• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 8
  • 4
  • 2
  • 2
  • Tagged with
  • 49
  • 49
  • 26
  • 12
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Calculs théoriques avec le couplage spin orbitales pour les molécules diatomiques YS, YN, ZrS, et ZrN / Theoretical calculations with spin orbit effects of the diatomic molecules YS, YN, ZrS, ZrN

Farhat, Ayman 21 June 2012 (has links)
Cette thèse est consacrée à l'étude ab initio des structures électroniques des molécules diatomiques polaires YN, YS, ZrN, et ZrS. Cette étude est motivé par le manque d’informations dans la littérature sur la structure électronique de ces molécules, alors qu’elles ont clairement été identifiées dans le spectre de certaines étoiles. Des calculs théoriques sont ainsi nécessaire puisqu’ils peuvent fournir d'importantes informations quant aux propriétés des états électroniques fondamentaux et excités qui ne sont pas accessibles expérimentalement. Dans ce travail les calculs ab initio ont été effectués par la méthode du champ auto-cohérent de l'espace actif complet (CASSCF), suivie par l'interaction de configuration multiréférence (MRSDCI). La correction de Davidson, notée (MRSDCI+ Q), a ensuite été appliquée pour rendre compte de clusters ou agrégats quadruples non liés. Les calculs ont été effectués selon deux schémas. Dans le premier les effets spin-orbite ont été négligés alors que dans le second les effets spin orbite ont été inclus par la méthode des potentiels de noyau efficaces. Tous les calculs ont été effectués en utilisant le programme de calcul de chimie physique MOLPRO et en tirant parti de l’interface graphique Gabedit. Les courbes d'énergie potentielle ont été construites et des constantes spectroscopiques calculées, ainsi que les moments dipolaires électriques permanent, les champs électriques moléculaires intenses et les structures énergétiques de vibration-rotation. Nous avons détecté dans la molécule ZrS plusieurs niveaux vibrationnels dégénérés ceux-ci peuvent être utilisés pour rechercher les variantes possibles de la constante de structure fine α etdu rapport de masse μ de l’electron par rapport au proton dans trois étoiles de type S, du nomde Rand, les RCas, et χCyg. La comparaison des données expérimentales et théoriques pour la plupart des constantes calculées a montré une bonne précision pour nos prédictions avec une différence relative (en pourcentage) qui varie entre 0,1% et 10%. Ces résultats devraient ainsi mener à des études expérimentales plus poussées pour ces molécules. / This dissertation is dedicated to the ab initio study of the electronic structures of the polardiatomic molecules YN, YS, ZrN, and ZrS. The identification of these molecules in the spectraof stars as well as the lack in literature on the electronic structures of these molecules motivatedthe present study. Theoretical calculations are useful in this respect since they can provideimportant data for the properties of the ground and excited electronic states that are not availablefrom experimental means. In the present work the ab initio calculations were performed at thecomplete active space self-consistent field method (CASSCF) followed by multireference singleand double configuration interaction method (MRSDCI). The Davidson correction noted as(MRSDCI+Q) was then invoked in order to account for unlinked quadruple clusters. Thecalculations were performed on two stages in the first spin orbit effects were neglected while inthe second type of calculations spin orbit effects were included by the method of effective corepotentials. All of the calculations were done by using the computational physical chemistryprogram MOLPRO and by taking advantage of the graphical user interface Gabedit. In thepresent work potential energy curves were constructed and spectroscopic constants computed,along with permanent electric dipole moments, internal molecular electric fields, and vibrationalrotationalenergy structures. We detected in the ZrS molecule several degenerate vibrationalenergy levels which can be used to search for possible variations of the fine structure constant αand the electron to proton mass ratio μ in three S-type stars, named Rand, RCas, and χCyg. Acomparison with experimental and theoretical data for most of the calculated constantsdemonstrated a good accuracy for our predictions giving a percentage relative difference thatranged between 0.1% and 10%. Finally, we expect that the results of the present work shouldinvoke further experimental investigations for these molecules.
42

A finite element-based approach for the analysis and design of 3D reinforced concrete elements and its applications to D-regions

Meléndez Gimeno, Carlos 01 September 2017 (has links)
The finite element method is a powerful analysis tool which has facilitated a better understanding of the behaviour of reinforced concrete structures. Its use in the research field is widespread and complements experimental tests and the development of new analytical models. Its application in practice engineering has permitted to deal with complex elements. However, the general structural engineer is still reluctant to consider finite element modelling for his work as he finds most of these models excessively sophisticated for his needs and knowledge. In particular, complexity of many finite element tools usually derives from the adoption of advanced concrete constitutive models. Implementation of more simple models based on engineering practice could facilitate its use by less experienced finite element users. In structural engineering practice finite element analysis can be of great usefulness to deal with those more problematic elements and/or where the application of traditional analysis methods presents limitations. This includes the so-called D-regions with a 3D behaviour. The strut-and-tie method and the stress field method are consistent and rational tools for the analysis and design of D-regions, but while their application to 2D elements is well covered in literature, its extension to 3D is problematic. This generally explains why excessively conservative assumptions are still common in the design of these elements. Refinement of current analytical and design approaches or the use of finite element analysis could lead to more rational solutions which in turn will reduce material requirements and costs. A 3D nonlinear finite element-based tool was developed in this thesis oriented towards the analysis and design of 3D D-regions by less experienced finite element users. Regarding material modelling, an orthotropic concrete model was adopted to permit the use of uniaxial stress-strain relationships. Only one single parameter, the uniaxial compressive strength of concrete, needs to be defined. Additionally, several aid functions were implemented, among which the following can be highlighted: a comprehensive, embedded reinforcement model to facilitate the introduction of complex rebar geometries; special support and load elements permitting an integrated and simple treatment of the boundary conditions imposed by them; and a simple design algorithm for the automatic determination of the required rebar areas. Three examples of applications to representative 3D D-regions are presented to show the capabilities of the tool. In particular, the analyses of fourteen four-pile caps, three socket base column-to-foundations connections and one anchorage block are described in the third part of the thesis. Results prove that realistic response predictions can be obtained considering relatively simple constitutive models. The capacity of the tool to configure consistent stress field models depending on the reinforcement arrangement is also demonstrated. The generation of rational reinforcement configurations by applying the implemented design algorithm is also shown. A strut-and-tie-based method for the analysis and design of four-pile caps with rectangular geometries is proposed in the fourth part. The method is based on a refined 3D strut-and-tie model and the consideration of three potential modes of failure: exceeding the reinforcement strength, crushing of the diagonal strut at the base of the column with narrowing of the strut and splitting of the diagonal strut due to transverse cracking. The main innovation is that the strut inclination is not fixed as in current strut-and-tie-based design procedures, but determined by maximizing the pile cap strength. The method accounts for strength softening of cracked concrete, compatibility constraints and reinforcement details. Its application to 162 specimens of literature led to very good predictions of the ultimate strength and, to a lesser extent, of the mode of failure. / El método de los elementos finitos es una potente herramienta de análisis que ha facilitado un mejor conocimiento del comportamiento de las estructuras de hormigón armado. Su uso en el ámbito de la investigación está ampliamente extendido. Su aplicación en la práctica ingenieril ha permitido la resolución de elementos complejos. Sin embargo, el ingeniero estructural común todavía es reticente a usar la modelización por elementos finitos ya que considera que la mayoría de estos modelos son excesivamente sofisticados para sus necesidades. La complejidad de muchas herramientas de elementos finitos suele derivarse de la adopción de modelos constitutivos de hormigón avanzados. La implementación de modelos más sencillos podría facilitar su uso por usuarios menos experimentados. En la práctica ingenieril el análisis con elementos finitos puede ser de gran utilidad para tratar aquellos elementos más problemáticos y/o donde la aplicación de los métodos de análisis tradicionales presenta limitaciones. Esto incluye las llamadas regiones D con comportamiento 3D. El método de bielas y tirantes y el método de campos de tensiones son herramientas racionales para el análisis y dimensionamiento de regiones D, pero su extensión a 3D es problemática. Este hecho explica por qué se adoptan todavía hipótesis excesivamente conservadoras en el dimensionamiento de estos elementos. La propuesta de métodos analíticos y de diseño más adecuados o la modelización con elementos finitos podría conducir a soluciones más racionales, lo que a su vez reduciría las necesidades de material y los costes. Como parte de esta tesis se ha desarrollado una herramienta de cálculo no lineal basada en el método de los elementos finitos orientada al análisis y dimensionamiento de regiones D tridimensionales por usuarios con menos experiencia en la modelización con elementos finitos. Se ha adoptado un modelo ortotrópico para el hormigón para permitir el uso de relaciones uniaxiales de tensión-deformación. Sólo es necesario definir un único parámetro, la resistencia a compresión uniaxial del hormigón. Adicionalmente, se han implementado varias funciones de ayuda, entre las que destacan: un modelo de armadura embebida para facilitar la introducción de geometrías de armado complejas; elementos especiales de apoyo y de carga que permiten un tratamiento integral de las condiciones de contorno; y un algoritmo de diseño para la determinación automática del área de armado necesaria. Se presentan tres ejemplos de aplicación a regiones D 3D representativas para mostrar las capacidades de la herramienta. En concreto, en la tercera parte del documento se describen los análisis de catorce encepados, tres cálices de cimentación y un bloque de anclaje. Los resultados muestran que se pueden obtener predicciones bastante realistas considerando modelos constitutivos relativamente sencillos. También se demuestra la capacidad de la herramienta para configurar modelos de campo de tensiones consistentes dependiendo de la configuración de armado. Además se muestra la capacidad del algoritmo de diseño para configurar disposiciones de armado racionales. En la cuarta parte se propone un método para el análisis y dimensionamiento de encepados sobre cuatro pilotes con geometría rectangular. El método se basa en un modelo 3D de bielas y tirantes refinado y la consideración de tres modos de fallo posibles: rotura del acero, aplastamiento de la biela diagonal en la base de la columna con estrechamiento de la misma y splitting de la biela diagonal debido a la fisuración transversal. La principal novedad es que el ángulo de la biela no se fija como en otros modelos, sino que se determina mediante la maximización de la resistencia del encepado. El método considera el debilitamiento de la resistencia del hormigón fisurado, condiciones de compatibilidad de deformaciones y detalles de armado. Su aplicación a 162 especímenes dio luga / El mètode dels elements finits és una potent eina d'anàlisi que ha facilitat un millor coneixement del comportament de les estructures de formigó armat. El seu ús en l'àmbit de la investigació està àmpliament estès. La seua aplicació en la pràctica enginyeril ha permès la resolució d'elements més complexos. No obstant això, l'enginyer estructural comú encara és reticent a fer servir la modelització per elements finits ja que considera que la majoria d'aquests models són excessivament sofisticats per a les seues necessitats i el seu conèixement. En concret, la complexitat de moltes eines d'elements finits sol derivar-se de l'adopció de models constitutius avançats de formigó. La implementació de models més senzills basats en la pràctica enginyeril podria facilitar el seu ús per a usuaris menys experimentats en la modelització amb elements finits. A la pràctica enginyeril l'anàlisi amb elements finits pot ser de gran utilitat per a tractar aquells elements més problemàtics i/o on l'aplicació dels mètodes d'anàlisi tradicionals presenta limitacions. Això inclou les anomenades regions D amb comportament 3D. El mètode de bieles i tirants i el mètode de camps de tensions són eines racionals per a l'anàlisi i dimensionament de regions D, però la seua extensió a 3D és problemàtica. Aquest fet explica per què s'adopten encara hipòtesis excessivament conservadores en el dimensionament d'aquests elements. La proposta de mètodes analítics i de disseny més adequats o la modelització amb elements finits podria conduir a solucions més racionals, amb el que també es reduirien les necessitats de material i els costos. Com a part d'aquesta tesi s'ha desenvolupat una eina de càlcul no lineal basada en el mètode dels elements finits orientada a l'anàlisi i dimensionament de regions D tridimensionals per a usuaris amb menys experiència en la modelització amb elements finits. S'ha adoptat un model ortotròpic per al formigó per permetre l'ús de relacions uniaxials de tensió-deformació. Només cal definir un únic paràmetre, la resistència a compressió uniaxial del formigó. Addicionalment, s'han implementat diverses funcions d'ajuda, entre les quals destaquen: un model d'armadura embeguda per facilitar la introducció de geometries d'armat complexes; elements especials de suport i de càrrega que permeten un tractament integral i senzill de les condicions de contorn; i un algoritme de disseny per a la determinació automàtica de l'àrea d'armat necessari. Es presenten tres exemples d'aplicació a regions D 3D representatives per mostrar les capacitats de l'eina. En particular, en la tercera part del document es descriuen les anàlisis de catorze enceps sobre quatre pilons, 3 calzes de fonamentació i un bloc d'ancoratge. Els resultats mostren que es poden obtenir prediccions prou realistes considerant models constitutius relativament senzills. També es demostra la capacitat de l'eina per configurar models de camp de tensions consistents depenent de la configuració d'armat. A més es mostra la capacitat de l'algoritme de disseny per configurar disposicions d'armat racionals. En la quarta part es proposa un mètode per a l'anàlisi i dimensionament d'enceps sobre quatre pilons amb geometria rectangular. El mètode es basa en un model 3D de bieles i tirants refinat i la consideració de tres modes de fallada possibles: trencament de l'acer, aixafament de la biela diagonal a la base de la columna amb estrenyiment de la mateixa i splitting de la biela diagonal per causa de la fissuració transversal. La principal novetat és que l'angle de la biela no es fixa com en els models actuals de bieles i tirants, sinó que es determina mitjan\c{c}ant la maximització de la resistència de l'encep. El mètode proposat considera el debilitament de la resistència del formigó fissurat, condicions de compatibilitat de deformacions i detalls d'armat. La seua aplicació a 162 espècimens de la liter / Meléndez Gimeno, C. (2017). A finite element-based approach for the analysis and design of 3D reinforced concrete elements and its applications to D-regions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86193 / TESIS
43

CONSISTENT AND CONSERVATIVE PHASE-FIELD METHOD FOR MULTIPHASE FLOW PROBLEMS

Ziyang Huang (11002410) 23 July 2021 (has links)
<div>This dissertation focuses on a consistent and conservative Phase-Field method for multiphase flow problems, and it includes both model and scheme development. The first general question addressed in the present study is the multiphase volume distribution problem. A consistent and conservative volume distribution algorithm is developed to solve the problem, which eliminates the production of local voids, overfilling, or fictitious phases, but follows the mass conservation of each phase. One of its applications is to determine the Lagrange multipliers that enforce the mass conservation in the Phase-Field equation, and a reduction consistent conservative Allen-Cahn Phase-Field equation is developed. Another application is to remedy the mass change due to implementing the contact angle boundary condition in the Phase-Field equations whose highest spatial derivatives are second-order. As a result, using a 2nd-order Phase-Field equation to study moving contact line problems becomes possible.</div><div><br></div><div>The second general question addressed in the present study is the coupling between a given physically admissible Phase-Field equation to the hydrodynamics. To answer this general question, the present study proposes the <i>consistency of mass conservation</i> and the <i>consistency of mass and momentum transport</i>, and they are first implemented to the Phase-Field equation written in a conservative form. The momentum equation resulting from these two consistency conditions is Galilean invariant and compatible with the kinetic energy conservation, regardless of the details of the Phase-Field equation. It is further illustrated that the 2nd law of thermodynamics and <i>consistency of reduction</i> of the entire multiphase system only rely on the properties of the Phase-Field equation. All the consistency conditions are physically supported by the control volume analysis and mixture theory. If the Phase-Field equation has terms that are not in a conservative form, those terms are treated by the proposed consistent formulation. As a result, the proposed consistency conditions can always be implemented. This is critical for large-density-ratio problems.</div><div><br></div><div>The consistent and conservative numerical framework is developed to preserve the physical properties of the multiphase model. Several new techniques are developed, including the gradient-based phase selection procedure, the momentum conservative method for the surface force, the boundedness mapping resulting from the volume distribution algorithm, the "DGT" operator for the viscous force, and the correspondences of numerical operators in the discrete Phase-Field and momentum equations. With these novel techniques, numerical analyses ensure that the mass of each phase and momentum of the multiphase mixture are conserved, the order parameters are bounded in their physical interval, the summation of the volume fractions of the phases is unity, and all the consistency conditions are satisfied, on the fully discrete level and for an arbitrary number of phases. Violation of the consistency conditions results in inconsistent errors proportional to the density contrasts of the phases. All the numerical analyses are carefully validated, and various challenging multiphase flows are simulated. The results are in good agreement with the exact/asymptotic solutions and with the existing numerical/experimental data.</div><div> </div><div><br></div><div>The multiphase flow problems are extended to including mass (or heat) transfer in moving phases and solidification/melting driven by inhomogeneous temperature. These are accomplished by implementing an additional consistency condition, i.e., <i>consistency of volume fraction conservation</i>, and the diffuse domain approach. Various problems are solved robustly and accurately despite the wide range of material properties in those problems.</div>
44

Phasefield modeling of ternary fluid-structure interaction problems

Mokbel, Dominic 09 February 2024 (has links)
Interactions between three immiscible phases, including incompressible viscoelastic structures and fluids, form standard constellations for countless scenarios in natural science. The complexity of many such scenarios has motivated various research efforts in scientific computing. This work presents novel numerical approaches for two specific of these ternary fluid-structure interaction constellations. The potential of these approaches is demonstrated by diverse applications. First, a phase field model is developed describing the interaction between a fluid and a viscoelastic solid. For this purpose, a Navier-Stokes-Cahn-Hilliard system is considered together with a hyperelastic neo-Hookean model. Based on this, an arbitrary Lagrangian-Eulerian (ALE) method is implemented to simulate the indentation of the solid material in the context of atomic force microscopy, capable of predicting physical parameters. Next, the second approach is developed to describe the interaction between a two-phase fluid and a viscoelastic solid, where fluid and solid are defined on separate domains but aligned at the interface between them. The previously introduced phase field model is used to represent the fluid and an ALE method is used for the motion of the grid, where the fluid-solid interface moves with flow velocity. A unified system is solved in all subdomains, which includes both the balance of mass and momentum and the balance of forces at the fluid-solid interface. Simulations of static and dynamic soft wetting are subsequently presented, in particular a contact line moving over a substrate with oscillating stick-slip behavior. This work combines the advantages of phase field and ALE methods for meaningful simulations and emphasizes validity and numerical stability in all approaches.
45

Approximate Action Selection For Large, Coordinating, Multiagent Systems

Sosnowski, Scott T. 27 May 2016 (has links)
No description available.
46

Peeling et scattering conforme dans les espaces-temps de la relativité générale / Peeling and conformal scattering on the spacetimes of the general relativity

Pham, Truong Xuan 07 April 2017 (has links)
Nous étudions l’analyse asymptotique en relativité générale sous deux aspects: le peeling et le scattering (diffusion) conforme. Le peeling est construit pour les champs scalaires linéaire et non-linéaires et pour les champs de Dirac en espace-temps de Kerr (qui est non-stationnaire et à symétrie simplement axiale), généralisant les travaux de L. Mason et J-P. Nicolas (2009, 2012). La méthode des champs de vecteurs (estimations d’énergie géométriques) et la technique de compactification conforme sont développées. Elles nous permettent de formuler les définitions du peeling à tous ordres et d’obtenir les données initiales optimales qui assurent ces comportements. Une théorie de la diffusion conforme pour les équations de champs sans masse de spîn n/2 dans l’espace-temps de Minkowski est construite.En effectuant les compactifications conformes (complète et partielle), l’espace-temps est complété en ajoutant une frontière constituée de deux hypersurfaces isotropes représentant respectivement les points limites passés et futurs des géodésiques de type lumière. Le comportement asymptotique des champs s’obtient en résolvant le problème de Cauchy pour l’équation rééchelonnée et en considérant les traces des solutions sur ces bords. L’inversibilité des opérateurs de trace, qui associent le comportement asymptotique passé ou futur aux données initiales, s’obtient en résolvant le problème de Goursat sur le bord conforme. L’opérateur de diffusion conforme est alors obtenu par composition de l’opérateur de trace futur avec l’inverse de l’opérateur de trace passé. / This work explores two aspects of asymptotic analysis in general relativity: peeling and conformal scattering.On the one hand, the peeling is constructed for linear and nonlinear scalar fields as well as Dirac fields on Kerr spacetime, which is non-stationary and merely axially symmetric. This generalizes the work of L. Mason and J-P. Nicolas (2009, 2012). The vector field method (geometric energy estimates) and the conformal technique are developed. They allow us to formulate the definition of the peeling at all orders and to obtain the optimal space of initial data which guarantees these behaviours. On the other hand, a conformal scattering theory for the spin-n/2 zero rest-mass equations on Minkowski spacetime is constructed. Using the conformal compactifications (full and partial), the spacetime is completed with two null hypersurfaces representing respectively the past and future end points of null geodesics. The asymptotic behaviour of fields is then obtained by solving the Cauchy problem for the rescaled equation and considering the traces of the solutions on these hypersurfaces. The invertibility of the trace operators, that to the initial data associate the future or past asymptotic behaviours, is obtained by solving the Goursat problem on the conformal boundary. The conformal scattering operator is then obtained by composing the future trace operator with the inverse of the past trace operator.
47

Energetically motivated crack orientation vector for phase-field fracture with a directional split

Steinke, Christian, Storm, Johannes, Kaliske, Michael 08 April 2024 (has links)
The realistic approximation of structural behavior in a post fracture state by the phase-field method requires information about the spatial orientation of the crack surface at the material point level. For the directional phase-field split, this orientation is specified by the crack orientation vector, that is defined perpendicular to the crack surface. An alternative approach to the determination of the orientation based on standard fracture mechanical arguments, i.e. in alignment with the direction of the largest principle tensile strain or stress, is investigated by considering the amount of dissipated strain energy density during crack evolution. In contrast to the application of gradient methods, the analytical approach enables the determination of all local maxima of strain energy density dissipation and, in consequence, the identification of the global maximum, that is assumed to govern the orientation of an evolving crack. Furthermore, the evaluation of the local maxima provides a novel aspect in the discussion of the phenomenon of crack branching. As the directional split differentiates into crack driving contributions of tension and shear stresses on the crack surface, a consistent relation to Mode I and Mode II fracture is available and a mode dependent fracture toughness can be considered. Consequently, the realistic simulation of rock-like fracture is demonstrated. In addition, a numerical investigation of Ƭ-convergence for an AT-2 type crack surface density is presented in a two-dimensional setup. For the directional split, also the issues internal locking as well as lateral phase-field evolution are addressed.
48

Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

Marth, Wieland 05 July 2016 (has links) (PDF)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.
49

Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

Marth, Wieland 27 May 2016 (has links)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.

Page generated in 0.0482 seconds