• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 27
  • 23
  • 16
  • 11
  • 11
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 344
  • 42
  • 40
  • 28
  • 27
  • 25
  • 24
  • 23
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Approaches to Multiple-source Localization and Signal Classification

Reed, Jesse 10 June 2009 (has links)
Source localization with a wireless sensor network remains an important area of research as the number of applications with this problem increases. This work considers the problem of source localization by a network of passive wireless sensors. The primary means by which localization is achieved is through direction-finding at each sensor, and in some cases, range estimation as well. Both single and multiple-target scenarios are considered in this research. In single-source environments, a solution that outperforms the classic least squared error estimation technique by combining direction and range estimates to perform localization is presented. In multiple-source environments, two solutions to the complex data association problem are addressed. The first proposed technique offers a less complex solution to the data association problem than a brute-force approach at the expense of some degradation in performance. For the second technique, the process of signal classification is considered as another approach to the data association problem. Environments in which each signal possesses unique features can be exploited to separate signals at each sensor by their characteristics, which mitigates the complexity of the data association problem and in many cases improves the accuracy of the localization. Two approaches to signal-selective localization are considered in this work. The first is based on the well-known cyclic MUSIC algorithm, and the second combines beamforming and modulation classification. Finally, the implementation of a direction-finding system is discussed. This system includes a uniform circular array as a radio frequency front end and the universal software radio peripheral as a data processor. / Master of Science
222

Analysis and Implementation of a Novel Single Channel Direction Finding Algorithm on a Software Radio Platform

Keaveny, John Joseph 07 March 2005 (has links)
A radio direction finding (DF) system is an antenna array and a receiver arranged in a combination to determine the azimuth angle of a distant emitter. Basically, all DF systems derive the emitter location from an initial determination of the angle-of-arrival (AOA). Radio direction finding techniques have classically been based on multiple-antenna systems employing multiple receivers. Classic techniques such as MUSIC [1][2] and ESPRIT use simultaneous phase information from each antenna to estimate the angle-of-arrival of the signal of interest. In many scenarios (e.g., hand-held systems), however, multiple receivers are impractical. Thus, single channel techniques are of interest, particularly in mobile scenarios. Although the amount of existing research for single channel DF is considerably less than for multi-channel direction finding, single channel direction finding techniques have been previously investigated. Since many of the single channel direction finding techniques are older analog techniques and have been analyzed in previous work, we will investigate a new single channel direction finding technique that takes specific advantage of digital capabilities. Specifically, we propose a phase-based method that uses a bank of Phase-Locked Loops (PLLs) in combination with an eight-element circular array. Our method is similar to the Pseudo-Doppler method in that it samples antennas in a circular array using a commutative switch. In the proposed approach the sampled data is fed to a bank of PLLs which track the phase on each element. The parallel PLLs are implemented in software and their outputs are fed to a signal processing block that estimates the AOA. This thesis presents the details of the new Phase-Locked Loop (PLL) algorithm and compares its performance to existing single channel DF techniques such as the Watson-Watt and the Pseudo-Doppler techniques. We also describe the implementation of the PLL algorithm on a DRS Signal Solutions, Incorporated (DRS-SS) WJ-8629A Software Definable Receiver with Sunrise™ Technology and present measured performance results. / Master of Science
223

Enhancing Direction Finding Accuracy In Perturbed Digital Arrays Via RF Ranging-Based Self Calibration

Freiman, Ariel 01 June 2024 (has links) (PDF)
Direction finding with radio-frequency (RF) waves have numerous applications in radio navigation, wireless localization, emergency aid, and air traffic control, among others. Direction-finding using digital arrays outperforms traditional analog techniques but requires precise knowledge of the location of the array elements to obtain accurate results. Array perturbations can lead to algorithm failures and false detection, compromising direction-finding capabilities. This research proposes implementing a Matched Filter - Least Square (MF-LS) algorithm for Two-Way Ranging (TWR) to enhance direction-finding accuracy in arrays with perturbed element locations. The MF-LS algorithm leverages the properties of matched filters to accurately determine element positions by measuring the Time of Flight (ToF) of a signal between two ranging nodes. This method is independent of GPS or other sensor data, making it a cost-effective and easily deployable solution aimed at minimizing the effects of array perturbations, thus improving direction-finding accuracy. This work validates the MF-LS algorithm efficacy and enables robust direction-finding capabilities in challenging environments where traditional communication and localization services are unavailable. Moreover, this research provides a comprehensive study of direction-finding accuracy in amateur radio bands using the proposed ranging approach which can provide an immediate low-cost option for search and rescue operations in emergency situations.
224

An exploration of two-periodic cycles in discrete quadratic dynamical systems modulo a prime

Elias, Kovalski January 2024 (has links)
This paper is a bachelor thesis in Applied Mathematics at Linnaeus University. The goal of this thesis is to find a structure in sets of discrete quadratic dynamical systems modulo a number, with a main focus on 1-, and 2-periodic points in sets of systems modulo an odd prime. The amount of 1-, and 2-periodic points in such sets is numerically investigated and is proven directly to be p, respectively p-1. Furthermore, the sets are visualized using a diagram, where some apparent structures are noticed, and later explained. Finally, through numerical investigations, an expression for the amount of 2-periodic points in a system modulo a composite number is also perceived, and expressed as a conjecture. Proving the conjecture should be done in a future project.
225

Intégration de mélangeurs optoélectroniques en technologie CMOS pour la télémétrie laser embarquée haute résolution / Integration in CMOS technology of optoelectronic mixer for high resolution embedded laser range-finding systems

Moutaye, Emmanuel 17 December 2010 (has links)
La mesure de distance et la détection d'objets sont devenues essentielles dans de nombreux domaines tels que l'automobile ou la robotique, les applications médicales, les procédés industriels et agricoles, les systèmes de surveillance et de sécurité, etc. Dans le but d'améliorer les performances des dispositifs de télémétrie laser en terme de bruit et de diaphonie, une technique hétérodyne par mélange optoélectronique doit être utilisée. Par ailleurs, l'aspect système embarqué nécessite une réduction de l'encombrement et de la consommation à performances égales. L'intégration de mélangeurs optoélectroniques en technologie CMOS apporte donc une solution optimale à cette approche grâce à ses multiples avantages (intégration du circuit d'instrumentation sur la même puce, modèles bien connus, coût raisonnable, performances élevées,…). Ainsi cette thèse traitera de l'étude de mélangeurs optoélectroniques en technologie CMOS pour la télémétrie embarquée haute résolution. Le premier chapitre de ce manuscrit présente les diverses technique de mesure de distance par télémétrie laser par et justifie le choix de la télémétrie laser par déphasage ainsi que le gain en performances lié à l'hétérodynage. Le second chapitre décrit les mélangeurs électriques et optoélectroniques ainsi que les propriétés nécessaires à leur réalisation. Quelques photodétecteurs y sont présentés au vu de la possibilité de les utiliser en mélangeurs optoélectroniques et d'une intégration potentielle en technologie CMOS. Les principales contraintes liées à l'intégration en technologie CMOS de photocapteurs utilisables en mélangeurs optoélectroniques, sont exposés dans la troisième partie. Les travaux de conception et d'optimisation des structures ainsi que les phases de simulations et de test y sont détaillés. Enfin, pour valider expérimentalement les études précédentes, le dernier chapitre présente la conception d'une chaîne de mesure multivoies pour une tête de photoréception CMOS matricée pour un télémètre laser embarqué haute résolution. / Distance measurement and object detection has become essential in many fields such as automotive and robotics, medical applications, industrial processes and farming systems, surveillance and security, etc.. In order to improve the performance of laser ranging devices in terms of noise and crosstalk, an optoelectronic heterodyne technique of mixing should be used. Moreover, the aspect of embedded system requires a reduction in the size and power consumption for the same performance. The integration of optoelectronic mixers in CMOS technology will provide an optimal solution to this approach through its many advantages (integrated instrumentation circuit on the same chip, well-known models, reasonable cost, high performance, ...). Thus this thesis will focus on the study of optoelectronic mixers in CMOS technology for high resolution, embedded laser range finding systems. The first chapter of this thesis discusses the various technique of distance measurement by laser ranging and justifies the choice of phase shift technique and the gain in performance related to heterodyning. The second chapter describes the electrical and optoelectronic mixers and the properties needed to develop them. Some photodetectors are presented given the opportunity to use optoelectronic mixers and a potential integration with CMOS technology. The main constraints to the integration of CMOS photosensors used in optoelectronic mixers are set out in Part III. The work of design and optimization of structures and phases of simulations and testing are detailed. Finally, to experimentally confirm the earlier studies, the final chapter presents the design of a measuring head for a multichannel photoreceptor CMOS for a high resolution laser range finder.
226

COMPARISON OF LONGITUDINAL AND CONVENTIONAL DATA ANALYSIS METHODS FOR ASSESSING EFFECTIVENESS

Jadhav, Pravin R 01 January 2006 (has links)
Pharmaceutical drug development is a costly and time consuming process. Reportedly, it takes about 10-15 years and ~900 million dollars of investment to launch a new drug in the world market. Any measure that increases the power and also decreases uncertainty about that power also increases drug net present value. For some time now, it has been argued that judicious utilization of available data might lead to more efficient use of resources during drug development. Conventionally, assessment of effectiveness has been based on comparing change from baseline at some pre-specified time for the control and test treatment (SPA). The last observation carry forward (LOCF) is a widely used technique if the data are missing due to any reason. Although, LOCF is known to introduce bias, the direction and magnitude is debatable.The primary aim of the proposed simulation experiments was to assess the properties of the random effects model (REM) and mixed model repeated measures (MMRM) methods that utilize all the data collected during pivotal trials. A total of 43 scenarios based on disease progression, magnitude of drug effect, between and within subject variability and patient drop-outs were analyzed. Three analysis methods, viz. SPA, REM and MMRM, were investigated. For the SPA method, the missing data were imputed with four different methods, such as LOCF, mean imputation, population and individual regression. The false-positive, false-negative inferences and bias in estimating the effect size for each method was assessed.The most important finding of this report is that the REM and MMRM methods are efficient alternatives to the SPA methods with ~50% savings on sample size. These methods are based on sound scientific principles and provide stronger evidence against the null hypothesis. The choice of the REM versus MMRM method is dependent on the purpose of the analysis and data gathered from the experimental design. The results support the use of likelihood-based MMRM methods for regulatory decision making. The REM methods are useful in understanding the time course of the disease and drug effect, making predictions based on the data and gaining insights into time to steady state effect for rational decision making. The SPA methods are less powerful across all the scenarios. The SPA-LOCF yielded anticonservative results in some cases with type-1 error rate exceeding 15% if data were missing due to toxicity. On the other hand, the drug effect was consistently underestimated (~40%), if data were missing due to lack of effectiveness. The results demonstrate that the SPA-LOCF methods make it practically impossible to establish effectiveness in these areas with a reasonable sample size.
227

Optimisation mécanique et énergétique d'enveloppes en matériaux composites pour les bâtiments / Mechanical and thermal optimisation of fiber-reinforced plastic building envelopes

Kotelnikova-Weiler, Natalia 19 December 2012 (has links)
La majorité des bâtiments existant aujourd'hui ne respectent pas les réglementations thermiques actuelles. Pour répondre aux exigences environnementales il est impossible, dans ce contexte, d'envisager une politique globale de démolition-reconstruction. Des campagnes de réhabilitation doivent être mises en place. Une solution innovante de réhabilitation énergétique est proposée permettant d'exploiter les ressources énergétiques urbaines, peu utilisées actuellement. Elle consiste à rajouter autour du bâtiment une enveloppe extérieure qui aurait pour fonction principale le captage d'énergie solaire. Un outil d'optimisation de la géométrie de l'enveloppe et de la distribution spatiale de panneaux capteurs à sa surface est développé. Sa validation est effectuée sur des cas simples, puis il est appliqué aux situations présentant de forts contrastes : optimisation pendant la période d'hiver ou d'été, à Oslo ou à Tunis, avec des obstacles proches masquant le Soleil. Afin de réaliser les formes complexes obtenues, il est proposé d'utiliser les gridshells comme système constructif. Ces structures obtenues par déformation élastique d'une grille de poutres en matériau composite initialement planes posent la question de la durabilité de ces matériaux soumis au chargement permanent. Pour étudier le comportement à long terme (fluage et rupture différée) de ces matériaux composés de fibres de renfort et matrice polymère viscoélastique, un modèle micro-mécanique est développé. Ce modèle de type shear-lag permet d'étudier l'influence des propriétés mécaniques des constituants sur la durée de vie du composite soumis à un chargement en traction et traction-cisaillement combinés / The majority of existing buildings does not follow present energy efficiency regulations. In order to fulfill environmental requirements it seems impossible, in this context, to consider a global demolition-reconstruction policy. Renovation programmes need to be implemented. An innovative energy efficiency improvement solution is proposed, enabling to explore urbain energy ressources presently underexploited. The concept is to add, around the building, an external envelope whose main function would be to collect energy. An optimization tool aiming at finding the optimal geometry and collectors' spatial distribution on the envelope's surface, is developed. Its validation is carried out on simple cases, it is then applied in situations showing strong contrasts: optimization during summer and winter, in Oslo and in Tunis, with close obstacles partially masking the Sun. In order to build the emerging complex geometries, the use of gridshell structures is proposed. These structures are obtained through elastic deformation of an initially plane grid made of composite material slender beams. This raises the problem of composite materials durability under sustained loading. In order to study the long-term behavior (creep and creep rupture) of these materials composed of reinforcing fibres and a polymeric viscoelastic matrix, a micromechanical model is developed. This shear-lag type model allows studying the influence of the constituents' mechanical properties on the lifespan of the composite under permanent pure traction or combined shear and traction loadings
228

A virtual RSNS direction finding antenna system

Chen, Jui-Chun 12 1900 (has links)
Approved for public release; distribution in unlimited. / In this thesis, a performance analysis and improvement of a phase sampling interferometer antenna system based on the Robust Symmetrical Number System (RSNS) in the presence of noise is investigated. Previous works have shown that the RSNS-based DF technique can provide high bearing resolution with a minimum number of antenna elements. However, the previous experimental data showed significant deviation from the theoretical results expected due to imperfections, errors, and noise. Therefore, an additive Gaussian noise model of RSNS-based DF was established and simulated. Simulation results show that the presence of noise distorts the signal amplitudes used in the RSNS processor and causes degradation of the angle-ofarrival estimates. A performance analysis was undertaken by first introducing the quadrature modulation configuration into RSNS-based DF system, which provided a digital antenna approach for more flexibility in the signal processing. With a digital approach, variable resolution signal preprocessing can be employed, using a virtual channel concept. The virtual channel concept changes moduli values without changing the actual physical antenna element spacing. This attractive property allows the RSNS algorithm to be implemented into existing antenna arrays and only requires modifying the antenna signal processor. Computer simulation results showed that the proposed method can successfully improve the system performance and also mitigate the effects of noise. / Captain, Taiwan Army
229

Inteligentní řízení ve strategických hrách / Rational Thinking in Strategic Games

Knotek, David Unknown Date (has links)
The target of this work is a creation of simple strategic game with distinct signs of artificial intelligence. Artificial intelligence will be in project represented on three levels, managerial (global), robotically (local) and assist (associated). In the next phase of the project will be the main attention targeted on graphical side of game, 2D simulator of play, graphical interface a resulting deployment the game. The game will be implemented in language C++, which provide sufficient comfort, and may be used multi-platformly.
230

Busca da forma aplicada a sistemas de cabos de aço retesados / Form finding techniques for steel cable structures

Haydamus, Alfredo Henrique 12 April 2019 (has links)
Esta dissertação trata das metodologias de busca da forma (form finding) aplicadas a sistemas estruturais de cabos de aço retesados, destacando aquelas que foram amplamente utilizadas pelo arquiteto alemão Frei Otto: modelos físicos de correntes e molas e o método numérico das Densidades de Forças. O método de Relaxação Dinâmica, as soluções gráficas, modelos de correntes e pesos, assim como os de películas de sabão, também foram analisados de modo breve. O trabalho objetivou examinar as singularidades de tais metodologias de concepção estrutural. Tarefa que foi realizada, em primeiro lugar, por meio da revisão da literatura crítica acerca do emprego e do desenvolvimento das tecnologias de sistemas de cabos de aço retesados. Em seguida, partindo das obras examinadas, simulou-se quatro situações de projetos de estruturas retesadas, que foram executadas através da construção de modelos físicos e numéricos. As maquetes físicas foram construídas por meio de modelos de correntes e molas, e tiveram o intuito de fornecer dados de ordem qualitativa acerca do comportamento estrutural. As representações digitais, por sua vez, foram desenvolvidas com o método das Densidades de Forças, por intermédio do software Rhinoceros e do seu plug-in Grasshopper. Elas permitiram avaliar critérios quantitativos, como precisão, conformidade e eficiência. Por fim, os resultados obtidos através dos modelos físicos foram comparados aos experimentos digitais, com o intuito de analisar as especificidades de cada alternativa, buscando compreender as vantagens e limites de suas aplicações práticas. / This work presents two form finding methodologies applied to steel cable structures, physical model with springs and Force Density Method, both widely used by Frei Otto and his team. Other techniques are also studied; e.g. chains models, soap film models, graphic solutions and Dynamic Relaxation Method. Firstly, the historical developments of form-active structures were listed, together with a series of projects that became technical and conceptual milestones in the Brazilian and international scenario. Secondly, the process of manufacturing two form finding models is reported, one physical spring model and one numerical Force Density Method performed with computer-aided design (CAD) application Rhinoceros and its plug-in Grasshopper. Both models were carried out aiming to investigate their advantages and limits. Lastly, four experimental case studies were selected, based on projects studied in the first phase of this work. Diverse typologies and boundary conditions were chosen for comparative evaluation of the qualitative physical model and the numerical one. The appraisal of the modeling techniques\' efficiency and robustness levels was done through analysis of the differences between nodes\' coordinates and bars\' lengths obtained through each method.

Page generated in 0.073 seconds