Spelling suggestions: "subject:"värmeproduktion""
1 |
Expansion av Fjärrvärmeproduktion ur ett Ekonomiskt Perspektiv : En Numeriskt Modellerad Fallstudie / Expansion of District Heating Production in an Economical Perspective : A Numerically Modelled Case StudyHedkvist, Måns January 2021 (has links)
Fjärrvärme i dagens Sverige är ett väletablerat sätt att leverera värme för både industriell och privat användning. Med nästa generations fjärrvärmesystem vid horisonten kan förändringar av existerande fjärrvärmenät komma att bli vanligt förekommande. Trots att det inte är fullt aktuellt med den typen av renoveringar ännu så måste fjärrvärmenät ibland byggas ut för att hantera nya situationer som kan uppstå. För att få en god uppskattning om vad de nya situationerna kommer kräva, och potentiellt kosta, så är simuleringsmodeller ett användbart verktyg. Den här studien har granskat en kommande ökning av effektbehovet och en konsekvent ökning av den producerade värmen angående fjärrvärmesystemet lokaliserat i Malå. Granskningen genomfördes via etablering av en simuleringsmodell som baserats på metoder från tillgänglig litteratur. Empiriska värden användes både som indata till modellen och för feluppskattning. Två hypotetiska scenarier undersöktes där effektbehovet hos en industrikund antas dubbleras, ett som systemet ser ut idag och det andra med ett termiskt energilager i form av en ackumulatortank inkluderat. Simuleringssvaren gav en uppskattning av hur mycket effekt en ny produktionsenhet behöver kunna producera för att nå ett eftersökt mål. Dessa visade på att en ny produktionsenhet med en effekt av minst 10.50 MW är nödvändigt. Vidare så indikerade resultaten att installation av ett sådant energilager med den valda styrningen inte reducerar effektmagnituden hos en ny produktionsenhet. De visade dock på att införande av energilagret kan medföra en reduktion i antalet effektsvängningar som förekommer i systemet. Beroende på övrig konfiguration så minskades förekomsten av antalet effektsvängningar mellan 0.2 till 25.5 procent med ett energilager av den minsta undersökta volymen infört. / District heating in Sweden is a well established way of delivering heat for both industrial and private applications. With the next generation of district heating on the doorstep, changes of existing district heating networks may become a regular occurrence. Despite the fact that these kinds of reconstructions are not quite applicable yet, refurbishments of existing district heating networks are still sometimes necessary in order to deal with new prerequisites that may appear. In order to achieve a good estimation of what these new prerequisites will require and possibly cost, the usage of tools such as models for simulation are valuable. This study has evaluated a future increase of power demand and the subsequent expansion of the produced heat concerning the district heating network located in the city of Malå. The evaluation was carried forth by establishment of a simulation model which was based on present literature. Empirical data was used both as input and for error estimation. Two hypothetical scenarios were examined in which the power demand of an industrial customer is assumed to be doubled. The first represented the system as it is defined presently, while the other introduced a tank thermal energy storage to the system. The results of the simulation yielded an estimate of how much heat a new plant needs to produce in order to attain a set goal. These suggested that the necessary heat production in the new plant needs to be at least 10.50 MW. Furthermore, the results indicated that the inclusion of a thermal energy storage of this kind and with the defined priorities will not reduce the required size of a new production plant. However, they did indicate that the defined thermal energy storage may contribute to a reduction in the number of power fluctuations occurring in the system. Depending on other configurations, the frequency of the power fluctuations were reduced between 0.2 to 25.5 percent with the inlcusion of the smallest examined thermal energy storage.
|
2 |
Högtempererat borrhålslager för fjärrvärme / High Temperature Borehole Thermal Energy Storage for District HeatingHallqvist, Karl January 2014 (has links)
The district heating load is seasonally dependent, with a low load during periods of high ambient temperature. Thermal energy storage (TES) has the potential to shift heating loads from winter to summer, thus reducing cost and environmental impact of District Heat production. In this study, a concept of high temperature borehole thermal energy storage (HT-BTES) together with a pellet heating plant for temperature boost, is presented and evaluated by its technical limitations, its ability to supply heat, its function within the district heating system, as well as its environmental impact and economic viability in Gothenburg, Sweden, a city with access to high quantities of waste heat. The concept has proven potentially environmentally friendly and potentially profitable if its design is balanced to achieve a good enough supply temperature from the HT-BTES. The size of the heat storage, the distance between boreholes and low borehole thermal resistance are key parameters to achieve high temperature. Profitability increases if a location with lower temperature demand, as well as risk of future shortage of supply, can be met. Feasibility also increases if existing pellet heating plant and district heating connection can be used and if lower rate of return on investment can be accepted. Access to HT-BTES in the district heating network enables greater flexibility and availability of production of District Heating, thereby facilitating readjustments to different strategies and policies. However, concerns for the durability of feasible borehole heat exchangers (BHE) exist in high temperature application. / Värmebehovet är starkt säsongsberoende, med låg last under perioder av högre omgivningstemperatur och hög last under perioder av lägre omgivningstemperaturer. I Göteborg finns en stor mängd spillvärme tillgängligt för fjärrvärmeproduktion sommartid när behovet av värme är lågt. Tillgång till säsongsvärmelager möjliggör att fjärrvärmeproduktion flyttas från vinterhalvår till sommarhalvår, vilket kan ge såväl lönsamhet som miljönytta. Borrhålsvärmelager är ett förhållandevis billigt sätt att lagra värme, och innebär att berggrunden värms upp under sommaren genom att varmt vatten flödar i borrhål, för att under vinterhalvåret användas genom att låta kallt vatten flöda i borrhålen och värmas upp. I traditionella borrhålsvärmelager används ofta värmepump för att höja värmelagrets urladdade temperatur, men på grund av höga temperaturkrav för fjärrvärme kan kostnaden för värmepump bli hög. I denna rapport föreslås ett system för att klara av att nå höga temperaturer till en lägre kostnad. Systemet består av ett borrhålsvärmelager anpassat för högre temperaturer (HT-BTES) samt pelletspannor för att spetsa lagrets utgående fluid för att nå hög temperatur. Syftet med rapporten är att undersöka potentialen för detta HT-BTES-system med avseende på dess tekniska begränsningar, förmåga till fjärrvärmeleverans, konsekvenser för fjärrvärmesystemet, samt lönsamhet och miljöpåverkan. För att garantera att inlagringen av värme inte är så stor att priset för inlagrad värme ökar väsentligt, utgår inlagringen från hur mycket värme som kyls bort i fjärrvärmenätet sommartid. I verkligheten finns betydligt mer värme tillgänglig till låg kostnad. När HT-BTES-systemet producerar fjärrvärme, ersätts fjärrvärmeproduktion från andra produktionsenheter, förutsatt att HT-BTES-systemets rörliga kostnader är lägre. I Göteborg ersätts främst naturgas från kraftvärme, men också en del flis. Kostnadsbesparingen beror på differensen för total fjärrvärmeproduktionskostnad med och utan HT-BTES-systemet. Undersökningen visar att besparingen är större om HT-BTES-systemet placeras i ett område där det är möjligt att mata ut fjärrvärme med lägre temperatur. Om urladdning från HT-BTES kan ske med hög temperatur ökar också besparingen. Detta sker om lagrets volym ökar, om avståndet mellan borrhål minskar eller om värmeöverföringen mellan det flödande vattnet i borrhålen och berggrunden ökar. Dessa egenskaper för lagret leder också till minskade koldioxidutsläpp. Storleken på besparingen beror dock i hög grad på hur bränslepriser utvecklas i framtiden. Strategiska fördelar med HT-BTES-systemet inkluderar; minskad miljöpåverkan, robust system med lång teknisk livslängd (för delar av HT-BTES-systemet), samt att inlagring av värme kan ske från många olika produktionsenheter. Dessutom kan positiva bieffekter identifieras. Undersökningen visar att HT-BTES-systemet har god potential att ge lönsamhet och minskad miljöpåverkan, och att anläggning och drift av lagret kan ske utan omfattande lokal miljöpåverkan. Det har också visats att de geologiska förutsättningarna för HT-BTES är goda på många platser i Göteborg, även om lokala förhållanden kan skilja sig åt. För att nå lönsamhet för HT-BTES-systemet krävs en avvägning på utformning av lagret för att nå hög urladdad temperatur utan att investeringskostnaden blir för stor. Undersökningen visar att om anslutning av HT-BTES-systemet kan ske mot befintlig anslutningspunkt eller till befintlig värmepanna kan investeringskostnaden minska och därmed lönsamheten öka. Placering av HT-BTES-systemet i områden med risk för överföringsbegränsningar kan också minska behovet av att förstärka fjärrvärmenätet, och således bidra till att minska de kostnader som förstärkning av nätet innebär. Betydelsefulla parametrar för att nå lönsamhet för HT-BTES-system inkluderar dessutom kostnaden för inlagrad värme liksom vilket vinstkrav som kan accepteras. Tillgång till HT-BTES möjliggör ökad nyttjandegrad och flexibilitet för fjärrvärmeproduktionsenheter, och därmed ökad anpassningsmöjlighet till förändrade förutsättningar på värmemarknaden. Dock återstår att visa att komponenter som klarar de höga temperaturkraven kan tillverkas till acceptabel kostnad.
|
Page generated in 0.1122 seconds