• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 18
  • 14
  • 13
  • 12
  • 9
  • 8
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 329
  • 141
  • 141
  • 78
  • 74
  • 69
  • 57
  • 57
  • 57
  • 43
  • 39
  • 39
  • 39
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Navrhování konstrukcí s FRP výztuží / Design of concrete structures with FRP reinforcement

Januš, Ondřej January 2016 (has links)
The diploma thesis presents design of construction with FRP reinforcement. Including design process of cross-section with FRP reinforcement exposed to bending moment and shear force at ultimate limite state according to given standards and guidelines. Long term physical and mechanical properties of FRPs are taking into account. There are also compared load capacities of cross-section exposed to combination of bending moment and axial force, which were designed according to mentioned standards. In another part of diploma thesis there is a design of construction (precast gatehouse) with FRP reinforcement and steel reinforcement with ordinary and lightweight concerete.
312

Entwicklung eines zwangläufigen Schneid- und Fixiersystems für den Einsatz in einem Tapelegekopf

Wallasch, Rainer, Tirschmann, R., Spieler, M., Nendel, W., Kroll, L., Rohde, O. 09 June 2017 (has links)
Im Rahmen des Bundesxzellenzclusters MERGE EXC 1075 an der TU Chemnitz erfolgte die Entwicklung einer neuartigen großserientauglichen Technologie zur Herstellung faserverstärkter Thermoplastbauteile. Für die Demonstration der Technologie wurde eine Pilotanlage realisiert, die zum Ablegen des Thermoplasttapes über eine Verlegeeinheit – einen sog. Tapelegekopf – verfügt. Mit Abschluss des Legeprozesses wird das Halbzeug, das aus einer angebremsten Spule abgezogen wird, abgeschnitten und der Prozess wird von neuem begonnen. Für das Schneiden des Materials haben Voruntersuchungen gezeigt, dass konturierte Klingen erforderlich sind, um ein Verlaufen des Bandes zu vermeiden. Darüber hinaus hat sich als zweckmäßig erwiesen eine zusätzliche Fixierung vorzunehmen. Dies verbessert die Schnittqualität und Zuverlässigkeit des Systems. Aufgrund enger Bauraumrestriktionen wurde entschieden die Schneidbewegung und das Fixieren zwangläufig synchronisiert auf einen Antrieb zurück zu führen. Hierfür wurden zwei ungleichmäßige Rastgetriebe synthetisiert, ausgelegt sowie in weiteren Entwicklungsstufen auskonstruiert, gefertigt und getestet. Mit der Inbetriebnahme des Gesamtanlagensystems erfolgte ebenfalls der Funktionsnachweis dieses mechanisch zwangläufigen Schneidsystems, das im Rahmen des Vortrags vorgestellt wird. Diese Arbeiten entstanden im Rahmen des Bundesexzellenzclusters EXC 1075 „Technologiefusion für multifunktionale Leichtbaustrukturen“ und wurde von der Deutschen Forschungsgemeinschaft gefördert. Die Autoren danken für die finanzielle Unterstützung.
313

Návrh betonových konstrukcí vyztužených nekovovou FRP výztuží / Design of concrete structures reinforced with non-metallic FRP reinforcement

Golisová, Michaela Unknown Date (has links)
This diploma thesis investigates the design of concrete structures reinforced with non-metallic FRP reinforcement with a focus on solving the bearing capacity in extrusion. The work is divided into a theoretical and a practical part. The theoretical part begins with an introduction to FRP reinforcement and a description of shear stress. The following is an introduction to current approaches dealing with this issue. In the practical part, in connection with these regulations, parametric studies are developed to compare the influence of individual input parameters and selected regulations. The last part is dedicated to the design and nonlinear analysis performed in the ATENA software.
314

An Alternative Strengthening Technique using a Combination of FRP Sheets and Rods to Improve Flexural Performance of Continuous RC Slabs

Syed Shah, Taqiuddin Q. January 2016 (has links)
No description available.
315

Seismic Retrofit of Load Bearing URM Walls with Internally Placed Reinforcement and Surface-Bonded FRP Sheets

Sabri, Amirreza 22 June 2020 (has links)
Concrete block masonry is a common building material used worldwide, including Canada. Reinforced masonry buildings, designed according to the requirements of recent building codes, may result in seismically safe structures. However, unreinforced masonry (URM) buildings designed and constructed prior to the development of modern seismic design codes are extremely vulnerable to seismic induced damage. Replacement of older seismically deficient buildings with new and seismically designed structures is economically not feasible in most cases. Therefore, seismic retrofitting of deficient buildings remains to be a viable seismic risk mitigation strategy. Masonry load bearing walls are the most important elements of such buildings, potentially serving as lateral force resisting systems. A seismic retrofit research program is currently underway at the University of Ottawa, consisting of experimental and analytical components for developing new seismic retrofit systems for unreinforced masonry walls. The research project presented in this thesis forms part of the same overall research program. The experimental component includes design, construction, retrofit and testing of large-scale load bearing masonry walls. Two approaches were developed as retrofit methodologies, both involving reinforcing the walls for strength and deformability. The first approach involves the use of ordinary deformed steel reinforcement as internally added reinforcement to attain reinforced masonry behaviour. The second approach involves the use of internally placed post-tensioning tendons to attain prestressed masonry behaviour. The analytical component of research consists of constructing a Finite Element computer model for nonlinear analysis of walls and conducting a parametric study to assess the significance of retrofit design parameters. The results have led to the development of a conceptual retrofit design framework for the new techniques developed, while utilizing the seismic provisions of the National Building Code of Canada and the relevant CSA material standards.
316

FRP i brokonstruktion : -varför används FRP inte i Sverige

Eriksson, Carl-Johan, Erlingsson, Jonas January 2015 (has links)
FRP stands for Fiber Reinforced Polymer. FRP materials have yet to be introduced inbridge construction in Sweden. Composite materials can through combined componentsand manufacturing processes be tailored to fit advanced bridge designs. FRP materials arestrong, durable and of low weight. FRP materials give the superstructure reduced weightand are therefore a suitable alternative for industrial prefabrication. This report shows thatFRP materials are possible to use in bridge construction. With the introduction of a specificEurocode we are confident that FRP materials will become a competitive alternative inbridge construction in Sweden in the future. / Broar är förenade med stora kostnader, dels för att bygga och dels för att underhålla ochreparera. FRP står för Fiber Reinforced Polymer är ett erkänt material för många andraanvändningsområden, exempelvis flyg och bilindustri. I Europa finns en mängd FRP-broar,men materialet har ännu inte introducerats i någon bro i Sverige.FRP är ett kompositmaterial som genom olika kombinationer av komponenter ochtillverkningsprocesser kan skräddarsys för den aktuella uppgiften i en konstruktion. FRPmaterialär starka, beständiga och har en låg vikt. Fördelar med FRP inom brokonstruktionär att det ger överbyggnaden en minskad egenvikt och därmed är ett lämpligt alternativ attprefabricera industriellt, då bland annat transport- och lyftbarhet gynnas samt att en högbeständighet ger minskat underhåll.Då ingen litteratur hanterar FRP i Brokonstruktion har de intervjuades åsikter varit mycketviktiga för arbetet. Litteraturstudien har legat till grund för en ökad förståelse för egenskaperutmärkande för olika typer av FRP. Intervjuer har utförts med personer som i dagslägetkommit i kontakt med materialet inom brokonstruktion. Detta har gjorts för att nå ett relevantresultat med möjlighet att kunna identifiera materialets för- respektive nackdelar samtanledningen till det låga användandet i Sverige.Rapporten visar att materialet har positiva egenskaper och är möjligt att använda vidkonstruktion av broar. Det saknas i dagsläget en specifik Eurokod som på ett enhetligt sättredovisar hur materialet ska hanteras. Med införandet av en specifik Eurokod och om en nykompetens arbetas fram inom branschen är vi övertygade om att FRP-material kommer attbli ett konkurrenskraftigt alternativ vid brokonstruktion.
317

Multiscale stochastic fracture mechanics of composites informed by in-situ X-ray CT tests

Sencu, Razvan January 2017 (has links)
This thesis presents the development of a new multiscale stochastic fracture mechanics modelling framework informed by in-situ X-ray Computed Tomography (X-ray CT) tests, which can be used to enhance the quality of new designs and prognosis practices for fibre reinforced composites. To reduce the empiricism and conservatism of existing methods, this PhD research systematically has tackled several challenging tasks including: (i) extension of the cohesive interface crack model to multi-phase composites in both 2D and 3D, (ii) development of a new in-house loading rig to support in-situ X-ray CT tests, (iii) reconstruction of low phase-contrast X-ray CT datasets of carbon fibre composites, (iv) integration of X-ray CT image-based models into detailed crack propagation FE modelling and (v) validation of a partially informed multiscale stochastic modelling method by direct comparison with in-situ X-ray CT tensile test results.
318

CFD Flame Spread Model Validation: Multi-Component Data Set Framework

Wong, William Chiu-Kit 30 July 2012 (has links)
"Review of the literature shows that the reported correlation between predictions and experimental data of flame spread vary greatly. The discrepancies displayed by the models are generally attributed to inaccurate input parameters, user effects, and inadequacy of the model. In most experiments, the metric to which the model is deemed accurate is based on the prediction of the heat release rate, but flame spread is a highly complex phenomenon that should not be simplified as such. Moreover, fire growth models are usually made up of distinctive groups of calculation on separate physical phenomena to predict processes that drive fire growth. Inaccuracies of any of these “sub-models” will impact the overall flame spread prediction, hence identifying the sources of error and sensitivity of the subroutines may aid in the development of more accurate models. Combating this issue required that the phenomenon of flame spread be decomposed into four components to be studied separately: turbulent fluid dynamics, flame temperature, flame heat transfer, and condensed phase pyrolysis. Under this framework, aspects of a CFD model may be validated individually and cohesively. However, a lack of comprehensive datasets in the literature hampered this process. Hence, three progressively more complex sets of experiments, from free plume fires to fires against an inert wall to combustible wall fires, were conducted in order to obtain a variety of measurements related to the four inter-related components of flame spread. Multiple permutations of the tests using different source fuels, burner size, and source fire heat release rate allowed a large amount of comparable data to be collected for validation of different fire configurations. FDS simulations using mostly default parameters were executed and compared against the experimental data, but found to be inaccurate. Parametric study of the FDS software shows that there are little definitive trends in the correlation between changes in the predicted quantities and the modeling parameters. This highlights the intricate relationships shared between the subroutines utilized by FDS for calculations related to the four components of flame spread. This reveals a need to examine the underlying calculation methods and source code utilized in FDS."
319

Monotonic and Fatigue Performance of RC Beams Strengthened with Externally Post-Tensioned CFRP Tendons

El Refai, Ahmed January 2007 (has links)
External post-tensioning is an attractive technique for strengthening reinforced concrete structures because of its ability to actively control stresses and deflections, speed of installation, minimum interruption for the existing structure, and ease of inspection under service conditions. However, external prestressing implies exposing the tendons to the environment outside the concrete section, which may lead to corrosion in steel tendons. Therefore, the interest in using fiber reinforced polymer (FRP) tendons, which are corrosion resistant, has increased. The present work investigated, experimentally and analytically, the flexural performance of reinforced concrete beams strengthened with externally post-tensioned Carbon FRP (CFRP) tendons, under monotonic and fatigue loadings. Initially, tensile fatigue tests were carried out on CFRP tendon-anchor assemblies to assess their response under repeated cyclic loads, before implementing them in the beam tests. New wedge-type anchors (Waterloo anchors) were used in gripping the CFRP specimens. The assemblies exhibited excellent fatigue performance with no premature failure occurring at the anchorage zone. The fatigue tests suggested a fatigue limit of a stress range of 10% of the tendon ultimate capacity (approximately 216 MPa). Monotonic and fatigue experiments on twenty-eight beams (152x254x3500 mm) were then undertaken. Test parameters included the tendon profile (straight and double draped), the initial loading condition of the beam prior to post-tensioning (in-service and overloading), the partial prestressing ratio (0.36 and 0.46), and the load ranges applied to the beam during the fatigue life (39% to 76% of the yield load). The CFRP tendons were post-tensioned at 40% of their ultimate capacity. The monotonic tests of the post-tensioned beams suggested that overloading the beam prior to post-tensioning increased the beam deflections and the strains developed in the steel reinforcing bars at any stage of loading. However, overloading had no significant effect on the yield load of the strengthened beam and the mode of failure at ultimate. It also had no discernable effect on the increase in the tendon stress at yielding. The maximum increase in the CFRP stress at yield load was approximately 20% of the initial post-tensioning stress, for the in-service and overloaded beams. A very good performance of the strengthened beams was observed under fatigue loading. The fatigue life of the beams was mainly governed by the fatigue fracture of the internal steel reinforcing bars at a flexural crack location. Fracture of the bars occurred at the root of a rib where high stress concentration was likely to occur. No evidence of wear or stress concentration were observed at the deviated points of the CFRP tendons due to fatigue. The enhancement in the fatigue life of the strengthened beams was noticeable at all load ranges applied. Post-tensioning considerably decreased the stresses in the steel reinforcing bars and, consequently, increased the fatigue life of the beams. The increase in the fatigue life was slightly affected by the loading history of the beams. At the same load range applied to the beam, increasing the amount of the steel reinforcing bars for the same post-tensioning level decreased the stress range in the bars and significantly increased the fatigue life of the strengthened beams. In the analytical study, a monotonic model that predicts the non-linear flexural response of the CFRP post-tensioned beams was developed and implemented into a computer program. The model takes into account the loading history of the strengthened beams prior to post-tensioning (in-service and overloading). Good agreement was obtained between the measured and the predicted monotonic results. A strain-life based fatigue model was proposed to predict the fatigue life of the CFRP post-tensioned beams. The model takes into consideration the stress-strain history at the stress raisers in the steel bars. It accounts for the inelastic deformation occurring at the ribs during cycling and the resulting changes in the local mean stresses induced. Good agreement between the experimental and predicted fatigue results was observed. A step-by-step fatigue design approach is proposed for the CFRP externally post-tensioned beams. General conclusions of the study and recommendations of future work are given.
320

Experimental study and analytical modeling of translayer fracture in pultruded FRP composites

El-Hajjar, Rani Fayez 18 March 2004 (has links)
A new nonlinear fracture analysis framework is developed for the mode-I and II fracture response of thick-section fiber reinforced polymeric (FRP) composites. This framework employs 3D micromechanical constitutive models for the nonlinear material behavior along with cohesive elements for crack growth. Fracture tests on various cracked geometries are used to verify the prediction of the failure loads and the crack growth behavior. A commercially available pultruded E-glass/polyester and vinylester thick-section FRP composite material was used to demonstrate the proposed fracture approach along with the nonlinear constitutive modeling. A new Infra-red thermography technique is derived to measure the surface strain field near the crack tip in the linear response range. Mode I and II fracture toughness tests for pultruded composites are also examined using the eccentrically loaded, single-edge-notch tension, ESE(T), single-edge-notch tension, SEN(T), and a butterfly specimen with an Arcan-type fixture. Material nonlinearity and crack growth effects were observed during the tests and investigated using the proposed analysis framework. The effect of material orthotropy on the stress intensity factor solutions was addressed using the virtual crack closure technique. The analytic and experimental results support the use of the ESE(T) specimen for the measuring the mode-I fracture toughness and the butterfly shaped specimen for measuring the mode-II toughness. The calibrated cohesive models were able to predict the measured crack growth in both modes I and II for various crack geometries. A mixed mode failure criterion is proposed and verified with test results. Examples are presented for using this criterion and crack growth analyses. The experimental and analytical results of this study can form a foundation for using fracture-based methods for the design of structures using these materials.

Page generated in 0.0872 seconds