361 |
Vers une étude approfondie des protéomes : caractérisation des extrémités N-terminales des protéines / Towards an in-depth analysis of proteomes : characterization of protein n-terminiAyoub, Daniel 25 September 2012 (has links)
Dans ce travail de thèse, nous avons développé et optimisé une stratégie originale pour la caractérisation des extrémités N-terminales des protéines et des sites de clivages protéolytiques. Elle s’appuie sur la dérivation chimique spécifique des amines N-terminales et nous l’avons adapté à différents types d’échantillons biologiques. L’application de cette stratégie dans des études en biologie nous a permis d’apporter plusieurs éléments de réponse à différentes problématiques. Nous avons ainsi caractérisé les peptides de transit des protéines mitochondriales humaines et ainsi validé/corrigé expérimentalement leurs prédictions dans les banques de données. Nous avons aussi appliqué cette stratégie à l’étude du protéome du parasite P. falciparum. La mise au point de la dérivation N-terminale de protéines immobilisées dans un gel SDS PAGE nous a permis d’étudier le mécanisme d’export des protéines de ce parasite vers sa cellule hôte et de déterminer le rôle des acides aminés impliqués dans cet export. Un réactif de dérivation marqué aux isotopes stables permet d’effectuer des études différentielles des processus protéolytiques que subissent les protéines. Cette stratégie quantitative a été appliquée à l’étude du protéome hépatique du rat soumis au jeûne expérimental. D’autres applications de l’analyse protéomique en biologie sont aussi présentées dans ce manuscrit. / In this manuscript, we describe the development and the optimization of an original strategy for the characterization of protein N-termini and protease cleavage sites. The strategy is based on specific chemical derivation of alpha-amines. We applied this method to the characterization of mitochondrial proteins’ transit peptides which allowed us to experimentally validate/correct their prediction in protein databases. In another study, the strategy was applied to the analysis of the proteome of the malaria parasite Plasmodium falciparum. The optimization of ingel N-terminal derivation and its application to the study of parasite exported proteins allowed us to determine the role of implicated amino acid residues in the signaling and export mechanism of these proteins to the host cell. To enable differential studies of proteolysis, we introduced an isotope labeled derivation reagent. This quantitative method was applied in the context of a study of the rat liver proteome after experimental long-term fasting. Other applications of proteomics in biology are also presented in this manuscript.
|
362 |
Docking de compostos da família das ariloxazinas em enzimas relacionadas com a malária / Docking of arilloxazines in enzymes related to malariaCorrêa, Denis da Silva 06 August 2010 (has links)
Made available in DSpace on 2016-08-17T18:39:34Z (GMT). No. of bitstreams: 1
3220.pdf: 7184046 bytes, checksum: d31437c1aa1937336c7b8cb91918b19b (MD5)
Previous issue date: 2010-08-06 / Universidade Federal de Minas Gerais / Malaria disease, caused mainly by Plasmodium falciparum parasite, afflicts about 500 million people and causes nearly one million deaths every year. For the development of new drugs against this disease, one possible approach is to identify an enzyme that plays a key role in P. falciparum development and presents significantly different properties from the corresponding human one. These differences can be exploited in the design of specific inhibitors of the parasite s protein, thus, three different enzymes were selected as possible targets. As there are evidences suggesting that increasing oxidative stress can effectively inhibit the growth of the malarial parasite the enzyme Glutathione Reductase of P. falciparum (PfGR), responsible for the parasite s antioxidant defense, has become a potential target for the design and development of inhibitors. The second target was the P. falciparum Dihydrofolate Reductase-Thymidylate Synthase (PfDHFR-TS), and in this case blocking its action stops the dTMP production and DNA synthesis in the parasite. The third chosen target was the P. falciparum Lactate Dehydrogenase (PfLDH), whose inhibition interrupts the ATP formation and thus causing the death of the parasite. So that a family of arilloxazines compounds, together with chloroquine and methylene blue, were studied by means of docking simulations in the binding sites of these enzymes and also in the corresponding human enzymes for comparison. The three-dimensional structures of the enzymes and of chloroquine and methylene blue were obtained from the Protein Data Bank (PDB). The structures of the arilloxazines compounds, in turn, were obtained by molecular modeling with HyperChem 6.01 and MOPAC2009 programs, using as starting models similar crystallographic structures deposited in the Cambridge Structural Database. Docking simulations were performed using GOLD 4.0.1. The docking results showed that the enzymes PfGR and PfDHFR-TS are not the preferential targets of chloroquine. For the methylene blue it was possible to elucidate its binding mode in hGR and PfGR. Regarding the arilloxazines it was possible to show that they present their higher affinity for hGR, followed by PfGR, hDHFR, PfDHFR-TS, PfLDH and hLDH. In the case of GRs, the interface site was the preferred binding site. The results suggest that if arilloxazines compounds with higher affinity for PfGR are desirable then a pentafluorophenyl should be attached at the N10 position, as in the 2e compound. When searching for arilloxazines with higher affinity for PfLDH, it seems to be desirable a carboxymethyl group at the N3 position (as in 5b) and a pentafluorophenyl group at N10 (as in 2e). Finally, the results suggest that in general the studied arilloxazines probably will present a higher affinity for hDHFR than PfDHFR-TS. All these results are an important starting point for the design of new arilloxazines ligands so that they can be used as lead compounds in the search for new drugs against malaria. / A malária, causada principalmente pelo Plasmodium falciparum, atinge cerca de 500 milhões de pessoas e causa aproximadamente um milhão de mortes todos os anos. Para o desenvolvimento de novos fármacos contra esta doença, uma das abordagens possível é identificar uma enzima que desempenhe papel vital no desenvolvimento do P. falciparum e apresente propriedades significantemente diferentes das enzimas humanas correspondentes, de modo que tais diferenças possam ser exploradas no design de inibidores específicos à proteína do parasita. Existem evidências sugerindo que aumentar o estresse oxidativo pode inibir eficientemente o crescimento do parasita causador da malária e, portanto, a enzima Glutationa Redutase do P. falciparum (GRPf), responsável por sua defesa antioxidante, tornou-se um alvo em potencial para o desenvolvimento de inibidores. Também, o bloqueio da ação da Diidrofolato Redutase-Timidilato Sintase do P. falciparum (DHFR-TSPf) interrompe a produção de dTMP e a síntese de DNA no parasita. Ainda, espera-se que a inibição da Lactato Desidrogenase do P. falciparum (LDHPf) interrompa a produção de ATP no parasita e, consequentemente, cause sua morte. Portanto, estudou-se o comportamento de compostos da família das ariloxazinas, da cloroquina e do azul de metileno nos sítios de ligação destas enzimas, além das enzimas humanas correspondentes para fins de comparação, por meio de cálculos de docking. As estruturas tridimensionais das enzimas foram obtidas no Protein Data Bank (PDB). As estruturas dos inibidores da família das ariloxazinas, por sua vez, foram obtidas por meio de modelagem molecular, utilizando os programas HyperChem 6.01 e MOPAC2009, a partir de estruturas cristalográficas semelhantes obtidas no Cambridge Structural Database; já as estruturas da cloroquina e do azul de metileno foram obtidas também no PDB. Os cálculos de docking destes compostos nos sítios de ligação das enzimas estudadas foram realizados utilizando o programa GOLD 4.0.1. Com base nos resultados de docking, sugere-se que as enzimas GRPf e DHFR-TSPf não são alvos preferenciais da cloroquina. Também, pôde-se elucidar o possível modo de ligação do azul de metileno nas enzimas GRh e GRPf. No geral, foi possível sugerir ainda que as ariloxazinas devam apresentar maior afinidade pela GRh, seguida por GRPf, DHFRh, DHFR-TSPf, LDHPf e LDHh, nesta ordem. Nas GRs, o sítio da interface foi o sítio preferencial de ligação. Para se buscar inibidores da família das ariloxazinas com maior afinidade pela GRPf, sugere-se considerar um pentafluorfenil como substituinte na posição N10, como no composto 2e. Ainda, na busca por ariloxazinas com maior afinidade pela LDHPf, sugere-se considerar um carboximetil na posição N3 (como o de 5b) e um pentafluorfenil na posição N10 (como em 2e). Por fim, foi obtido que as ariloxazinas estudadas possivelmente apresentarão, em geral, uma maior afinidade pela DHFRh do que pela DHFR-TSPf. Estes dados podem ser tomados como ponto de partida para o design de novos compostos da família das ariloxazinas, a fim de que possam atuar como compostos líderes na busca por novos fármacos contra a malária.
|
363 |
Desenvolvimento de modelos de QSAR e planejamento de novos inibidores da enzima dUTPase de Plasmodium falciparum / Development of QSAR models and design of new plasmodium falciporum dUTase inihibitorsNascimento, Marília Nunes do 03 March 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-01-14T08:51:05Z
No. of bitstreams: 2
Dissertação - Maríilia Nunes do Nascimento - 2015.pdf: 2988580 bytes, checksum: 941d336cea1a51aeb45d97702067875a (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-01-15T08:54:06Z (GMT) No. of bitstreams: 2
Dissertação - Maríilia Nunes do Nascimento - 2015.pdf: 2988580 bytes, checksum: 941d336cea1a51aeb45d97702067875a (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-01-15T08:54:06Z (GMT). No. of bitstreams: 2
Dissertação - Maríilia Nunes do Nascimento - 2015.pdf: 2988580 bytes, checksum: 941d336cea1a51aeb45d97702067875a (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-03-03 / Malaria is a serious endemic disease caused by parasites of the genus Plasmodium, which
affects much of the population, especially in tropical and subtropical areas. Currently, drug
therapy makes use of artemisinin or its derivatives associated with a second anti-malarial drug.
The shortage of new treatments as well as the spread of parasite resistance to drugs currently
available, makes urgent the search and discovery of new targets and new antimalarial drugs.
The enzyme deoxyuridine triphosphatase (dUTPase) of Plasmodium falciparum plays an
important role in maintaining balance between 2'-deoxyuridine 5'-triphosphate (dUTP) and 2'-
deoxitimina 5'-triphosphate (dTTP) in order to avoid the erroneous incorporation uracil on the
DNA tape. Thus, the enzyme dUTPase is a potential target for the development of new drugs,
and has been validated for the organisms Escherichia coli, Saccharomyces cerevisiae and
Mycobacterium smegmatis. This study aimed to carry out quantitative studies of the relationship
between structure and activity (QSAR) to a series of β-branched nucleoside inhibitors
PfdUTPase, in order to generate robust and predictive models to predict compounds activity
untested and that may help to elucidate the important structural requirements for the affinity of
this class of compounds. For this, there was the hologram QSAR analysis (HQSAR),
comparative molecular field analysis (CoMFA) and comparative molecular similarity index
analysis (CoMSIA). For studies of CoMFA and CoMSIA were tested two methods of
calculation of partial charges, the empirical method Gasteiger-Huckel and the semi-empirical
method AM1-BCC. Were also tested three structural alignment strategies based on the binder:
maximum common substructure, based on the overlap of molecular volumes, and on the basis
of morphological similarities; and a strategy based on the 3D coordinates of the enzymeinhibitor
complex (molecular docking). The QSAR models generated showed good robustness
and external predictability, showing good power correlation and prediction of affinity. The
HQSAR contribution maps and contour maps of the CoMFA and CoMSIA indicated the
importance of certain groups for affinity, such as the importance of the presence of at least two
of trityl rings that contribute both sterically as hydrophobically to interact with the hydrophobic
site of the parasite enzyme, non-existent in the human enzyme. The drug design based on
information obtained from 2D and 3D QSAR, generated 121 molecules grouped into 18
clusters. Two hits with approximate power to one of the most active compounds of the series
stood out by presenting appropriate physicochemical properties. / A malária é uma doença endêmica grave, causada por parasitos do gênero Plasmodium, que
afeta grande parte da população, em especial nas áreas tropicais e subtropicais. Atualmente, o
tratamento farmacológico faz uso de artemisinina ou de seus derivados associado a um segundo
fármaco antimalárico. A escassez de novos tratamentos assim como a disseminação da
resistência do parasito aos fármacos atualmente disponíveis, torna urgente a busca e descoberta
de novos alvos e novos fármacos antimaláricos. A enzima deoxiuridina trifosfatase (dUTPase)
de Plasmodium falciparum desempenha um papel importante na manutenção do equilíbrio entre
2’-desoxiuridina 5’-trifosfato (dUTP) e 2’-deoxitimina 5’-trifosfato (dTTP), a fim de evitar a
incorporação errônea de uracila na fita do DNA. Dessa forma, a enzima dUTPase é um alvo
potencial para o desenvolvimento de novos fármacos, e já foi validada para os organismos
Escherichia coli, Saccharomyces cerevisiae e Mycobacterium smegmatis. Este trabalho teve
como objetivo a realização de estudos quantitativos de relação entre estrutura e atividade
(QSAR) para uma série de nucleosídeos β-ramificados inibidores da PfdUTPase, com a
finalidade de se gerar modelos robustos e preditivos para predizer a atividade de compostos não
testados e que possam auxiliar na elucidação dos requisitos estruturais importantes para a
afinidade desta classe de compostos. Para isso, realizou-se a análise de holograma QSAR
(HQSAR), análise comparativa de campos moleculares (CoMFA) e a análise comparativa dos
índices de similaridade molecular (CoMSIA). Para os estudos de CoMFA e CoMSIA, foram
testados dois métodos de cálculo de cargas parciais, o método empírico Gasteiger-Huckel e o
método semi-empírico AM1-BCC. Foram também testadas três estratégias de alinhamento
estrutural baseadas no ligante: máxima subestrutura comum, baseada na sobreposição de
volumes moleculares, e em função da similaridade morfológica; e uma estratégia baseada nas
coordenadas 3D do complexo enzima-inibidor (docking molecular). Os modelos de QSAR
gerados apresentaram boa robustez e preditividade externa, demostrando bom poder de
correlação e predição da afinidade. Os mapas de contribuição de HQSAR e os mapas de
contorno do CoMFA e CoMSIA indicaram a importância de determinados grupos para a
afinidade, como por exemplo, a importância da presença de ao menos dois anéis tritila que
contribuem tanto estericamente como hidrofobicamente para interação com o sítio hidrofóbico
da enzima do parasito, inexistente na enzima de humanos. O planejamento de fármacos baseado
nas informações obtidas do QSAR 2D e 3D, gerou 121 moléculas agrupadas em 18 clusters.
Dois hits com potência aproximada a um dos compostos mais ativos da série se destacaram por
apresentar propriedades físico-químicas apropriadas.
|
364 |
Avaliação da atividade antimalárica e antimicrobiana de geissosperum argenteum Woodson e Minguartia guianensis Aubl coletadas em RoraimaMarlene Rodrigues Marcelino Camargo 26 October 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Dentre as espécies florestais nativas da Amazônia utilizadas por populações tradicionais na terapêutica de diversos problemas de saúde estão a Geissospermum argenteum Woodson, uma Apocynaceae, e a Minquartia guianensis Aubl., da família Olacaceae. Entre os problemas de saúde está a malária, que no Brasil e no mundo ainda é um grave problema de saúde pública. Outro agravo à saúde de importância são infecções microbianas, pois os micro-organismos têm desenvolvido resistência aos agentes antimicrobianos. Neste trabalho, foram coletadas amostras de cascas, folhas e galhos de G. argenteum e M. guianensis, em área de floresta, na Vila Apiaú, município de Mucajaí RR. As amostras foram submetidas à extração metanólica a quente e extração aquosa, Amostra de extrato metanólico de cascas de G. argenteum foi submetida a particionamento líquido-líquido, resultando nas frações hexânica, clorofórmica, acetato de etila e metanol/água. A fração clorofórmica foi selecionada para cromatografia em coluna com sistema gradiente de solventes, obtendo-se 38 frações, as quais foram analisadas através de CCD e destas a fração Cr10 foi selecionada para cromatografia preparativa, a partir da qual foi obtida a fração F6, que analisada em CCD mostrou-se positiva para alcalóides. Os extratos metanólicos e aquosos de ambas as espécies, e frações primárias provenientes de extratos G. argenteum foram testados em ensaios in vitro para atividade antimalárica frente à cepa cloroquino-resistente, K1, de Plasmodium falciparum, nas concentrações de 50 e 5 μg/mL. Posteriormente, amostras ativas foram avaliadas em 7 diluições para estabelecer a relação dose-resposta e valores de concentração inibitória mediana (CI50). Amostras provenientes das duas espécies também foram testadas contra as cepas bacterianas, Staphylococcus aureus, Streptococcus mutans e Escherichia coli, e contra a levedura Candida albicans. A atividade antimicrobiana foi avaliada através de difusão em ágar e a concentração inibitória mínima (CIM) por microdiluição em placas. Para as frações acetato de etila, clorofórmica, hexânica e hidroalcoólica obtida de cascas de G. argenteum e a fração Cr10 foi realizada a bioautografia para S. aureus. Na atividade antimalárica o extrato metanólico de casca foi ativo, com CI50 de 4,6 μg/mL e a fração clorofórmica obtida de casca de G. argenteum também foi ativa com CI50 de 2,0 μg/mL. Os extratos de M. guianensis foram considerados inativos para a atividade antimalárica. Na atividade antimicrobiana, através de difusão em ágar, extratos de G. argenteum foram parcialmente ativos contra S. aureus, S. mutans e inativos contra E. coli e C. albicans. A CIM para S. aureus foi de 0,63 mg/mL para a fração metanol/água, para S. mutans, CIM de 0,63 mg/mL e C. albicans com CIM de 0,63 mg/mL. Para cepa de E. coli os extratos foram inativos. Extratos de M. guianensis mostraram-se ativos frente à S. aureus e C. albicans através de difusão em ágar e apresentaram a CIM superior a 1mg/ml para S. aureus, S. mutans e C. albicans. Os extratos de M. guianensis foram inativos contra E. coli. Na autobiografia para S. aureus as frações testadas apresentaram atividade. / Among the natives species from the Amazon Forest used by traditional populations in the treatment of various health problems, including, malaria, wich in Brazil and in the world remains a serious public health problem, are Geissospermum argenteum Woodson, an Apocynaceae, and Minquartia guianensis Aubl, Olacaceae family. Another important health problem is the microbial infections, because the microorganisms have developed resistence to antimicrobial agents. In this work, samples were collected from bark, leaves and twigs of G.argenteum and M. guianensis in a forestall area in Apiaú village, city of Mucajaí RR. The samples were extracted by hot methanol and water extraction, resulting in methanol and aqueous extracts. Sample of methanol extract of bark of G.argenteum was submitted to liquid-liquid partitioning, resulting in fractions hexane, chloroform, ethyl acetate and methanol/water. The chloroform fraction was selected for fractionation using chromatography colunn and solvent gradient system, resulting in 38 fractions, which were analyzed by TLC and the fraction Cr10 was selected for preparative chromatography, from which the fraction F6 was obtained, analyzed in CCD was positive for alkaloids. The methanol and aqueous extracts of both species and fractions of extracts from primary G.argenteum were tested in vitro assays for antimalarial activity against the chlroquine-resistant K1 Plasmodium falciparum at concentrations of 50 and 5 mg/mL. Subsequently, active samples were evaluated in 7 diluitions to establish the dose-response and median inhibitory concentration values (IC50). Samples from two species were also tested against bacterial strains, Staphylococcus aureus, Streptococcus mutans and Escherichia coli, and against the yeast Candida albicans. Antimicrobial activity was evaluated by agar diffusion and minimum inhibitory concentration (MIC) by microdilution plates. For fractions of ethyl acetate, chloroform, hexane and water-alcohol obtained from barks of G.argenteum, fraction Cr10 and bioautography was performed fo S. aureus. Antimalarial activity in the methanol extract of bark was active, with IC50 of 4,6 mg/mL and chloroform fraction obtained from bark of G.argenteum was also active with IC50 of 2,0 mg/mL. The extracts of M. guianensis were considered inactive for antimalarial activity. In antimicrobial activity by agar diffusion, extracts of G.argenteum were partially active against S. aureus, S. mutans and inactive against E. coli and C. albicans. The MIC for S. aureus was 0,63 mg/mL per fraction methanol/water, S. mutans, MIC of 0,63 mg/mL and C. albicans with an MIC of 0,63 mg/mL. For the strain of E.coli there was no activity. Extracts of M. guianensis were active against the S. aureus and C. albicans by agar diffusion and presented more than 1 mg/mL MIC for S aureus, S.mutans and C. albicans. The extracts of M. guianensis were inactive against E. coli.
|
365 |
Complexité génétique de Plasmodium falciparum et évaluation de l'anticorps anti-APN1 dans le bloquage de la transmission de Plasmodium falciparum chez Anopheles coluzzii au Centre du Cameroun / Genetic complexity of Plasmodium falciparum and evaluation of the antibody anti-APN1 as transmission blocking vaccine in Anopheles coluzzii in centre of CameroonSandeu, Maurice Marcel 15 December 2016 (has links)
Les interventions de lutte contre le paludisme, comme la distribution massive de moustiquaires imprégnées et les polythérapies à base d’artémisinine, ont permis depuis les années 2000 de réduire le nombre de décès d’environ 60% au plan mondial, avec de grandes disparités d’un pays à l’autre. Si certains pays sont entrés en phase d’élimination, d’autres, et particulièrement en Afrique sub-Saharienne, doivent encore contrôler la maladie. La mise au point d’un vaccin contre le paludisme reste l’une des voies prioritaires pour la lutte contre la maladie. Parmi les différents candidats vaccins, les vaccins visant à bloquer la transmission chez le moustique vecteur connaissent un intérêt croissant. Dans ce travail de thèse, j’ai évalué l’efficacité d’anticorps anti-AnAPN1 à bloquer la transmission d’isolats naturels de Plasmodium falciparum chez An. coluzzii. L’aminopeptidase 1 est une protéine qui tapisse l’épithélium intestinal du moustique et qui servirait de récepteur aux ookinètes. Nous avons réalisé des essais d’infections expérimentales sur la plateforme d’entomologie de l’OCEAC à Yaoundé. Les anticorps anti-AnAPN1, 4H5B7, ont montré une activité bloquante dose-dépendante et l’inhibition de la transmission varie selon le donneur de gamétocytes. Nous avons alors modélisé les différents paramètres qui pouvaient moduler l’efficacité de l’anticorps et nous avons montré que la multiplicité de l’infection du donneur avait un effet significatif. Nous avons ensuite étudié la dynamique de transmission des génotypes de P. falciparum sous pression d’anticorps à des doses non bloquantes afin d’identifier les génotypes qui ne sont pas sensibles à l’anticorps. Le traitement réduit la diversité génétique de la population de parasites mais nous n’avons pas observé de sélection de génotypes particuliers de P. falciparum suite à l’exposition des moustiques aux anticorps anti-AnAPN1. Les analyses de génétique des populations ont révélé une corrélation positive entre le FIS et la multiplicité d’infection, les gamètes de P. falciparum tendent à s’apparier entre génotypes apparentés dans les populations de forte complexité génétique. Les résultats de ce travail soulignent l’importance de la diversité génétique de la population de gamétocytes pour la transmission chez le moustique vecteur. / Malaria control interventions over the last 15 years have lead to reduce malaria mortality by about 60% worldwide. This large reduction in malaria burden results mostly from effective mass distribution of insecticide-treated mosquito nets and artemisinin-based combination therapies. Some countries have already entered into elimination stage but others, particularly in sub-Saharan Africa, have yet to control the disease. The development of a vaccine against malaria remains a major priority for the fight against the disease. Among the different candidate vaccines, transmission-blocking vaccines have gained interest in the recent years. These vaccines would interrupt transmission from humans to mosquitoes. The anopheline alanyl aminopeptidase N (AnAPN1) is a mosquito-based malaria transmission-blocking vaccine candidate. In this PhD work, we evaluated the efficacy of anti-AnAPN1 antibodies against field isolates of Plasmodium falciparum in Anopheles coluzzii. Anti-AnAPN1 antibodies delivered to mosquitoes through artificial feedings showed a dose-dependent blocking activity and the transmission inhibition varied according to gametocytes donors. We modeled the different parameters that could modulate the antibody efficiency and we showed that the multiplicity of infection in the blood donor has a significant effect. We further explored the transmission dynamics of the co-infecting P. falciparum genotypes at non-blocking doses of antibodies. The mAb treatment reduced the genetic diversity of the parasite population but we did not detect any trace of selection on parasite genotypes. Genetic analyses revealed a positive correlation between FIS and multiplicity of infection, thus P. falciparum gametes mate with close relatives in infections with high genetic complexity. The results of this work highlight the importance of the genetic diversity of gametocyte population for transmission in the mosquito vector
|
366 |
Identification et validation de nouveaux bio-marqueurs immuno-épidémiologiques pour évaluer l'exposition humaine aux piqûres d'Anophèles, vecteurs de paludisme / Identification and validation of new immuno-epidemiological biomarkers for evaluating the human exposure to Anopheles malaria vectorsMarie, Alexandra 04 April 2014 (has links)
Le paludisme constitue un problème majeur de santé publique en zone tropicale et subtropicale. La morbidité ainsi que la mortalité sont principalement dues au parasite Plasmodium falciparum transmis à l'homme par la piqûre de moustiques femelles du genre Anopheles. Dans le but d'orienter au mieux les stratégies d'élimination du paludisme et d'une meilleure évaluation de l'efficacité des méthodes de lutte, les indicateurs mesurant le risque de transmission doivent être plus sensibles. Il a été montré que la réponse anticorps humaine contre des protéines/peptides salivaires d'Anopheles représente un bio-marqueur d'exposition aux piqûres de moustiques et pouvait être un indicateur de la transmission du paludisme. Toutefois cet outil doit être optimisé. Ce travail a ainsi un double objectif : i) valider la protéine salivaire CE5 comme bio-marqueur d'exposition aux piqûres d'Anopheles et comme indicateur évaluant l'efficacité de stratégie de lutte anti-vectorielle, et 2) identifier de nouvelles protéines salivaires comme candidat bio-marqueur spécifique à l'exposition de l'homme aux seules piqûres infectantes d'Anopheles. Tout d'abord, nous avons démontré que la réponse anticorps IgG contre la protéine CE5 pourrait être un indicateur du contact homme-vecteur, complémentaire et très sensible, en mesurant l'exposition de l'homme aux piqûres d'Anopheles et un outil évaluant l'efficacité, à court terme, des moustiquaires imprégnées d'insecticide. Par la suite, les méthodes de protéomique 2D-DIGE et de spectrométrie de masse ont permis d'identifier cinq protéines salivaires (gSG6 , gSG1b , TRIO , SG5 et la forme longue D7) qui sont surexprimées dans les glandes salivaires d'An. gambiae infectées par P. falciparum. Des peptides de chaque protéine, définis in silico, apparaissent antigéniques chez des individus exposés aux piqûres d'Anopheles, après évaluation par la technique d'épitope mapping. L'ensemble de ces travaux est non seulement une première étape pour optimiser cet outil immuno-épidémiologique évaluant le contact homme-vecteur mais démontre également la possibilité de définir un nouveau bio-marqueur qui serait spécifique des piqûres infectantes d'Anopheles. / Malaria is a major public health problem in tropical and subtropical areas. Morbidity and mortality are mainly due to Plasmodium falciparum transmitted to human individuals by the bite of female Anopheles mosquitoes. In order to orientate appropriate strategies for malaria elimination and for a better evaluation of the efficacy of control methods, the indicators measuring the risk of transmission should be more sensitive. It has been shown that the human antibody response against Anopheles salivary proteins/peptides represents a biomarker of exposure to mosquito bites and could be an indicator of malaria transmission. However, this tool must be optimized. This work has thus two objectives: i) to validate the salivary protein cE5 as biomarker of exposure to Anopheles bites and as an indicator for evaluating the efficacy of vector control strategy, and 2) to identify new salivary proteins as a candidate biomarker only specific to human exposure to infective bites of Anopheles.First, we demonstrated that the IgG antibody response to cE5 protein could be an indicator of human-vector contact, complementary and very sensitive, measuring the human exposure to Anopheles bites and a tool evaluating the short-term efficacy of insecticide treated nets. Subsequently, the proteomic methods, 2D - DIGE and mass spectrometry, allowed to identify five salivary proteins (gSG6, gSG1b, TRIO, SG5 and the long form D7) which are overexpressed in the salivary glands of An . gambiae infected by wild P. falciparum. Peptides for each protein, identified in silico, appear antigenic in individuals exposed to Anopheles bites, after the evaluation by the epitope mapping technique.Altogether, this work is not only the first step to optimize this immuno-epidemiological tool assessing the human-vector contact, but also demonstrates the possibility to define a new biomarker specific to the infective bites of Anopheles.
|
367 |
Prédisposition génétique au paludisme à Plasmodium falciparum : études d'association et analyses fonctionnelles de variants génétiques candidats situés dans des régions liées génétiquement au paludisme / Genetic susceptibility to Plasmodium falciparum malaria : association and functional analyzes studies of candidate genetic variants located in the regions genetically related to malariaNguyen, Thy Ngoc 18 December 2015 (has links)
Dans cette thèse, nous avons étudié l'influence de plusieurs variants génétiques situés dans les régions chromosomiques 5q31-q33, 6p21, et 17p12, pour lesquelles une liaison génétique avec des phénotypes de paludisme a été montrée.Les gènes NCR3 et TNF, qui sont situés dans la région chromosomique 6p21, ont été associés au paludisme dans une population vivant au Burkina Faso. Nous avons répliqué ces études dans une population congolaise afin deconfirmer les associations des polymorphismes avec les accès palustres simples et la parasitémie symptomatique. Nos résultats montrent que le polymorphismeNCR3-412 est associé avec les accès palustres simples au Congo, et que les polymorphismes TNF-308, TNF-244, et TNF-238 sont associés avec les accès palustres simples ou la parasitémie symptomatique. En outre, nos analyses bioinformatiques suggèrent que les polymorphismes TNF-244 et TNF-238 agissent en synergie pour modifier le site de fixation pour au moins un facteur de transcription.Les deux gènes HS3ST3A1 et HS3ST3B1, qui sont situés dans la région chromosomique 17p12, sont impliqués dans la biosynthèse des heparanes sulfates. Dans cette étude, nous avons étudié l'association d’un polymorphisme situé dans le promoteur de HS3ST3A1 avec les accès palustres simples et la parasitémie symptomatique, et n’avons détecté aucune association. Nous avons étudié en outre le gène NDST1, situé dans la région chromosomique 5q31-q33, et qui code également pour une enzyme impliquée dans la voie héparane sulfate. Des résultats préliminaires encourageants soutiennent l'hypothèse que la variation génétique de NDST1 influence la parasitémie asymptomatique. / In this thesis, we investigated the influence of some genetic variants located within chromosomes 5q31-q33, 6p21, and 17p12, which have been shown to be linked to malaria phenotypes. The genes NCR3 and TNF, which are located in the chromosomal region 6p21, have been reported to be associated with malaria in Burkina Faso population. We have replicated those studies in Congolese population to evaluate the associations of the SNPs in those genes with mild malaria attack and Plasmodium parasitemia. The results showed that the variant NCR3-412 is associated with mild malaria in Congo, and TNF-308, TNF-244, and TNF-238 are associated with mild malaria attack, maximum parasitemia, or both. In addition, bioinformatic studies suggest that TNF-244 and TNF-238 synergise to alter the binding of transcription factors.The two genes HS3ST3A1 and HS3ST3B1, which are located in chromosomal regions 17p12, are involved in the heparan sulfate proteoglycan biosynthesis. In this study, we further investigated the association of the polymorphisms in these genes with mild malaria attack and maximum parasitemia. However no association was found. We further studied the NDST1 gene, which is located within chromosome 5q31-q33, and which encodes the bifunctional enzyme N-deacetylase/ N-sulfotransferase 1, and also participates in the heparan sulfate synthesis . Encouraging results support the hypothesis that NDST1 variation influence controlling parasitemia. Further association and functional studies are needed to validate the role of NDST1 in malaria infection. More generally, the enzymes involved in the heparan sulfate pathway might play a key role in controlling malaria infection.
|
368 |
Biochemical Characterization Of Heat Shock Protein 90 From Plasmodium FalciparumPallavi, Rani 02 1900 (has links) (PDF)
Molecular chaperones are a group of proteins which maintain cellular homeostasis by assisting de novo protein folding and their refolding to native state after destabilization due to external stress. They are also known as heat shock proteins as they were first discovered as a response to heat stress. It is now well established that the function of this group of proteins is not only restricted to protein homeostasis but also extends to diverse cellular processes such signal transduction, development and differentiation.
Heat shock protein 90 (Hsp90) is one of the most abundant molecular chaperones that is highly conserved from prokaryotes to eukaryotes. Hsp90 is an essential chaperone and is required for the viability of all eukaryotes examined so far including yeast, Drosophila and Caenorhabditis elegans. Hsp90 has emerged as an important regulator of cellular activities by virtue of its ability to interact with a diverse set of client proteins many of which include transcription factors, protein kinases and signaling molecules. Through interaction with these proteins it is involved in regulating cellular processes including growth, cell cycle, endocrine functions, apoptosis, differentiation and development. Further in Drosophila and plants, Hsp90 is thought to function as a capacitor for morphological evolution and phenotypic variation. Recently, it has also been implicated in the emergence of drug resistance in Candida albicans. Furthermore, the importance of Hsp90 in disease states, particularly in cancer, is strongly evident, where chaperoning of mutated and oncogenic proteins is critical for continuous proliferation of cells. This has led to the development of Hsp90 inhibitors as an anti-cancer drug. Geldanamycin (GA), a benzoquinone ansamycin was the first molecule shown to inhibit Hsp90 activity by binding to its ATP binding domain. A derivative of GA, 17-allylamino-17-demethoxygeldanamycin (17AAG), has shown promise in clinical studies and has entered Phase III clinical trials.
Hsp90 has been shown to be important for growth and development of many protozoan parasites. Inhibition of Hsp90 function in Leishmania, Emiera, Toxoplasma, Trypanosoma as well as Plasmodium causes a block in their developmental cycle. Previous studies from our laboratory have shown that inhibition of Hsp90 function prevents growth of malaria parasite in human erythrocytes in vitro. P. falciparum Hsp90 (PfHsp90) has also been shown to regulate parasite growth during the febrile episodes that are characteristic of malaria. While most of the studies highlighting the importance of PfHsp90 have relied on its pharmacological inhibition, its biochemical characterization and quantitative measurement of its interaction with GA in isolated system has not been explored. It was also not understood whether the in vitro model of Hsp90 inhibition could translate into inhibition of the parasite growth in an animal model of malaria. Since Hsp90 is a split ATPase requiring proper co-ordination between the residues on its N-terminal and middle domains, it would be desirable to biochemically characterize full length PfHsp90 to gain insights into its potential as an anti-malarial target.
The present study was initiated with an objective of understanding the biochemical properties of Hsp90 from P. falciparum in terms of ATP binding, ATP hydrolysis and its GA binding ability. We have also examined the potential of PfHsp90 to serve as a chemotherapeutic target using its clinically well-established inhibitor, 17AAG, in a preclinical mice model. Apart from using in vitro and in vivo models of malaria, we have also explored the efficacy of 17AAG in the P. falciparum samples collected from malaria patients. Additionally, we have examined the relevance of chaperones, in particular PfHsp90 in the samples collected from malaria patients. Finally, we have attempted to understand the unexplored biology of another malaria parasite P. vivax by a high throughput proteomics approach.
Biochemical characterization of PfHsp90 and its comparison with host Hsp90
Hsp90 belongs to GHKL (gyrase, Hsp90, histidine kinase, MutL) protein family having a characteristic novel ATP-binding Bergerat fold. The ATP binding pocket of GHKL family differs from the conventional nucleotide binding fold in the formation of a cone shaped pocket made up of four anti-parallel β-sheets and three α helices as opposed to parallel βsheets surrounded by α-helices in the latter. The most distinctive feature of Bergerat fold is the presence of ATP lid. Further, even within the GHKL family members the composition and the conformation of this ATP-lid differs, leading to different solvent exposure of the bound ATP. All Hsp90s from different organisms, characterized so far, have been shown to posses ATP binding and hydrolysis activity but so far PfHsp90 ATPase activity has not been characterized. Using intrinsic tryptophan fluorescence measurements, we found PfHsp90 to bind ATP with about 30% higher affinity than human Hsp90 (hHsp90). We further,
32 determined the ATPase activity of PfHsp90 by monitoring the direct conversion of (γ-P)
32-2 ATP to Pi. PfHsp90 bound and hydrolyzed ATP with a Km of 611 µM and kcat of 9.9 x 10
-1m . Interestingly, PfHsp90 showed six times higher ATPase activity as compared to its human homologue and more intriguingly the ATPase activity exhibited by PfHsp90 was highest among all the Hsp90s studied so far. Previous studies from our laboratory have provided sufficient evidence for inhibitory action of GA on Plasmodium growth inside the infected erythrocytes. GA is known to exert its inhibitory effect by binding to the ATP binding domain of Hsp90 thus inhibiting its chaperone activity. Earlier reports have shown that despite a high similarity between the ATP/GA binding region in Hsp90 from different organisms, there is a difference in their ability to bind GA. For example, in spite of all the hallmarks of ATP-binding pocket of Hsp90 family C. elegans Hsp90 does not bind GA. We have employed fluorescence spectroscopy to examine whether PfHsp90 can bind to GA. In parallel, we have also determined the binding affinity of human Hsp90 (hHsp90) to GA. We observed small but reproducible differences in the binding affinity of GA to Hsp90s from human host and P. falciparum with latter having fourfold higher affinity. A sequence analysis of the GA binding domain of Hsp90s from P. falciparum and human host showed a homologous substitution of K112 of hHsp90 to R98 in PfHsp90. In order to examine the effect of this substitution, if any, on the observed difference in GA binding abilities, we mutated R98 to K in PfHsp90. However, we did not find any difference in the binding ability of R98K PfHsp90 to GA, suggesting that this homologous substitution has minimal or no effect on drug protein interaction in vitro. However, in view of this phylogenetically conserved substitution, we cannot rule out its role in vivo. The chaperone function of Hsp90 is dependent on its ATPase activity which is susceptible to GA mediated inhibition. We next examined the extent of inhibition of GA on the ATPase activity of Hsp90s from P. falciparum and human host. Interestingly, we found the PfHsp90-ATPase activity to be three times more sensitive than hHsp90-ATPase activity to GA mediated inhibition suggesting that the malaria parasite, P. falciparum is likely to be more sensitive to GA when compared to human host. This result is in accordance with a recent study, which has shown that yeast expressing PfHsp90 in lieu of native yeast Hsp90 was more sensitive to GA than yeast expressing either yeast Hsp90 or human Hsp90.
Acetylation of Plasmodium falciparum Hsp90
Post-translational modification of Hsp90 such as acetylation has been shown to affect its binding with GA. We first examined whether, PfHsp90 can be acetylated. With the use of various purified Histone acetyl transferases (HATs) of human origin, we have shown PfHsp90 to undergo acetylation in vitro. We found that among different HATs (pCAF, Gcn5 and p300) used, only p300 was able to acetylate PfHsp90 suggesting a role for it in PfHsp90 in vivo acetylation as well. We next examined the in vivo acetylation status of PfHsp90 from parasite lysate. To enrich the acetylated fraction of PfHsp90, we have used Histone deacetylase (HDAC) inhibitor, trichostatin A (TSA). Immunoprecipitation of PfHsp90 followed by immunoblotting with an acetyl-lysine antibody confirmed that PfHsp90 undergoes acetylation in vivo. In order to identify the lysine residues which underwent acetylation we subjected the acetylation enriched fraction of PfHsp90 to in-gel trypsin digestion followed by mass spectrometry. Analysis of trypsin digested PfHsp90 from the parasites identified three sites of acetylation, one of which overlapped with PfHsp90 cochaperone (Aha1 and p23) binding residue, suggesting that acetylation could play a potential role in modulating PfHsp90 multi-chaperone complex assembly. Indeed, treatment of P. falciparum cultures with a HDAC-inhibitor resulted in partial dissociation of PfHsp90 complex as observed from size-exclusion chromatography. Adding to this observation, we also found that co-treatment of TSA and GA showed a synergistic and additive effect in inhibiting parasite growth in vitro. The above results suggest the possibility of using Hsp90 inhibitor in combination with HDAC inhibitor to arrest Plasmodium growth and development.
Clinically tested GA-analogue 17AAG inhibits Plasmodium growth in vitro and in vivo
The specificity of GA inside the cell has been a matter of debate since the discovery of its medicinal importance. In the past, Hsp90 has been implicated as a target of GA by carrying out immunoblotting of GA pull-down fraction with an anti-Hsp90 antibody. Crystal structure of GA with yeast Hsp90 has shown it to bind within the well conserved ATP-binding pocket of Hsp90. However, the specificity of GA inside the cell is still a conjecture. We have performed GA pull down assays from the parasite lysate followed by Coomassie Blue staining, which gave a single band corresponding to 86 kDa PfHsp90. The identity of PfHsp90 was further confirmed by immunoblotting with antibody specific to PfHsp90. This result indicates that inside the cells, inhibitory effect of GA is mediated by and large through its interaction with Hsp90. However, we cannot rule out the presence of other minor, less significant, interactors of GA.
Earlier work from our laboratory has shown that GA inhibits Plasmodium growth inside the infected erythrocytes. However, issues related to GA toxicity have excluded its development as a therapeutic. Nevertheless, interest in this class of molecule has led to the generation of a large number of less toxic derivatives of GA. One classical example is 17AAG which has gained clinical importance over the years and has entered in phase III trial. Intrigued by the clinical success of 17AAG, we were interested in determining its ability to modulate parasite growth. Indeed, 17AAG was able to inhibit parasite growth in a manner similar to that of GA. We further extended our study to parasites isolated from patient samples. Here too, we found 17AAG to be effective in inhibiting growth of the parasite. Finally, we examined the efficacy of 17AAG at a pre-clinical level using a mouse model of malaria. Using Peters’ four-day test we found 17AAG, to be effective in attenuating parasite growth and prolonging the survival of parasite infected mice (n=4, p=0.00692; n=10, p=0.001).
Clinical relevance of heat shock proteins of Plasmodium falciparum
A recent study using in vivo expression profiles of parasites derived from blood samples of infected patients has revealed previously unknown physiological diversity in the biology of malaria parasites. According to gene expression profiles, parasites were clustered into three different physiological states – starvation, glycolysis dependent active growth and environmental stress response. In order to examine the clinical relevance of molecular chaperones in malaria, we reanalyzed the previously published gene expression data of clinical parasites from 46 patients. Our analysis of this data showed that organellar chaperones were up-regulated upon starvation (cluster1) while cytosolic chaperones such as Hsp90 were up-regulated in active growth conditions (cluster2) indicating up-regulation of distinct group of Hsps in response to different environmental cues. Interestingly, Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, clustered in the same group. Further, some patients of cluster 3 (environmental stress response) showed higher expression of Hsp90 while others showed lower expression. In general, cluster 3 group of patients were heterogeneous in terms of expression of chaperones. Using non-negative matrix factorization (NMF), cluster 3 was sub-clustered into two groups 3a and 3b. Cluster 3b showed up-regulation of cytosolic chaperones similar to cluster 2 indicating these two clusters are inter-related. Most of the Hsp90 dependent pathways such as trafficking, signaling, anti apoptotic and pro-survival found to be most active in cluster 2 indicating the dependence of this group of parasites on Hsp90. The two main outcomes of our chaperone analysis are (1) the up-regulation of molecular chaperones in parasites are not a general response to hostile conditions as perceived previously, but is largely determined by the host factors and may differ from one host to another (2) the disease specific pathways may exist in natural condition by the up-regulation of specific chaperone and its interactors as a response to different host environment.
Clinical proteomics of human malarial parasites
Much of our understanding about the life cycle of parasites and importance of parasite proteins have been gleaned from the studies in laboratory strain or with the laboratory adapted clinical parasites. Although, these studies provide us first hand information about the functionality and the importance of these proteins, but they often fail to mimic the actual disease environment. In the patient, parasites are exposed to host factors such as hormones, metabolites, inflammatory mediators which can influence the expression of proteins and thus parasite biology. Further, instead of parasite exposure to 37°C temperature throughout the erythrocytic cycle in vitro, it is exposed to several rounds of febrile episodes inside human, which can also influence the parasite life cycle. Furthermore, clinical analysis is important to validate the presence and expression of drug targets in actual disease environment. Therefore, analysis of malaria parasite from clinical settings has become an important component in our laboratory and this thesis. Proteomic analysis of clinical samples has emerged as an important tool to understand the proteins dynamicity as response to disease environment. We have initiated clinical proteomic study of P. falciparum, the cause of most common and fatal malaria in humans and extended it further to the neglected malaria parasite P. vivax.
The study of P. vivax has largely been over-shadowed by the enormous attention devoted to P. falciparum. Notably, the drugs which have been discovered against P. falciparum are not as effective against P. vivax. Further several unique features of P. vivax such as dormant hyponozoites, reticulocyte host preference and formation of specialized caveolae vesicle complex structure distinguish its biology from P. falciparum and warrant concerted effort directed at this parasite. A major limitation in studying this parasite is the absence of a long-term culturing system. Therefore, research on this parasite requires samples obtained directly from patients. In spite of the inherent difficulty in obtaining such samples, this method provides us an opportunity to study this parasite in its real environment which has a huge effect on the expression as well as function of parasites and host proteins. Our current knowledge about the life cycle of this parasite has been gained from the recently published transcriptome study. Even though transcriptome analyses provide useful understanding at the level of gene expression, they do not reflect the active protein component of a cell. In other words, most of disease outcome is a result of interaction of the protein component with the environment. We therefore attempted to understand the protein component of this parasite in the disease environment to shed light on its pathogenicity. Despite facing several challenges in the way of proteomic analysis of this parasite such as availability of samples, low parasitemia, contamination of parasite proteins with abundant host proteins etc, we were able to identify 154 P. vivax proteins abundantly expressed in clinical environment using mass-spectrometry based approach. We found many proteins unique to this parasite along with known drug targets. This study is the first of its kind and could prove to be a very important step towards gaining insights into the physiology of this parasite.This study serves as a proof-of-principle method which in future is likely to help in identifying many more potential drug targets, vaccine candidates and diagnostic markers from clinically relevant samples as opposed to cultured samples.
Summary
Despite the importance of PfHsp90 in malaria biology, it has not been characterized in terms of its biochemical properties and its interaction with the inhibitor. In this study, we have successfully cloned, expressed, purified and characterized full length PfHsp90. We found that PfHsp90 exhibits a hyper-ATPase activity and is more sensitive to GA mediated inhibition as compared to human Hsp90. We have also shown that its sensitivity towards GA is dependent on its acetylation status as treatment of infected erythrocytes with HDAC inhibitors increases its sensitivity to GA. Using a pull-down assay, we have determined, unequivocally, that GA specifically binds to Hsp90. Most importantly, we have demonstrated that 17AAG, a clinically well-established inhibitor of Hsp90, inhibits parasite growth in a laboratory strain, field isolates and an in vivo mouse model of malaria. Overall, our biochemical characterization and drug interaction studies underscore the importance of PfHsp90 as a potent drug target and its inhibitors as a candidate drugs for the treatment of malaria, one of the deadly human infectious diseases.
Our efforts to understand the importance of molecular chaperones in parasites isolated directly from patient samples (clinical setting) has revealed conspicuous association of Hsps with previously defined parasite physiological states. In particular, parasites obtained from a specific group of patients exhibited heightened dependence on Hsp90-dependent pro-survival pathways, indicating an increased response to host stressors in this group of parasites. Thus, parasite encoded chaperones, in particular PfHsp90, play a major role in defining the pathogenesis of malaria.
A disease is an outcome of interaction between pathogens and its host, therefore it is important to study parasite in its real environment to understand disease pathogenesis. Our lab has previously reported the first ever proteomic analysis of P. falciparum from malaria patients. In this study, we have made an attempt to understand the unexplored biology of another important malaria parasite P. vivax. We have used a mass-spectrometry based approach to identify the protein content of this parasite. This technically challenging attempt has enabled us to identify many proteins. This study is an important step towards understanding the biology of this parasite in dearth of any information available on the proteins involved in this parasite’s pathogenicity.
|
369 |
Uncovering the effect of natural diversity on the Anopheles gambiae response to Plasmodium falciparum / Effets de la diversité naturelle sur la réponse d’Anopheles gambiae à Plasmodium falciparumHarris, Caroline 29 June 2010 (has links)
Le contrôle du paludisme ne semble aujourd'hui envisageable que par stratégies combinées ciblant différents stades du parasite. Chez le vecteur, certains mécanismes de la réponse immunitaire pourraient être manipulés pour bloquer le développement sporogonique du parasite. Cette thèse examine les effets de la diversité du vecteur et du parasite dans le couple le plus important en termes d'épidémiologie, A. gambiae - P. falciparum. Des polymorphismes de gènes de l'immunité du moustique contrôlant le niveau d'infection ont été identifiés par étude d'association. Certains d'entre eux ont un effet spécifique selon les isolats de parasites, suggérant de potentielles interactions génotype X génotype. Nous avons déterminé un déséquilibre de liaison très bas dans les populations naturelles de vecteurs, validant notre approche par gènes candidats. Les caractéristiques et les forces évolutives faisant d'A. gambiae un vecteur du paludisme majeur sont discutées. Les diverses populations de vecteurs et parasites peuvent interagir de manière spécifique. Pour tester cela, des infections par des isolats de parasites sympatriques et allopatriques ont été comparées, montrant des intensités plus faibles dans les couples sympatriques. Les profils d'expression des gènes montrent cependant peu de régulations spécifiques aux populations, mais plutôt des différences extrêmes selon les isolats de parasites. Ces résultats suggèrent des effets importants de la diversité entre populations et individus. En conclusion, cette thèse souligne l'importance de la prise en compte de la diversité naturelle des vecteurs et parasites dans les recherches futures sur leurs interactions. / To achieve malaria control a variety of approaches must be combined targeting different stages of the parasites life cycle. With better understanding of mosquito immunity, it is hoped that aspects of natural resistance can be manipulated to prevent parasite development. This thesis investigates the effect of both mosquito and parasite diversity on the mosquitoes response to malaria using the most important human malaria system; Anopheles gambiae-Plasmodium falciparum in natural/semi-natural conditions. Mosquito loci are identified that significantly control infection phenotype, some of which act in a parasite isolate specific manner, highlighting their potential involvement in genotype by genotype interactions. Such research is moving towards genomewide studies; however, on finding very low linkage disequilibrium in wild mosquitoes, it favors candidate gene association studies. A. gambiae characteristics that make it such a good malaria vector are discussed and the evolutionary forces driving these traits. Selection behind vector-parasite interactions can differ spatially and temporally causing specificities in sympatric couples. Sympatric and allopatric mosquito infections with malaria are compared, showing that sympatric infections develop lower infection intensities suggesting local adaptation. Mosquito gene expression profiles highlight a small number of genes differentially regulated between sympatric and allopatric infections, however extreme differences in gene regulation are observed within populations, probably driven by the variable nature of malaria parasites. This thesis highlights the importance of taking into account natural diversity in future research.
|
370 |
Approche génomique et bioinformatique de l'émergence et de la diffusion des résistances chez Plasmodium au Cambodge / Genomics and Bioinformatics in the emergence and spread of resistant Plasmodium in CambodiaKhim, Nimol 10 December 2014 (has links)
Le paludisme, maladie parasitaire et vectorielle, sévissant principalement dans les zones intertropicales où vit près de 40% de la population mondiale, reste un problème majeur en santé publique. Les cinq espèces de Plasmodium connues infectées le paludisme chez l'homme sont présentes au Cambodge, qui est reconnu comme l'épicentre de l'émergence de souches de P. falciparum multi-résistantes (chloroquine, sulfadoxine- pyriméthamine, méfloquine, artémisinine), pouvant entraver les progrès accomplis depuis plus d'une décennie. Le travail de thèse intitulé « Approche génomique et bio-informatique de l'émergence et de la diffusion des résistances chez Plasmodium au Cambodge » avait pour objectif de développer de nouveaux outils moléculaires et biologiques pour 1) une meilleure compréhension de l'impact des stratégies mises en place pour lutter contre le paludisme à P. falciparum sur les autres espèces de Plasmodium, 2) la mise en place d'outils biologique et moléculaire, permettant de mieux définir l'épidémiologie des parasites résistants, en particulier la résistance à la quinine et aux dérivés de l'artémisinine, 3) l'étude et la définition des sous-populations parasitaires circulant au Cambodge afin d'estimer les risques associés à la diffusion de la résistance à l'artémisinine. Cette thèse a été réalisée dans l'Unité d'Epidémiologie Moléculaire du Paludisme à l'Institut Pasteur du Cambodge (IPC) sous la codirection du Dr. Didier Ménard (Chef de laboratoire à l'IP) et du Pr. Emmanuel Cornillot (Professeur à l'Université Montpellier I). Le premier objectif visait à étudier l'impact de la pression médicamenteuse sur la dynamique d'évolution des populations parasitaires. Nous avons d'abord évalué le polymorphisme des gènes associés à la résistance à la pyriméthamine (gène dhfr, dihydrofolate reductase) chez Plasmodium malariae et Plasmodium ovale (article 1 et manuscrit en préparation1), et le polymorphisme du gène mdr-1 (multidrug resistance 1) associé à la résistance à la mefloquine chez P. vivax (article 2). De plus, en collaboration avec l'Institut Pasteur de Madagascar, nous avons étudié le lien pouvant exister entre le polymorphisme du gène candidat Plasmodium falciparum Na+/H+ exchanger (Pfnhe-1) et la résistance (clinique et in vitro) de P. falciparum à la quinine (articles 3 et 4).Le deuxième objectif s'est interessé au développement d'outils biologiques et moléculaires permettant d'évaluer la résistance des souches de P. falciparum aux dérivés de l'artémisinine. Les 3 articles présentés (articles 5, 6 et 7) decrivent la méthodologie d'approche originale utilisée associant la génomique, la biologie, la clinique et l'épidémiologie, qui a permis d'aboutir à la découverte d'un marqueur moléculaire (mutations au sein du gène Kelch 13) fiable pour identifier les souches résistantes aux dérivés de l'artémisinine.Le dernier objectif était consacré au développement de la technique PCR-LDR-FMA appliqué à la détection d'un panel de 24 SNPs permettant de caractériser par un « barcode » chaque isolat de P. falciparum. Cette technique couplée avec une analyse bio-informatique et statistique des données nous a permis d'étudier et de définir la structuration des populations parasitaires circulant au Cambodge afin d'estimer les zones à risque de diffusion de la résistance à l'artémisinine (manuscrit en préparation 2).A travers ce travail de thèse, nous nous sommes efforcés de montrer la puissance des techniques de biologie moléculaire disponibles couplées avec des approches génomique et bio-informatique pour améliorer notre compréhension de la dynamique d'évolution des populations parasitaires. Ce travail s'est essentiellement concentré sur les phénomènes liés à l'émergence et de la diffusion des parasites résistants aux antipaludiques, le but final de ce travail étant d'améliorer les stratégies de lutte mises en place pour atteindre l'ambitieux objectif d'élimination du paludisme. / Malaria, a protozoan vector-borne disease, is mainly prevalent in tropical areas, where nearly 40% of the world population is residing and remains one of the most concerns for public health worldwide. In Cambodia, the five Plasmodium species known to cause malaria in humans are present. The main feature of this country is that it is recognized as the epicenter of the emergence of multi-resistant P. falciparum parasites (to chloroquine, sulfadoxine-pyrimethamine, mefloquine, and artemisinin), a very significant menace to public health in the Mekong region that could impact the worldwide strategy to fight malaria. The thesis presented here, entitled “Genomics and Bioinformatics in the emergence and spread of resistant Plasmodium in Cambodia” aimed to develop new molecular and biological tools for:1) improving our understanding of the collateral impact of the strategies implemented to fight against falciparum malaria on the other Plasmodium species; 2) defining the molecular epidemiology of antimalarial resistant parasites, especially resistance to quinine and artemisinin derivatives;3) studying and defining the structure of P. falciparum parasite populations circulating in Cambodia to estimate areas at risk of spread of artemisinin resistance, using genomic approaches and bioinformatics. This thesis was carried out in the Malaria Molecular Epidemiology Unit at Pasteur Institute in Cambodia (IPC) under the co-direction of Dr. Didier Ménard (Head of the Unit, IP) and Pr. Emmanuel Cornillot (Professor, University of Montpellier I). The first objective of this work was to study the impact of drug used to treat falciparum malaria on the dynamics of other Plasmodium species. In a first step, we evaluated the polymorphism in gene associated to pyrimethamine resistance (dhfr gene, dihydrofolate reductase) in Plasmodium malariae and in Plasmodium ovale (article 1 and manuscript in preparation 1) and the polymorphism in mdr-1 gene (multidrug resistance 1 gene) associated to mefloquine resistance in P. vivax (article 2). Secondly, in collaboration with Pasteur Institute in Madagascar, we investigated the association between the polymorphism in Plasmodium falciparum Na + / H + exchanger gene (Pfnhe-1) and quinine resistance defined either by clinical or in vitro phenotypes (articles 3 and 4). The second objective was focused on the development of novel biological and molecular tools to assess the resistance of P. falciparum to artemisinin derivatives. The three papers presented (articles 5, 6 and 7) describe an original approach combining genomics, biological, clinical and epidemiological studies, which lead to the discovery of a molecular marker (mutations Kelch 13 gene) associated to artemisinin resistance.The third and final objective was devoted to the development of the PCR-LDR-FMA technology applied to the detection of a panel of 24 SNPs to characterize a "barcode" of P. falciparum isolates. This technic coupled with bioinformatics and statistical analysis allowed us to study and define the structure of the parasite populations circulating in Cambodia for estimating areas at risk of spread of artemisinin resistance (manuscript in preparation 2). Through this work, we have tried to show the usefulness of available molecular biology methods coupled with genomic and bioinformatics approaches to improve our understanding of the dynamics of the malaria parasite populations. This work has been mainly focused on the emergence and spread of antimalarial resistant parasites, keeping in mind that the ultimate goal of this work was to improve strategies implemented to achieve the ambitious goal of malaria elimination.
|
Page generated in 0.0434 seconds