• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 42
  • 42
  • 11
  • 11
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

QUINONE OUTSIDE INHIBITOR (QOI) FUNGICIDE RESISTANCE AND MATING-TYPE DISTRIBUTION OF CERCOSPORA SOJINA POPULATIONS ON SOYBEAN FROM INDIANA

Natalia Pineros Guerrero (11186802) 27 July 2021 (has links)
<p>Frogeye leaf spot (FLS) is a foliar disease in soybean (<i>Glycine max</i> (L.) Merr.) caused by the fungal pathogen <i>Cercospora sojina</i> Hara. FLS is commonly found in hot and humid regions of the southern United States but has become more common in the North Central states. Foliar application of quinone outside inhibitor (QoI) fungicides has been one of the major tools used in the management of this disease, but QoI-resistant <i>C. sojina</i> isolates have been already confirmed in 21 states, including Indiana. We hypothesized that resistant populations of <i>C. sojina</i> to QoIs fungicides are widespread in Indiana and that sexual reproduction is occurring within <i>C. sojina</i> populations, likely contributing to the dissemination of fungicide resistance. The main objectives of this research were to determine the distribution of QoI-resistant <i>C. sojina</i> isolates on soybean from Indiana and to evaluate <i>C. sojina </i>populations for potential sexual reproduction. In the summer of 2019 and 2020, 406 isolates of <i>C. sojina </i>were collected from 32 counties across Indiana and screened for QoI-fungicide resistance using a PCR-RFLP method. An i<i>n vitro </i>fungicide sensitivity test was performed on a subset of isolates to evaluate the sensitivity of <i>C. sojina</i> isolates to azoxystrobin, pyraclostrobin, picoxystrobin, and prothioconazole. A discriminatory dose of picoxystrobin (QoI) and prothioconazole (demethylation inhibitor- DMI) were established at 1 μg/ml and 10 μg/ml, respectively, to distinguish between QoI-resistant and sensitive isolates and to identify a reduction in sensitivity to DMI fungicides, respectively. Discriminatory doses were estimated by testing five concentrations (0.001, 0.01, 0.1, 1, and 10 µg/ml) of each fungicide. QoI-resistant isolates were found in 29 out of the 32 counties. Two hundred and fifty-one (251) out of the 406 isolates (61.8%) were confirmed as QoI-resistant. Partial nucleotide sequences of the cyt <i>b</i> gene from four resistant and four sensitive <i>C. sojina</i> isolates corroborated the presence and absence of the G143A mutation, respectively. Results from the sensitivity assays with azoxystrobin and pyraclostrobin discriminatory doses supported the findings from the PCR-RFLP assay as all QoI-resistant mutants were inhibited less than 50% when exposed to these doses. Results from this study indicated that QoI-resistant <i>C. sojina</i> isolates are spread throughout Indiana and that prothioconazole (DMI) could be a potential supplemental or alternative fungicide to control FLS. Additionally, mating type distribution was determined in 43 <i>C. sojina</i> populations for assessment of potential sexual reproduction. Fifteen (15) populations did not deviate significantly from the expected 1:1 ratio, suggesting potential for cryptic sexual reproduction in these populations, but further research on genetic diversity is required to verify these results. </p> <p> </p>
32

Investigation of Cytochrome P450 Monooxygenases in S. homoeocarpa for Chlorothalonil Biotransformation

Green, Robert 11 July 2017 (has links)
Sclerotinia homoeocarpa (F.T. Bennett) is one of the most economically important pathogens on high amenity cool-season turfgrasses where it causes dollar spot. Due to decades of over-reliance and repeated chemical treatments, S. homoeocarpa has developed resistance and insensitivity to multiple classes of fungicides. To understand the genetic mechanisms of fungicide resistance, the whole genomes of two strains with varying resistance levels to fungicides, were sequenced. In unpublished data (Sang et al.), a RNA-sequencing analysis revealed three CYP450s that were validated to play a functional role in S. homoeocarpa’s resistance against different fungicide classes. We also identified CYP450 metabolic action on the multi-site mode of action fungicide chlorothalonil. Chlorothalonil is an extensively used contact fungicide and has been known to be persistent in soils. Yet, S. homoeocarpa resistance to chlorothalonil has not been reported in the field. High Performance Liquid Chromatography (HPLC) indicated faster rates of chlorothalonil biotransformation by CYP450 overexpression strains when compared to the wild-type. We show by GC-MS that the primary transformation intermediate found in soils, 4-hydroxy-2,5,6 trichloroisophthalonitrile is produced by CYP450s’ metabolism.
33

Determination of Fungicide Resistance in Botrytis cinerea on Wine Grapes in California's Central Coast Region

Alvarez-Mendoza, Evelyn 01 September 2022 (has links) (PDF)
Botrytis bunch rot, caused by Botrytis cinerea, is a fungal disease that primarily affects the fruit of wine grapes. Infection of fruit consequently results in reduced yields and wine quality. These factors lead to significant economic losses for growers which prompts the implementation of management practices to control the disease. One objective of this study was to evaluate the level of resistance that populations of B. cinerea in the Central Coast region showed to various chemicals. A fungicide assay was conducted to determine resistant phenotypes to six fungicide active ingredients (pyrimethanil, iprodione, fenhexamid, fludioxonil, trifloxystrobin, boscalid). Thirty-five (2020) and 88 (2021) B. cinerea isolates were collected from Santa Maria, Cambria, Paso Robles, and Edna Valley in California and screened for resistance. The frequencies of populations (2020, 2021) showing resistance to each active ingredient were: pyrimethanil (94.3%, 81.8%), trifloxystrobin (97.1%, 100%), boscalid (77.1%, 77.3%), fenhexamid (8.6%, 25%). The majority of isolates were sensitive to iprodione (100%, 100%), fludioxonil (100%, 100%), fenhexamid (88.6%, 75%), and boscalid (22.9%, 22.7%). These results documented the accumulation of resistance in B. cinerea to various fungicides commonly used for Botrytis bunch rot management in California’s Central Coast. Another objective of this study was to determine the effective concentration of the six fungicides that reduces mycelial growth of the fungus by 50% (EC50). Seven B. cinerea isolates in 2020 and ten isolates in 2021 were selected and subjected to a sensitivity screening with serial dilutions of the different fungicide active ingredients. The fungicides found to have the highest EC50 values indicating reduced efficacy for inhibiting B. cinerea growth were Scala® (FRAC 9), Flint® (FRAC 11), and Endura® (FRAC 7). The fungicides found to have the lowest EC50 values indicating higher efficacy for inhibiting B. cinerea growth were Scholar® (FRAC 12) and Rovral® (FRAC 2). The results from this study provided information regarding the accumulated resistance of B. cinerea populations to certain chemical groups and therefore the efficacy of different fungicide active ingredients. This information can be utilized by growers as a tool to enhance and develop fungicide spray programs that effectively manage Botrytis bunch rot in Central Coast vineyards.
34

Comparative studies on genetic variability and fungicide resistance in Tapesia yallundae

Ntushelo, Khayalethu 12 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 1998. / ENGLISH ABSTRACT: Eyespot is an important disease of spring wheat (Triticum aestivum L.). Four species of Ramulispora are associated with this disease, of which Tapesia yallundae and T. acuformis. are common. This thesis investigates the broader subjects of genetic variability, reproductive dynamics and fungicide resistance in Tapesia yallundae. Each of the chapters treats specific but related topics. T. yallundae, which is the only species thus far reported from South Africa, has been associated with yield losses of up to 50%. To enable the implementation of more accurate and effective control measures, understanding the dynamics of reproduction and the genetics of the pathogen is of utmost importance. Of the many plant disease control measures such as cultural practices, sanitation, biological control, etc., fungicide application is the most commonly resorted to measure in eyespot control. This thesis investigates the broader subjects of genetic variability, reproductive dynamics and fungicide resistance of Tapesia yallzll7dae. Fungicide application, however, is not without problems. The pathogen can build up resistance to fungicides. The most commonly used fungicides in eyespot control include the benzimidazole carbendazim, triazoles such as flusilazole, tebuconazole, propiconazole, bromuconazole, flutriafol, fenbuconazole, triademinol, and the imidazole, prochloraz. Cases of resistance to the groups listed above have been reported. Frequent monitoring for resistance is thus crucial to prevent wastage of fungicide and unnecessary impregnantation of the environment with potentially ineffective chemicals. In chapter 2 of this thesis 300 isolates of T. yallundae from 15 fields were evaluated for resistance against carbendazim, flusilazole, tebuconazole, propiconazole, bromuconazole, flutriafol and fenbuconazole. These results indicated that to some triazoles, such as fenbuconazole, a high level of resistance was already present in field populations. In a sexually reproducing fungus such as T. yallundae, knowledge pertaining to its ability to pass resistance factors to offspring is equally important. Mating studies were, therefore, also conducted with parental strains that showed signs of triazole resistance. Three generations were subsequently tested for resistance to five triazoles, namely flusilazole, tebuconazole, propiconazole, bromuconazole and flutriafol. Results of this study showed variable sensitivity in progeny, which indicated quantitative inheritance of resistance to triazoles. Although the sexual stage has not yet been observed in the field in South Africa, this knowledge lays the foundation for the long-term understanding of the population dynamics of the fungus. The ability of a heterothallic ascomycete population to reproduce sexually is dependent on the availability of its two mating types, MATI-I and MATI-2, their distribution, and female fertility amongst other factors. In the UK. the teleomorph is commonly observed in the field, which is in contrast to the situation in South Africa, where it has only been induced in the laboratory. A comparative study between the South African and the UK. populations was therefore undertaken. Isolates representative of the two populations were mated with tester strains as both sperm recipients and as sperm donors. This allowed the percentage of hermaphrodites to be determined. No difference in terms of female fertility was observed between the South African and the UK. populations, with both populations showing low effective population numbers. These data suggested, therefore, that the teleomorph would also occur more frequently in South Africa if the climate was more indusive to its development. The overall results of this study indicated that eyes pot could still be controlled by means of fungicide application in South Africa. Although a shift in sensitivity was observed towards fenbuconazole and flusilazole, no resistance was detected towards carbendazim. The latter might be due to the absen<.:eof the sexual stage in the field, coupled by the monocyclic nature of the pathogen and sensible fungicide regimes. The absence of T. acujormis makes the disease situation less complicated in terms of fungicide application and management. Continuous surveys will have to be conducted, however, to monitor this situation in future. / AFRIKAANSE OPSOMMING: Hierdie studie ondersoek die genetiese variasie, reproduksie dinamika en fungisied weerstand in Tapesia yallundae. Elke hoofstuk handel oor spesifieke maar verwante onderwerpe. Oogvlek is 'n belangrike siekte van lentekoring (Triticum aestivum L.). Vier spesies van Ramulispora word geassosieer met die siekte, waarvan Tapesia yallundae en T. acuformis mees algemeen voorkom. T. yallundae, wat tans die enigste spesie is wat in Suid-Afrika aangeteken is, het al verliese van tot 50% veroorsaak. Om meer akkurate en effektiewe beheermaatreels te implementeer, is dit noodsaaklik om die oorlewingsdinamika van die patogeen te verstaan. Van al die siektebeheermaatreels soos kulturele praktyke, sanitasie, biologiese beheer ens., bly fungisiedbehandeling die mees algemene maatreel vir die beheer van oogvlek. Fungisiedtoediening het egter ook verskeie probleme. Die patogeen kan weerstand opbou teen die fungisied. Die mees algemene fungisiedes wat vir oogvlekbeheer aangewend word sluit onder meer die benzimidasool karbendazim in, triasole soos flusilasool, tebukonasool, propikonasool, bromukonasool, flutriafol, fenbukonasool, triadimenol, en die imidasool, prochloraz. Weerstand is egter reeds teen hierdie middels bekend. Gedurige monitering vir weerstand is dus krities om die vermorsing van fungisied en besoedeling van die omgewing met oneffektiewe middels te beperk. In hoofstuk 2 van hierdie manuskrip word 300 isolate van T. yallundae van 15 lande geevalueer vir weerstand teenoor karbendazim, flusilasool, tebukonasool, propikonasool, bromukonasool, flutriafol en fenbukonasool. Resultate dui daarop dat teen sommige van hierdie triasole, soos bv. fenbukonasool, daar reeds 'n hoe vlak van weerstand teenwoordig was in veldpopulasies. In 'n seksueel reproduserende fungus soos T. yalluJ1dae, is dit noodsaaklik om te bepaal wat sy vermoe is om weerstandbiedenheid aan die nageslag oor te dra. Om die rede is paringstudies ook op ouers wat tekens van weerstand teenoor triasole getoon het uitgevoer. Drie generasies was gevolglik getoets vir weerstand teenoor vyf triasole, naamlik flusilasool, tebuconasool, propikonasool, brumukonasool en flutriafol. Resultate van die studie het 'n variasie in sensitiwiteit van die nageslag getoon, wat op 'n kwantitatiewe oorerwing van weerstand teen £riasole dui. Alhoewel die teleomorf nog nie in lande in Suid-Afrika opgemerk is nie, Ie hierdie kennis die fondament vir die langtermyn vertolking van die populasie dinamika van hierdie fungus. Die vermoe van 'n heterotalliese askomiseet populasie om seksueel voort te plant is afhanklik van die beskikbaarheid van sy twee paringstipes, MATI-I en MATl-2, hul verpreiding, vroulike vrugbaarheid en ander faktore. Alhoewel die teleomorf algemeen in lande in die Verenigde Koninkryk opgemerk word, is dit in kontras met die situasie in Suid-Afrika, waar hierdie stadium nog slegs in die laboratorium gelnduseer kon word. 'n Studie is dus onderneem om die Suid-Afrikaanse en V.K. populasies met mekaar te vergelyk. Isolate van die twee populasies is dus gepaar met paringsisolate as beide sperm ontvangers en sperm donors. Hierdie prosedure het dit moontlik gemaak om die persentasie hermafrodiete te bepaal. Geen verskille in vroulike fertiliteit is tussen die Suid-Afrikaanse en V.K. populasies bespeur nie, en beide populasies het ook 'n lae effektiewe populasie getal getoon. Hierdie data het dus voorgestel dat die teleomorf ook meer algemeen in Suid-Afrika sou voorkom as die klimaat meer geskik was vir teleomorf vormmg. Die resultate van hierdie studie het tot die slotsom gelei dat oogvlek steeds deur fungisiedbehandeling in Suid-Afrika beheer kan word. Alhoewel daar 'n merkbare verskuiwing in sensitiwiteit teenoor fenbukonasool en flusilasool was, was geen weerstand teenoor karbendazim waargeneem nie. Laasgenoemde kan dalk toegeskryf word aan die afwesigheid van die teleomorf in die veld, gekombineer met die monosikliese natuur van die patogeen en gebruik van alternerende fungisiedes. Die afwesigheid van T. acuformis maak die plaaslike siektetoestand minder gekompliseerd in terme van fungisied aanwending en bestuur. Voortdurende opnames sal egter uitgevoer moet word om hierdie situasie ook in die toekoms te monitor.
35

Sensibilidade in vitro e in vivo de isolados de Colletotrichum lindemuthianum (Sacc & Magn.) Briosi & Cav., a fungicidas sistêmicos / Sensibility in vitro and in vivo of Colletotrichum lindemuthianum (Sacc & Magn.) Briosi & Cav., the systemic fungicides

Gulart, Caroline Almeida 18 February 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The sensitivity of ten isolated of Colletotrichum lindemuthianum the systemic fungicides was evaluated in vitro and in vivo, in experimental design was completely random with three replications. In the study in vitro, it was evaluated the percentage of germination of spores of the fungus when submitted to the benzimidazol fungicides: carbendazin and methyl tiophanate and the estrobilurins: azoxystrobin and pyraclostrobina. The methodology consisted in incorporate the fungicide to the agar at the final concentrations of 0; 0,1; 1,0; 10 and 100 ppm. With the germination data the DL50 (rate capable to inhibit 50% of the germination of spores) was calculated. For each fungicide was calculated the DL50, being observed differences in the sensitivity of isolated of C. lindemuthianum. Considering the fungicide carbendazin, race 65 presented low sensitivity while races 08, 81, 321 had been moderately sensible to this fungicide. In the case of the estrobilurins, all the isolated ones had revealed highly sensible to the fungicides azoxystrobin and pyraclostrobin, proving the effect of this chemical group on the germination of spores. In the in vivo evaluation, it was evaluated the DL50 having considered the injuries of C. lindemuthianum formed from the inoculation of a known concentration of spores in detached bean leaves submitted to the final concentrations of 0; 0,5; 1,0; 5,0; 10,0 and 50,0 ppm of tebuconazol and epoxiconazol. It was not observed difference among isolates, considering the classification of sensitivity proposed by Edgington al. (1971). However, it was verified great amplitude of values of DE50 between the isolated ones. Race 321 presented moderate sensitivity to the epoxiconazol, races 08 and 65 with relatively bigger values of DE50. The same occurred with race 81 with regard to epoxiconazol. The alteration in the sensitivity on C. lindemuthianum isolates, when submitted to the group of the benzimidazoles, was related to the frequency and pressure of selection imposed by repeated fungicides application. Regarding the triazoles, it was not observed differences in the classification of sensitivity between the isolates, showing that the use of these fungicides in the control of anthracnose did not produce a similar selective effect as observed with the fungicides tebuconazol and epoxyconazol. / A sensibilidade in vitro e in vivo de dez isolados de Colletotrichum lindemuthianum a fungicidas sistêmicos foi avaliada in vitro e in vivo, em delineamento experimental inteiramente casualizado com três repetições. No estudo in vitro foi avaliada a porcentagem de germinação de conídios do fungo quando submetidos aos fungicidas benzimidazóis: carbendazin e tiofanato metílico e estrobilurinas: azoxistrobina e piraclostrobina. Foi utilizada a metodologia do fungicida incorporado ao agar nas concentrações finais de 0; 0,1; 1,0; 10 e 100 ppm. Com os dados de germinação foi calculada a DL50 (dose efetiva capaz de inibir 50% da germinação de esporos) para cada fungicida, sendo observadas diferenças na sensibilidade dos isolados de Colletotrichum lindemuthianum com relação aos fungicidas testados. Considerando o fungicida carbendazin, a raça 65 apresentou baixa sensibilidade enquanto as raças 08, 81, 321 foram moderadamente sensíveis a este fungicida. No caso das estrobilurinas, todos os isolados mostraram-se altamente sensíveis aos fungicidas azoxistrobina e piraclostrobina, comprovando o efeito esporocida desse grupo químico. Na avaliação in vivo, foi avaliada a a DL50 considerando as lesões de C. lindemuthianum formadas a partir da inoculação de uma concentração conhecida de esporos em folhas destacadas de feijão submetidas a concentrações finais de 0; 0,5; 1,0; 5,0; 10,0 e 50,0 ppm de tebuconazole e epoxiconazole. Não houve diferença quanto à classificação de sensibilidade proposta na escala adaptada de Edgington et al. (1971), embora tenha sido verificada grande amplitude de valores de DE50 entre os isolados. A raça 321 apresentou moderada sensibilidade a epoxiconazole, ficando as raças 08 e 65 com valores de DE50 relativamente maiores. O mesmo ocorreu com a raça 81 com relação ao epoxiconazole. A alteração na sensibilidade de isolados de C.lindemuthianum quando submetidos ao grupo dos benzimidazóis está relacionada a origem, freqüência e pressão de seleção imposta pela aplicação repetida desses fungicidas em determinados locais onde predominam determinados grupos de raças fisiológicas. Com relação aos triazóis não houve diferenças na classificação de sensibilidade entre os isolados, mostrando que a utilização desses fungicidas no controle da antracnose não produziu um efeito seletivo similar ao observado com os fungicidas tebuconazole e epoxiconazole, considerando a mesma população do patogeno.
36

Phytophthora nicotianae: Fungicide Sensitivity, Fitness, and Molecular Markers

Hu, Jiahuai 16 July 2007 (has links)
Mefenoxam has been a premier compound for Phytophthora disease control in the nursery industry for 30 years. The primary objectives of this research were to examine whether Phytophthora species have developed resistance to this compound and to investigate fungicide resistance management strategies. Phytophthora nicotianae, a destructive pathogen of numerous herbaceous and some woody ornamental plants, was used as a model system. P. cinnamomi, a major pathogen of a wide range of tree species and shrub plants, was also included for comparison. Twenty-six isolates of P. nicotianae were highly resistant to mefenoxam with a mean EC50 value of 326.5 µg/ml while the remaining 70 were sensitive with an EC50 of <0.01 µg/ml (Label rate: 0.08µg/ml). All resistant isolates were recovered from herbaceous annuals and irrigation water in 3 Virginia nurseries. Resistant isolates were compared with sensitive ones using seedlings of Lupinus "Russell Hybrids" in the absence of mefenoxam for relative competitive ability. Resistant isolates out-competed sensitive ones within 3 to 6 sporulation cycles. Resistant isolates exhibited greater infection rate and higher sporulation ability than sensitive ones. No mefenoxam resistant isolates were identified in P. cinnamomi. All 65 isolates of P. cinnamomi were sensitive to mefenoxam with an EC50 of < 0.04 ï ­g/ml. Attempts to generate mutants with high resistance to mefenoxam through UV mutagenesis and mycelial adaptation were not successful. However, there were significant reductions in sensitivity to mefenoxam; those slightly resistant mutants carried fitness penalties, which may explain why P. cinnamomi remains sensitive to mefenoxam. The effect of propamocarb hydrochloride on different growth stages of Phytophthora nicotianae was evaluated in search for an alternative fungicide. Propamocarb greatly inhibited sporangium production, zoospore motility, germination and infection. However, it has little inhibition of mycelial growth and infections. Propamocarb can be used as an alternative fungicide to mefenoxam where mefenoxam resistance has become problematic. However, it must be used preventively; i.e. before infections occur. The genetic inheritance of mefenoxam resistance in P. nicotianae was studied using F1 progenies of a cross between resistant and sensitive isolates. The F1 progenies segregated for mefenoxam resistance in ratio of 1R:1S, indicating the mefenoxam resistance is controlled by a single dominant gene. One RAPD marker putatively linked to resistant locus in repulsion phase was obtained by bulked segregant analysis and was converted to the SCAR marker. This marker is capable of differentiating mefenoxam resistant populations from sensitive populations included in this study. / Ph. D.
37

Fungicide Sensitivity of Erysiphe necator and Plasmopara viticola from Virginia and nearby states

Colcol, Jeneylyne Ferrera 29 September 2008 (has links)
This study was undertaken to determine the sensitivity of grape downy mildew (DM, Plasmopara viticola) and powdery mildew (PM, Erysiphe necator) to commonly used single-site fungicides in Virginia and nearby states. DM and PM isolates were collected from 2005 to 2007. In grape leaf disc bioassays, 92% of the DM isolates were QoI (azoxystrobin)-resistant, but none were resistant to mefenoxam. Eighty-two percent of the PM isolates were QoI-resistant, but none were resistant to boscalid and quinoxyfen. The frequency of the G143A point mutation, which confers high levels of QoI resistance, was quantified in DM and PM isolates by real-time PCR. Most of the QoI-resistant DM and PM isolates contained >95% of the 143A allele. QoI-sensitive DM isolates contained less than 1% of 143A. One out of 145 and 14 out of 154 QoI-resistant DM and PM isolates (able to grow on azoxystrobin concentration ï ³ 1 µg/ml), respectively, contained less than 1% 143A. Most PM isolates exhibited reduced sensitivity to five DMI fungicides when compared to a sensitive subgroup (n=9) and compared to published reports for unexposed populations; the resistance factor (median EC50 of the entire isolate collection divided by median EC50 of sensitive subgroup) was highest for tebuconazole (360) and myclobutanil (350), followed by triflumizole (79), triadimefon (61), and fenarimol (53). Sensitivities to all five DMI fungicides, but also azoxystrobin, were moderately to strongly correlated (pairwise r-values ranging from 0.60 to 0.88). / Master of Science in Life Sciences
38

Characterization of fungicide resistance in grape powdery and downy mildew using field trials, bioassays, genomic, and transcriptomic approaches: quinoxyfen, phosphite, and mandipropamid

Feng, Xuewen 06 February 2018 (has links)
Development of fungicide resistance in fungal and oomycete pathogens is a serious problem in grape production. Quinoxyfen is a fungicide widely used against grape powdery mildew (Erysiphe necator). In 2013, E. necator isolates with reduced quinoxyfen sensitivity (designated as quinoxyfen lab resistance or QLR) were detected in Virginia. Field trials were conducted in 2014, 2015, and 2016 at the affected vineyard to determine to what extent quinoxyfen might still contribute to disease control. Powdery mildew control by quinoxyfen was good, similar to, or only slightly less, than that provided by myclobutanil and boscalid in all three years. The frequency of QLR in vines not treated with quinoxyfen declined only slowly over the three years, from 65% to 46%. Information about the mode of action of quinoxyfen is limited; previous research suggests that quinoxyfen interferes with the signal transduction process. We profiled the transcriptomes of QLR and sensitive isolates in response to quinoxyfen treatment, providing support for this hypothesis. Additional transcriptional targets of quinoxyfen were revealed to be involved in the positive regulation of the MAPK signaling cascade, pathogenesis, and sporulation activity. Grape downy mildew (Plasmopara viticola), another important grape pathogen, is commonly controlled by phosphite fungicides. A field trial and laboratory bioassays were conducted to determine whether P. viticola isolates from vineyards with suspected control failures showed reduced sensitivity against phosphite fungicides. Prophyt applied at 14-day intervals under high disease pressure provided poor downy mildew control in the field. Next-generation sequencing technologies were utilized to identify 391,930 single nucleotide polymorphisms (SNPs) and generated a draft P. viticola genome assembly at ~130 megabase (Mb). Finally, field isolates of P. viticola collected from a Virginia vineyard with suspected mandipropamid control failure were bioassayed. The EC50 values of the isolates were >240 μg.ml-1 for mandipropamid, well above the field rate. The PvCesA3 gene of two resistant isolates was sequenced revealing that these isolates had a GGC-to-AGC substitution at codon 1105, the same mutation that has been found associated with CAA resistance elsewhere. / PHD
39

Impacts biochimiques et biologiques de mutations dans le gène sdhB codant la sous-unité B de la succinate déshydrogénase chez le champignon phytopathogène Botrytis cinerea / Biochemical and biological impacts of mutations in the sdhB gene encoding the B sub-unit of the succinate dehydrogenase enzyme complex in the phytopathogenic fungi Botrytis cinerea

Lalève, Anaïs 31 May 2013 (has links)
La succinate déshydrogénase (SDH) est à la fois une enzyme clé du cycle de Krebs oxydant le succinate en fumarate et le complexe II de la chaîne respiratoire mitochondriale impliqué dans le transfert des électrons et la réduction de l’ubiquinone. Des inhibiteurs de cette enzyme (SDHI) ont été développés ou sont en cours de développement comme antifongiques. Cette famille de fongicides est notamment utilisée pour lutter contre Botrytis cinerea, champignon phytopathogène responsable de la pourriture grise sur de nombreuses cultures dont la vigne. Des souches résistantes aux SDHI ont été isolées chez B. cinerea et d’autres champignons phytopathogènes. Chez ces isolats résistants, des mutations ont été identifiées dans les gènes codant la SDH. Au cours de cette thèse, nous avons étudié l’impact de mutations affectant la sous-unité B (SdhB) de la succinate déshydrogénase sur l’activité de l’enzyme, la biologie du champignon B. cinerea et la résistance aux inhibiteurs ciblant cette enzyme. Par mutagénèse dirigée du gène sdhB, nous avons obtenu des mutants dits « isogéniques » qui ont permis de confirmer l’implication de ces mutations dans la résistance aux différentes molécules SDHI. Par ailleurs, nos résultats montrent que les modifications de la sous-unité SdhB affectent l’affinité des SDHI pour la SDH et les niveaux d’inhibition de l’activité SDH par les molécules inhibitrices ; ce qui explique - in fine - les spectres de résistance des mutants aux SDHI. Actuellement, tous les mutants sont résistants au boscalid et les mutants les plus fréquemment retrouvés au vignoble, sdhBH272R/Y, sont sensibles au fluopyram. Les travaux réalisés sur les mutants sdhB montrent que les mutations étudiées ont également un impact sur l’activité de l’enzyme et sur le développement du champignon, conséquences dépendantes du résidu substitué et de la substitution. En particulier, les mutations sdhBH272L/R affectent fortement l’activité de l’enzyme et la fitness du champignon alors que le mutant sdhBH272Y est peu affecté. Enfin, l’analyse de populations de pourriture grise de différentes origines (région, plantes hôtes) par rapport à la résistance aux SDHI réalisée sur les années 2009/2010 montre que les mutants sdhBH272R/Y sont toujours les plus fréquents mais leurs fréquences varient en fonction des situations agronomiques. Notamment la fréquence du mutant sdhBH272R augmente avec la pression de sélection exercée par les fongicides. Ce mutant attire particulièrement notre attention du fait de sa relation non linéaire entre fitness et fréquence au champ. / Succinate dehydrogenase is both a key enzyme of the TCA cycle, oxidizing succinate into fumarate and complex II of the mitochondrial respiratory chain involved in electron transfer and ubiquinone reduction. Inhibitors of this enzyme (SDHIs) have been developed or are in the developmental process as fungicides. Actually, SDHIs are registered to deal with Botrytis cinerea, a phytopathogenic fungus responsible for grey mold on many crops including grapevine. Strains of B. cinerea and other pathogenic fungi have been isolated for their resistance to SDHI. They mainly harbor mutations in genes encoding SDH subunits. During this thesis, we studied the impact of mutations modifying subunit B of succinate dehydrogenase on enzyme activity, fungal biology and resistance to SDHIs. “Isogenic” mutants obtained through site-directed mutagenesis and homologous recombination allowed us to confirm the role of sdhB mutations in SDHIs resistance. Our results also show that the substitutions in the SdhB subunit impact respectively the affinity of SDHIs to SDH and the inhibition levels of SDH activity by inhibitors, which explain – in fine – the resistance spectra observed for the mutants. Up to now, all sdhB mutants are resistant to boscalid and the most frequent mutants observed in grapevines, sdhBH272R/Y, are susceptible to fluopyram. Studies on sdhB mutants reveal that the mutations also impact the enzymatic activity and the fungal development depending on the substitution. In particular, sdhBH272L/R mutations have the strongest impact on enzyme activity and the fitness of the fungus, whereas these parameters are almost not altered in the sdhBH272Y mutant. Finally, grey mold populations from different origins (country, plant host) were analyzed for their SDHI resistance pheno- and genotypes. Yet, the sdhBH272R/Y mutants were the most frequent, but these frequencies varied according to the agronomical situation. Interestingly, the frequencies of the sdhBH272R mutant seem to increase with the selective pressure exerted by fungicides. This mutant is of particular interest because of the absence of correlation between the fitness we measured and the frequencies we observed in natura.
40

FUNGICIDE TIMING, RESISTANCE MONITORING, AND PHYTOPATHOMETRY FOR FIELD CROP DISEASES IN INDIANA

Kaitlin G Waibel (15353782) 26 April 2023 (has links)
<p>  </p> <p>Protecting crops from disease requires continuous research because plant pathogen incidence, geographical range, and pathogenicity, are constantly shifting variables as agronomic practices and climate continue to evolve. The objectives of this research are to i.) evaluate field-scale fungicide timing programs for corn (<em>Zea mays L.</em>) diseases at multiple locations in Indiana; ii.) evaluate field-scale fungicide timing programs for soybean (<em>Glycine Max</em> (L.) Merr.) diseases at multiple locations in Indiana; iii.) continue to identify, document, and confirm the distribution of populations of the soybean frogeye leaf spot pathogen (<em>Cercospora sojina)</em> that contain the G143A mutation conferring resistance to quinone outside inhibitor (QoI) fungicides in Indiana; and iv.) assess the incidence, severity, and prevalence of tar spot (<em>Phyllachora maydis</em>) in Indiana. For the first and second objectives, field scale trials were established at three locations in Indiana from 2019 to 2022. No application timings at any location provided significant yield protection for corn or soybeans. To achieve the third objective, 165 isolates of <em>C. Sojina </em>were tested. In total, 24 out of the 32 counties sampled in 2021 and 2022 were documented with QoI-resistance. The fourth objective was accomplished by surveying Indiana counties for incidence and severity of tar spot. As of 2022, 86 out of 92 Indiana counties have been confirmed for the presence of tar spot.</p>

Page generated in 0.0897 seconds