold higher in the HLA-G (++) (OR=3.47; p=0.001) and HLA-G(+-)(OR=3.14, p=0.008) groups compared to HLA-G (--) group. Besides, we described eight polymorphic sites in the 3’UTR corresponding to six haplotypes (UTR 1, 2, 3, 4, 5, 6) and showed in mothers, an association between the allele T at position +3001 (C/T) and a higher frequency of sHLA-G expression. However, the allele C at position +3003 (T/C) and UTR-4 were associated to a lower frequency of sHLA-G expression. In infants, no association was observed between alleles or haplotypes and expression of the soluble protein. Overall, these results suggest that sHLA-G is implicated in malaria susceptibility. This could be partly, related to the inhibition of P. falciparum-specific antibody responses. Therefore, sHLA-G might be useful as a bio- marker of malaria susceptibility during pregnancy and during the first years of infancy.

Page generated in 0.0878 seconds