Spelling suggestions: "subject:"foodweb"" "subject:"foodwebs""
121 |
The Influence of Body Size on the Ecology of Coastal Fish Predators in The BahamasHammerschlag-Peyer, Caroline M 02 November 2011 (has links)
Body size is a fundamental structural characteristic of organisms, determining critical life history and physiological traits, and influencing population dynamics, community structure, and ecosystem function. For my dissertation, I focused on effects of body size on habitat use and diet of important coastal fish predators, as well as their influence on faunal communities in Bahamian wetlands. First, using acoustic telemetry and stable isotope analysis, I identified high variability in movement patterns and habitat use among individuals within a gray snapper (Lutjanus griseus) and schoolmaster snapper (L. apodus) population. This intrapopulation variation was not explained by body size, but by individual behavior in habitat use. Isotope values differed between individuals that moved further distances and individuals that stayed close to their home sites, suggesting movement differences were related to specific patterns of foraging behavior. Subsequently, while investigating diet of schoolmaster snapper over a two-year period using stomach content and stable isotope analyses, I also found intrapopulation diet variation, mostly explained by differences in size class, individual behavior and temporal variability. I then developed a hypothesis-testing framework examining intrapopulation niche variation between size classes using stable isotopes. This framework can serve as baseline to categorize taxonomic or functional groupings into specific niche shift scenarios, as well as to help elucidate underlying mechanisms causing niche shifts in certain size classes. Finally, I examined the effect of different-sized fish predators on epifaunal community structure in shallow seagrass beds using exclusion experiments at two spatial scales. Overall, I found that predator effects were rather weak, with predator size and spatial scale having no impact on the community. Yet, I also found some evidence of strong interactions on particular common snapper prey. As Bahamian wetlands are increasingly threatened by human activities (e.g., overexploitation, habitat degradation), an enhanced knowledge of the ecology of organisms inhabiting these systems is crucial for developing appropriate conservation and management strategies. My dissertation research contributed to this effort by providing critical information about the resource use of important Bahamian fish predators, as well as their effect on faunal seagrass communities.
|
122 |
Addressing Secondary Student Misconceptions in EcologyShort, Melissa L. 26 May 2011 (has links)
No description available.
|
123 |
Allochthony of detritivorous fish in Ohio reservoirs, as determined using stable hydrogen isotopesBabler, Allison L. 17 August 2009 (has links)
No description available.
|
124 |
Comparing hypotheses proposed by two conceptual models for stream ecologyCollins, Sean E. 27 October 2014 (has links)
No description available.
|
125 |
Assessment of heavy metal contamination and restoration of soil food web structural complexity in urban vacant lots in two post-industrial citiesSharma, Kuhuk 04 November 2014 (has links)
No description available.
|
126 |
Functional Responses of Stream Communities to Acid Mine Drainage RemediationDrerup, Samuel A. 08 July 2016 (has links)
No description available.
|
127 |
Relationships among basal energy availability, nonnative predator success, and native fish declines in the upper Gila River Basin, NM, USA.Whitney, James January 1900 (has links)
Master of Science / Department of Biology / Keith B. Gido / Nonnative species represent a major threat to the continued persistence of native fishes globally, especially in the Colorado River Basin of western North America, where there are now more nonnative than native fishes. In the upper Gila River, a tributary of the Colorado, numerous nonnative fishes have established populations, and predation by these nonnatives has been linked to extirpation of native fishes under low-flow conditions at some locations. Historically, the upper Gila lacked a top piscivore, and it is unclear what mechanisms have allowed the establishment of nonnative piscivores and resultant extension in food chain length. To investigate the phenomenon of increased food chain length through nonnative introductions we explored the influence of autochthonous energy availability on nonnative predator abundance, food chain length, and abundance of other trophic levels. Predictions were that increased basal energy availability would lead to increased nonnative predator abundance and thus increased food chain length, based upon predictions from food web theory. Annual production and biomass of four trophic levels measured across six longitudinally-positioned sites were calculated between June 2008 and June 2009 to test these predictions. In addition, energy demand of trophic levels relative to energy supply was compared across sites using a quantitative food web approach, to evaluate energy limitation across trophic levels. Primary production was found to vary considerably across the upper Gila (1,677-16,276 kcal m-2 yr-1), but production and biomass of other trophic levels was not related to this gradient as predicted. In addition, food chain length demonstrated a marginally-significant negative relationship with primary production (R[superscript]2=0.42, d.f.=5, p=0.16), which was in contrast with predicted responses. These results suggest that energy availability does not appear to be a limiting factor to the production or biomass of consumers. The influence of other mechanisms on food chain length in the upper Gila River, in particular disturbance frequency and intensity, deserve further investigation.
|
128 |
Fishing for sustainability : Towards transformation of seagrass-associated small-scale fisheriesWallner-Hahn, Sieglind January 2017 (has links)
Small-scale fisheries employ many millions of people around the world, and are particularly important in developing countries, where the dependency on marine resources is high and livelihood diversification options are scarce. In many areas of the world however, small-scale fisheries are at risk which threatens the food security and wellbeing of coastal people. Small-scale fisheries management has in many cases been insufficient and new comprehensive approaches are recommended to achieve social-ecological sustainability in the long-term. The aim of this thesis is to analyze empirically how social-ecological elements of seagrass-associated small-scale fisheries in the Western Indian Ocean region can be addressed for a transformation from the current mostly degraded state to more sustainable social-ecological systems and secure future livelihoods. The main method used was semi-structured interviews with local fishers. The main findings show the crucial contributions seagrass-associated small-scale fisheries make to food security and income generation and highlight the need to acknowledge the social-ecological importance of seagrasses in the seascape (Paper I). A discrepancy between low societal gains of the fishing of sea urchin predator fish species and their crucial importance in the food web (in controlling sea urchin populations and the associated grazing pressure on seagrasses) was identified (Paper II). These results suggest catch-and-release practice of sea urchin predator fish species, which could contribute to more balanced predator – sea urchin – seagrass food webs in the long run. The use of illegal dragnets was identified as a major threat to local seagrass meadows (Paper IV). Institutional elements influencing the use of such destructive dragnet were identified to be normative, cultural-cognitive and economic, which constitutes an institutional misfit to the current emphasis on regulative elements in a hierarchical manner (Paper III). Concerning future co-management initiatives, gear restrictions and education were the favoured management measures among all fishers (Paper IV). A majority of fishers were willing to participate in monitoring and controls, and most fishers thought they themselves and their communities would benefit most from seagrass-specific management. These findings highlight the need for actions on multiple scales, being the local-, management-, policy- and governance levels. The suggested actions include: education and exchange of ecological and scientific knowledge, gear management including the cessation of dragnet fishing, strengthening of local institutions, an active participation of fishers in enforcement of existing rules and regulations and an introduction of adequate alternative livelihood options. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 4: Manuscript.</p>
|
129 |
The soil food web of temperate deciduous forests: litter and root resources as driving factors, and soil fauna effects on ecosystem processesGrubert, Diana 04 April 2016 (has links)
No description available.
|
130 |
Fear in wildlife food webs: large carnivore predation risk mediates the impacts of a mammalian mesopredatorSuraci, Justin 27 April 2016 (has links)
Mounting evidence suggests that large carnivores regulate the abundance and diversity of species at multiple trophic levels through cascading top-down effects. The fear large carnivores inspire in their prey may be a critical component of these top-down effects, buffering lower trophic levels from overconsumption by suppressing large herbivore and mesopredator foraging. However, the evidence that the fear of large carnivores cascades through food webs has been repeatedly challenged because it remains experimentally untested.
My collaborators and I exploited a natural experiment – the presence or absence of mesopredator raccoons (Procyon lotor) on islands in the Gulf Islands of British Columbia, Canada – to examine the breadth of mesopredator impacts in a system from which all native large carnivores have been extirpated. By comparing prey abundance on islands with and without raccoons, we found significant negative effects of raccoon presence on terrestrial (songbirds and corvids), intertidal (crabs and fish) and shallow subtidal (red rock crabs Cancer productus) prey, demonstrating that, in the absence of native large carnivores, mesopredator impacts on islands can extend across ecosystem boundaries to affect both terrestrial and marine communities.
To test whether fear of large carnivores can mitigate these community-level impacts of mesopredators, we experimentally manipulated fear in free-living raccoon populations using month-long playbacks of large carnivore vocalizations and monitored the effects on raccoon behaviour and the intertidal community. Fear of large carnivores reduced raccoon foraging to the benefit of the raccoon’s prey, which in turn affected a competitor and prey of the raccoon’s prey. By experimentally restoring the fear of large carnivores in our study system, we succeeded in reversing the impacts of raccoons, reinforcing the need to protect large carnivores given the conservation benefits the fear of them provides.
Our experimental work demonstrated that fine-scale behavioural changes in prey in response to predation risk can have community-level effects relevant to biodiversity conservation. However, experimentally testing animal responses to predators and other sources of risk in free-living wildlife presents considerable logistical challenges. To address these challenges, my collaborators and I developed an Automated Behavioural Response system, which integrates playback experiments into camera trap studies, allowing researchers to collect experimental data from wildlife populations without requiring the presence of an observer. Here I describe tests of this system in Uganda, Canada and the USA, and discuss novel research opportunities in ecology and conservation biology made available by this new technology. / Graduate
|
Page generated in 0.0315 seconds