11 |
Train Induced Vibration Analysis of an End-frame Bridge : Numerical Analysis on SidensjövägenWiberg, Niklas, Halilovic, Jasmin January 2018 (has links)
Higher speeds and higher capacity will cause the Swedish rail network to be exposed to disturbing dynamic effects. Higher speeds cause higher vertical acceleration levels of the bridge deck. In this thesis, a numerical analysis of a three span end-frame bridge subjected to train induced vibrations is performed. The aim is to identify which structural components and boundary conditions that affect the dynamic behavior of the bridge. Furthermore, the influence of soil structure interaction (SSI) will be investigated as it may have contribution to the stiffness and damping of the structural system. In order to capture the dynamic response of the bridge, an analysis in the frequency domain was preformed where frequency response functions (FRF) and acceleration envelopes were obtained. For this purpose, a detailed FE-model in 3D was created. Three different cases were studied, model subjected to ballast, model subjected to soil and model subjected to both ballast and soil in coherence. A high speed load model (HSLM) was used to create simulation of train passages at different speeds and applied to all cases so that the bridge deck accelerations could be studied. A simplified 2D-model with impedance functions representing the soil-structure interaction was created to validate the results from the detailed 3D-model and for practical design purposes. The result of this numerical analysis showed that the vertical accelerations were within acceptable levels of the maximum allowed limits given in governing publications. Considering the surrounding soil, the results revealed an increase of the dynamic response in the midspan at resonant frequency. However, it was identified that this behavior is not explained by the influence of soil structure interaction but rather the change in boundary conditions of the end-shields. The same dynamic behavior was identified for the simplified 2D-model, with a slight underestimation of the vertical accelerations at resonance.
|
12 |
Parametriserad projektering av plattrambroar : Koppling mellan Rhinoceros och Grasshopper / Parametric design of slab frame bridges : Connection between Rhinoceros and GrasshopperSaliba, Johannes, Özkanat, Merve January 2020 (has links)
Det här projektet syftade till att studera och införa ett skript för parametriserad modellering av en bro i programmen Rhinoceros och Grasshopper. Skriptet skapades genom visuella programmeringskomponenter och brokonstruktionen som modellerades i detta projekt var en plattrambro. Parametrisk design är ett verktyg som skapar modeller med hjälp av olika förutsättningar kallade parametrar. Dessa parametrar kan ändras direkt i programmen som även ändrar modellen. Detta underlättar redigeringsprocessen av modeller i projekt samt gör det möjligt för flera variationer av samma konstruktionstyp att hanteras i ett och samma skript. I detta projekt användes även Tekla Structures vilket är ett kraftfullt BIM-verktyg som klarar av att modellera och räkna på hus- och anläggningskonstruktioner. Rhinoceros-Grasshopper kopplas till Tekla med programmets eget plug-in, kallad Tekla live-link. Ett flertal intervjuer har genomförts med experter inom området för input om hur programmen används idag, inom de olika byggföretagen, samt hur långt modellering med parametrar har kommit. Resultatet av detta examensarbete visar att parametriserad modellering främst är användbart vid redigeringar av modeller. Den modellerade konstruktionen programmeras på ett sätt där alla dess ingående delar hänger ihop. Då kan redigeringar på specifika delar göras utan att behöva ändra/modellera de resterande delarna på nytt. Detta gör att mindre arbete behöver läggas på redigeringar. Vid projekt med mindre konstruktioner eller enkla geometrier är program som Tekla ett snabbare och smidigare verktyg än Rhinoceros då programmering av skript kan ta mycket tid. Arbetet som har genomförts i detta examensarbete visar dock att det kan vara lämpligt att använda parametriserad modellering vid projekt med större eller mer komplicerade konstruktioner. / The purpose of this thesis was to study and implement a script for a parametric modelling of a bridge in Rhinoceros 3D Grasshopper. The script was done with visualized programming components and the structure was a slab frame bridge. Parametric design is a tool that create models with the use of different prerequisites called parameters. These parameters can be changed directly in the script which in turn changes the model. This makes the editing process of the model easier and allows for greater variations of the same structure to be handled within the same script. In this project, Tekla Structures was used which is a powerful BIM tool that can be used for design and analyses of various structures. Rhinoceros Grasshopper was connected to Tekla Structures with their own plugin, called Tekla live link. Several interviews have been conducted with experts and experienced people in the subject for input on how the programs are used today in the building branch as well as how far parametric design has come. The results of this thesis shows that parametric design is useful mostly when it comes to redactions of an already existing model. The designed structures are programmed in such a way that all their different components are connected. This allows for edits and redactions to be made on one specific component without having to change or redesign the rest. This saves time during the designing part of a project. Although, when it comes to smaller scaled projects or structures with simple geometries,using programs such as Tekla Structures is still faster and easier as opposed to using Rhinoceros Grasshopper. This is because programming and creating a script can take a lot of time and is very complicated at times. However, the result of this thesis shows that it could be wise to use parametric programming when it comes to larger projects and/or more complicated structures.
|
13 |
Soil-Structure Interaction Analysis of Portal Frame Railway Bridges : Numerical Analysis of Two Case Study BridgesSandqvist, Nils, Milicevic, Marko January 2020 (has links)
This thesis concerns dynamic Soil-Structure Interaction (SSI) analysis of portal framerailway bridges. Dynamic problems are common for bridges used for high speedrailway traffic. The passing trains induce harmonic loads on the bridges causingvibration amplitudes that may cause damage to the bridge structures and userdiscomfort.Previous studies have shown that the effects of SSI are substantial for short spanportal frame bridges. The damping ratio of the system is greatly increased due to theenergy dissipation properties of the surrounding soil causing significant changes in thedynamic response of the structure. Therefore, it is of interest to investigate the effectsof SSI for portal frame bridges with longer spans.Two case study bridges with span lengths of approximately 16m have been investigatedin detail in this study. Dynamic analyses of the bridges and train passage simulationshave been performed. The results show that SSI significantly increases the dampingratio which leads to lower vibration amplitudes. It is also possible to draw theconclusion that more accurate results are achieved when modeling fixed foundationsrather than using static spring foundations to replicate the stiffness of the subsoil.Moreover, a simplified modeling approach accounting for the effects of SSI is proposed.The proposed method provides satisfactory results, but more future work may increasethe quality of the results further. To validate the conclusions from this study, a proposalfor experimental validation is presented. Performing full-scale dynamic tests on thestudied bridges would enable further comparison and validation of the results.
|
14 |
3D-modellering av en plattrambro i Tekla Structures : Arbetsmetod av en fallstudie / 3D modeling of a slab-fram bridge in Tekla Structures : Methodology of a case-studyNamdar, Sahar, Hernodh, Olle January 2013 (has links)
Detta examensarbete ämnar besvara huruvida Tekla Structures kan fungera som ett lämpligt 3D-modelleringsprogram för konstruktionsgruppen Nyanläggning och Bro inom Grontmij Sverige. Med goda erfarenheter av Building Information Modeling, s.k. BIM, och 3D-modellering inom andra delar av Grontmij så fanns en önskan att optimera gruppens arbetsprocesser med den senaste kunskapen inom området. Arbetet har fokuserat på att praktiskt modellera en fallstudie baserat på ett av Grontmij tidigare genomfört anläggningsprojekt. För att säkerställa fallstudiens representativitet valdes en plattrambro med stor mängd armering som ansågs ha en komplex geometri vilket potentiellt skulle fördelaktigt kunna representeras i 3D. Vid skapandet av 3D-modellen och tillhörande ritningar delades processen in i tre steg; modellering, detaljering samt visualisering. Uppbyggandet av 3D- modellen påvisade unika för- och nackdelar i varje steg där också nedlagd arbetstid jämfördes med fallstudieprojektets tidplan. Resultaten visade att stegen modellering och detaljering (armering) uppvisade stora fördelar i relation till tidsåtgång. För steget visualisering, skapandet av 2D-ritningar enligt rapportens nomenklatur, var slutsatsen den omvända. Grontmij Nyanläggning och Bro rekommenderas därför att selektivt integrera Tekla Structures fördelar i sin framtida arbetsprocess samt fortsätta utvärdera programmet inom andra relaterade områden. / This thesis intends to answer whether Tekla Structures can function as a suitable 3D modeling software for the department of Transportation & Mobility within Grontmij Sweden. Given positive experiences from Building Information Modeling, so called BIM, and 3D modeling in other areas of Grontmij there was a desire to optimize the work processes of the department with the latest knowledge in the field. This report focuses on practical modeling of a case study, based on one of Grontmij’s previously conducted construction projects. To ensure a representative case study, a heavily reinforced slab-frame bridge was selected which was considered to have a complex geometry that potentially would be advantageously represented in 3D. The process of creating the 3D model and associated drawings was divided into three stages; modeling, detailing, and visualization. The construction of the 3D model demonstrated unique advantages and disadvantages in each stage where also this thesis’ work plan was compared with the case study’s time plan. The results showed that the steps modeling and detailing (reinforcing) showed benefits in relation to the time spent. For the visualization step, i.e. the creation of 2D drawings according to the terminology of this report, the conclusion was the opposite. Grontmij’s Transportation & Mobility department is therefore recommended to selectively integrate Tekla Structures’ advantages into their future work process and continue to evaluate the program in other related fields.
|
15 |
Soil-structure interaction of end-frames for high-speed railway bridges / Jord-struktur-interaktion av ändskärmar på broar för höghastighetstågÖstlund, Johan January 2016 (has links)
In this thesis, the influence of soil-structure interaction (SSI) of end-frame bridges for high-speed railways was studied. Impedance functions, representing the SSI, was calculated and analyzed. The impedance functions were applied to end-frame bridge models which were analyzed for use in HSR. A new high-speed railway link is currently being planned in Sweden by the Swedish Transport Administration (Trafikverket). \textit{Ostl\"{a}nken} is planned to run between the cities of Stockholm and Link\"{o}ping with a maximum speed limit of 320km/h. As high-speed traffic induces high dynamic impact on bridges, dynamic analysis to ensure safety and passenger comfort is needed according to Eurocode. Thus, there is a demand of dynamically safe bridges that are also cost-effective. One cost-effective bridge is the soil integrated end-frame bridge, however, there are no design advice in Eurocode today on how to take SSI into consideration. The aim of the thesis has therefore been to investigate if the influence of SSI on end-frame bridges for HSR. This thesis was executed using the frequency domain approach to solve dynamic problems in finite element software. Furthermore, impedance functions have been obtained representing the SSI. Impedance functions take dynamic stiffness and dynamic damping into consideration where the damping consists of two parts: material damping and radiation damping due to energy dissipation in the form of elastic waves. To limit the model size, an absorbing region (AR) was used to mitigate waves originating from the source. The accuracy of impedance functions is dependent on several parameters and demands a great computational capacity to reach, mostly governed by the radiation condition. A parameter study of impedance functions was conducted, including parameters such as geometry, modulus of soil and detail levels. The impedance functions were then attached to bridge models on which trains modelled as moving point loads were applied. Envelopes of the acceleration and displacements have been presented and analyzed. Shear strain checks were made in order to verify the assumption of linear-elastic material behavior of the embankment. By using SSI in form of impedance functions attached to bridge models, numerical results show a great reduction of vibrations in models. The study suggests that a large end-frame, either long or high or both, may reduce acceleration as well as displacements. A stiffer embankment material may further reduce vibrations. Shear strain checks confirm that the assumption of linear-elastic soil behavior was true. / I det här exjobbet har påverkan av jord-struktur interaktion (soil-structure interaction - SSI) av ändskärmsbroar för höghastighetsbana blivit studerat. Impedansfunktioner som representerar SSI har beräknats och analyserats. Impdansfunktionerna har sedan applicerats på bromodeller och analyserats för höghastighetstrafik. Sveriges första höghastighetsbana håller just nu på att planeras av Trafikverket. Ostlänken kommer att bli den första delen och är planerad att gå från Stockholm till Linköping med en högsta hastighet av 320 km/h. Då höghastighetstrafik introducerar stor dynamisk på verkan på broar behövs dynamisk analys genomföras enligt Eurocode för att kunna säkerställa broarnas säkerhet och komfortkrav. Därför finns idag ett behov av dynamiskt säkra broar som också är kostnadseffektiva. En typ av kostnadseffektiv bro är den med jord integrerade ändskärmsbron. I dagens Eurocode finns dock inga konstruktionsråd vad gäller jord-struktur interaktion av ändskärmarna. Målet med detta examensarbete har därför varit att undersöka påverkan av SSI och besluta huruvida användandet av ändskärmsbron på höghastighetsbanor är legitimerat, eller om den ska undvikas. Det här examensarbetet har utgått från att lösa dynamiska problem i frekvensdomänen med hjälp av FEM. Impedansfunktioner som representerar jord-struktur interaktionen har tagits fram. Impedansfunktioner tar dels hänsyn till dynamisk styvhet och dels dynamisk dämpning. Den dynamiska dämpningen består av två delar; den första är materialdämpning och den andra är vågdämpning där energi dissiperar i vågform. För att begränsa FE modellens storlek har en absorbing region tillämpats för att absorbera vågorna vid randen. Impedansfunktionernas konvergens beror på flertalet parametrar och kräver en hög datakapacitet för att fås, mestadels beroende av radiatorvillkoret. En parameterstudie utfördes för att kunna analysera sensitiviteten hos impedansfunktionerna. Vidare applicerades dessa impedansfunktioner på skal- och balk-bromodeller på vilka HSLM laster påfördes. Skjuvtöjningskontroller gjordes för att verifiera att antagandet om linjärelastiskt materialbeteende var korrekt. Genom att ta hänsyn till SSI i form av impedansfunktioner tyder numeriska resultat på att vibrationer kan reduceras i hög grad. Envelopper visar att en stor ändskärm, antingen lång, hög eller bådadera, kan reducera accelerationer liksom förskjutningar. En styvare bank kan ytterligare reducera vibrationer.
|
16 |
Dynamic Soil-Structure Interaction of a Portal Frame Railway Bridge - Numerical Analysis on a Case Study BridgeIkzer, Rita January 2018 (has links)
In the field of structural dynamics, a broader knowledge about relevant phenomena that affect the dynamic behavior of railway bridges is vital for structural engineers and design code administrators. The knowledge might benefit in an increased understanding of e.g. the resonance phenomena, and in improvements of the existing design codes. A phenomenon that has received more attention in recent times is the so called soil-structure interaction (SSI), as it may significantly contribute to the stiffness and damping of a structural system. Previous investigations have suggested that the influence of SSI might be crucial for short and relatively stiff structures such as portal frame bridges. Yet, this effect is usually neglected due to the lack of simple models and guidelines. Dynamic analyses have been performed on a short-span closed portal frame railway bridge, situated on the Bothnia Line, where the effect of the surrounding and underlying soil and the ballasted track, has been investigated. This has been accomplished through the adoption of multiple boundary conditions to consider different forms of soil-structure interactions. The vertical bridge response has been studied by numerical three-dimensional models, both with full FE-models and simplified models appropriate for practical design purposes. More specifically the natural frequencies and damping ratios have been scrutinized. Theoretically, it has been identified that the contribution of the soil on the global damping is largely influential, as it has been indicated that the damping ratio of the fundamental bending mode is seven times greater than the, in this case, significantly conservative recommended design value. Furthermore, SSI has shown to increase the natural frequencies which consequently shifts the critical resonant speed, allowing for higher speeds. The bridge response is predominantly affected by the backfill soil, yet the modal damping contribution is equally substantial from the backfill and the subsoil. Moreover, it has been established that the proposed simplified model is promising and in good agreement with the full model. It has also been resolved that train passages on the surrounding soil play an important role on the dynamic bridge response. Unfortunately, the simplified model has proven to be incapable of considering these train loads, implying that further development is needed to attain an adequate model that may be implemented for portal frame bridges of short span. Applying only elastic constraints on the vertical degree of freedom at the foundation is a simplified modeling approach that fails to capture the soil behavior in an accurate manner, and is therefore not recommended for future research projects. While on the subject of future investigations, the effect of SSI should be studied on other bridges to externally validate the obtained results. / Inom strukturdynamik är det essentiellt att erhålla en bredare kunskap om relevanta fenomen som kan påverka det dynamiska beteendet av järnvägsbroar. Detta gäller för både yrkesverksamma ingenjörer och administratörer av normer och standarder för att få en ökad förståelse av exempelvis resonansfenomen samt för revidering och förbättring av befintliga normer. Ett fenomen som på senare tid har fått mer uppmärksamhet är den så kallade jord-struktur interaktionen eftersom den kan ha en signifikant inverkan på styvheten och dämpningen av ett system. Tidigare undersökningar har tytt på att effekten av jord-struktur interaktionen kan vara avgörande för korta och relativt styva broar som exempelvis plattrambroar. På grund av bristen på enkla modeller och riktlinjer är denna effekt ofta försummad. Dynamiska analyser har utförts på en kort sluten plattrambro belägen på Botniabanan, där påverkan av motfyllningen, underliggande jorden och det ballasterade spåret har utretts. Detta har åstadkommits genom att beakta olika randvillkor för att ta hänsyn till diverse former av jord-struktur interaktioner. Den vertikala responsen i bron har studerats genom tredimensionella numeriska modeller både med detaljerade FE-modeller och med praktiskt lämpade förenklade modeller, där i synnerhet egenfrekvensen och dämpningskvoten har analyserats. Bidraget från jorden har påvisat sig ha en avsevärd inverkan på den globala dämpningen då det framgick att dämpningskvoten för den fundamentala böjmoden är sju gånger större än det, i denna fallstudie, betydligt konservativa rekommenderade dimensioneringsvärdet. Dessutom har jord-struktur interaktionen lett till ökade egenfrekvenser som följaktligen skiftat den kritiska resonanshastigheten vilket tillåter högre hastigheter. Motfyllningen har haft en avsevärd effekt på responsen av bron, medan bidraget till ökningen i modala dämpningen har fördelats lika mellan motfyllningen och underliggande jorden. Vidare är den föreslagna förenklade modellen lovande och i god överenstämmelse med den detaljerade modellen. Det har även konstaterats att tågpassager på motfyllningen spelar en viktig roll för den dynamiska responsen. Dessvärre har den förenklade modellen misslyckats med att ta hänsyn till dessa tåglaster, vilket indikerar att en vidareutveckling krävs för en implementerbar adekvat modell för plattrambroar av korta spännvidder. Ett förenklat modelleringsalternativ är applicering av enbart elastiska randvillkor i den vertikala frihetsgraden av bottenplattan. Detta alternativ har visat sig vara otillräckligt för att efterlikna den underliggande jordens beteende och undanbedes för framtida studier. På tal om framtida projekt bör jord-struktur interaktionen utredas på andra broar för att externt validera resultaten.
|
17 |
Finite Element Analysis of the Dynamic Effect of Soil-Structure Interaction of Portal Frame Bridges - A Parametric StudyDagdelen, Turgay, Ruhani, Shaho January 2018 (has links)
In Sweden, the railway sector currently faces the challenge of developing its first high-speed railway line, in response to the need to provide faster domestic and international transport alternatives. High-speed train passages on railway bridges can cause resonance in the bridge superstructure, which induce high accelerations that should not exceed the limits stipulated in the current design code. The most common bridge type adopted in Sweden is the portal frame bridge, an integral abutment bridge confined by surrounding soil. The soil possesses inherent material damping and radiation damping that allows energy dissipation of train-induced vibrations. Both the damping and the natural frequency of the soil-structure system influence the acceleration response of the bridge superstructure. Therefore, it is necessary to investigate the effect of soil-structure interaction on portal frame bridges. Within this thesis, a numerical parametric study was performed to gain knowledge of the dynamic effect of the relative deck-abutment stiffness on the soil-structure interaction of portal frame bridges. For four span lengths, three different boundary conditions were analyzed in the form of i) no soil, ii) backfill, and iii) half-space. The analysis was performed on two- and three-dimensional finite element models. The backfill and subsoil were modeled with both direct finite element approach, and with a simplified approach using Kelvin-Voigt models and frequency-dependent impedance functions. Furthermore, time was devoted to investigating the nonlinear compression-only behavior of the interaction between the backfill and the abutments to allow separation. The results presented in the thesis illuminate the essence of including soil-structure interaction in the dynamic analysis as both the modal damping ratio and the natural frequency increased drastically. The effect of backfill on short span bridges has shown to be more prominent on the reduction of the train-induced vibrations. For longer spans, the subsoil proved to be more significant. For the simplified models the modal damping ratios of the different span lengths have been quantified as a logarithmic trend of the first vertical bending mode. Two-dimensional models have been problematic when using plane stress elements due to the sensitivity of the element thickness on the response. Thus, such models are only recommended if validation with corresponding three-dimensional models and/or field measurements are possible. By allowing separation of the soil-structure interface, the effect of contact nonlinearity on the acceleration response has been more suitable with direct finite element approach - in which static effects of the soil are accounted for - contrary to the simplified nonlinear models with compression springs. / Järnvägssektorn i Sverige står inför utmaningen att utveckla den första höghastighetsbanan med syftet att erbjuda snabbare inhemska och internationella transportalternativ. Passager av höghastighetståg på järnvägsbroar kan orsaka resonans i brons överbyggnad vilket resulterar i höga accelerationer som inte får överskrida begränsningarna i dimensioneringsnormen. I plattrambroar, vilka är främst förekommande i Sverige, utförs broplattan inspänt i rambenen omslutna av jord. Jorden bidrar utöver styvhet, även med material- och strålningsdämpning där vibrationer i jorden inducerade av tågpassager tillåts dissipera. Accelerationerna i brons överbyggnad påverkas av dämpningen och egenfrekvensen av jord-struktur systemet. Med anledning av detta är det väsentligt att undersöka effeken av jord-struktur interaktionen på plattrambroar. I detta examensarbete har en numerisk parametrisk studie utförts för att erhålla kunskap om effekten av den relativa styvheten av broplattan och rambenen på jord-struktur interaktionen av plattrambroar. Fyra spännvidder har undersökts för tre olika randvillkor där i) ingen jord, ii) motfyllning samt iii) halvrymd har beaktats. Analysen utfördes på två- och tredimensionella finita element modeller. Motfyllningen respektive underliggande jord modellerades med finita element på ett direkt- samt förenklat tillvägagångssätt där Kelvin-Voigt modeller och frekvensberoende impedansfunktioner användes. Mellan motfyllningen och rambenen har separation tillåtits där det icke-linjära förhållandet av interaktionen undersöktes med tryckbeteenden för fjädrarna. Resultaten belyser vikten av att inkludera jord-struktur interaktionen i dynamiska analyser p.g.a. ökningen den medför för den modala dämpningen och egenfrekvensen. För korta spännvidder, påvisades det att effekten av motfyllningen var mer framstående för reduktionen av vibrationerna orsakade av tåg. För längre spännvidder framgick det däremot att underjorden hade en större påverkan. Effekten av jord-struktur interaktionen på spännvidderna kvantifierades som ett logaritmiskt samband för den modala dämpningen av första vertikala böjmoden. Tvådimensionella modeller har varit problematiska när plana spänningselement användes p.g.a. känsligheten i responsen orsakad av variationer i elementtjockleken. Därav rekommenderas tvådimensionella modeller endast om validering mot tredimensionella eller fältmätningar är möjliga. När separation tilläts i gränsytan av jord-struktur interaktionen, visade det sig att direkt tillvägagångssätt med finita element var mer lämplig med hänsyn till det icke-linjära kontaktbeteendet. Detta eftersom de statiska effekterna av jorden påverkade accelerationsresponsen markant. De statiska effekterna har inte varit möjliga att simulera i dem förenklade icke-linjära modeller med tryckfjädrar.
|
18 |
Platsgjuten eller prefabricerad plattrambro : En jämförande livscykel- och livscykelkostnadsanalys / Site cast or prefabricated flat frame bridge : A comparative life cycle assessment and life cycle cost analysisSwahn, Trixie, Rashem, Adam January 2018 (has links)
Plattrambron är Sveriges vanligaste typ av bro och utgör nästan hälften av Sveriges brobestånd. I den här studien har det utförts en jämförelse mellan två produktionssätt för plattrambroar utifrån ett livscykelperspektiv. Studien bygger på att jämföra olika produktionsmetoder utifrån kostnad- och miljösynpunkt där förslag till förbättringar redogörs för att förenkla valet av produktionsmetod. Fokus mot hållbar infrastruktur ökar och att ur ett livscykelperspektiv jämföra olika produktionssätt kan leda till minskad miljöpåverkan och vinster ur ett kostnadsperspektiv. Denna fallstudie visar att prefabricerat produktionssätt kan ge stora besparingar med hänsyn till klimat och ekonomi. Fallstudien omfattas av kvalitativa interjuver med aktörer i branschen och beräkningar har utförts enligt livscykelkostnad- och livscykelanalysers normer. Möjlighet till ytterligare materialbesparingar finns för båda produktionssätten om ändring av kraven för brobyggande sker, då krav på utformning hämmar möjligheten till nya och bättre lösningar. Studiens resultat visar att det genom rätt val av produktionsmetod är möjligt att sänka emission av koldioxid, minska energiåtgång och sänka kostnader för infrastrukturen. Ytterligare vinster kan erhållas om ändringar av kraven utförs. / Flat frame bridges are the most common type of bridge in Sweden and constitutes almost half of all bridges in Sweden. In this study, a comparison between two production methods of flat frame bridges from a lifecycle perspective has been conducted. The study is built on comparing production methods from cost and environmental viewpoints where suggestions for improvements are presented to facilitate the choice of production method. Focus on environmentally sustainable constructions is increasing and by comparing different production methods from a lifecycle perspective it is possible to decrease environmental impact and increase cost-efficiency. The results of this case-study show that prefabricated production method offers greater savings regarding environment as well as economy. The possibility of further material savings exists for both production methods, prefabricated and site-cast, if changes of the regulations regarding bridge construction are made, as current regulations on design inhibits possibilities of new and better solutions. The result of the study shows that by choosing the right production method it is possible to decrease emissions of carbon dioxide, reduce energy consumption and costs for the infrastructure. Further gains can be made if regulations are changed.
|
Page generated in 0.0675 seconds