91 |
Indicadores de erros a posteriori na aproximação de funcionais de soluções de problemas elípticos no contexto do método Galerkin descontínuo hp-adaptivo / A posteriori error indicators in the approximation of functionals of elliptic problems solutions in the context of hp-adaptive discontinuous Galerkin methodGonçalves, João Luis, 1982- 19 August 2018 (has links)
Orientador: Sônia Maria Gomes, Philippe Remy Bernard Devloo, Igor Mozolevski / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T03:23:02Z (GMT). No. of bitstreams: 1
Goncalves_JoaoLuis_D.pdf: 15054031 bytes, checksum: 23ef9ef75ca5a7ae7455135fc552a678 (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho, estudamos indicadores a posteriori para o erro na aproximação de funcionais das soluções das equações biharmônica e de Poisson obtidas pelo método de Galerkin descontínuo. A metodologia usada na obtenção dos indicadores é baseada no problema dual associado ao funcional, que é conhecida por gerar os indicadores mais eficazes. Os dois principais indicadores de erro com base no problema dual já obtidos, apresentados para problemas de segunda ordem, são estendidos neste trabalho para problemas de quarta ordem. Também propomos um terceiro indicador para problemas de segunda e quarta ordem. Estudamos as características dos diferentes indicadores na localização dos elementos com as maiores contribuições do erro, na caracterização da regularidade das soluções, bem como suas consequências na eficiência dos indicadores. Estabelecemos uma estratégia hp-adaptativa específica para os indicadores de erro em funcionais. Os experimentos numéricos realizados mostram que a estratégia hp-adaptativa funciona adequadamente e que o uso de espaços de aproximação hp-adaptados resulta ser eficiente para a redução do erro em funcionais com menor úmero de graus de liberdade. Além disso, nos exemplos estudados, a qualidade dos resultados varia entre os indicadores, dependendo do tipo de singularidade e da equação tratada, mostrando a importância de dispormos de uma maior diversidade de indicadores / Abstract: In this work we study goal-oriented a posteriori error indicators for approximations by the discontinuous Galerkin method for the biharmonic and Poisson equations. The methodology used for the indicators is based on the dual problem associated with the functional, which is known to generate the most effective indicators. The two main error indicators based on the dual problem, obtained for second order problems, are extended to fourth order problems. We also propose a third indicator for second and fourth order problems. The characteristics of the different indicators are studied for the localization of the elements with the greatest contributions of the error, and for the characterization of the regularity of the solutions, as well as their consequences on indicators efficiency. We propose an hp-adaptive strategy specific for goal-oriented error indicators. The performed numerical experiments show that the hp-adaptive strategy works properly, and that the use of hp-adapted approximation spaces turns out to be efficient to reduce the error with a lower number of degrees of freedom. Moreover, in the examples studied, a comparison of the quality of results for the different indicators shows that it may depend on the type of singularity and of the equation treated, showing the importance of having a wider range of indicators / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
92 |
Um sistema de equações parabólicas de reação-difusão modelando quimiotaxia / A system of parabolic reaction-diffusion equations modeling chemotaxisOliveira, Andrea Genovese de, 1986- 19 August 2018 (has links)
Orientador: José Luiz Boldrini / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T18:40:32Z (GMT). No. of bitstreams: 1
Oliveira_AndreaGenovesede_M.pdf: 1278255 bytes, checksum: f16ace92e18ff9cf5e8a4f8a66829f47 (MD5)
Previous issue date: 2012 / Resumo: Analisamos um sistema não linear parabólico de reação-difusão com duas equações definidas em ]0,T[x'ômega', (0 < T < 'infinito' e Q 'pertence' R³ limitado) e condições de fronteira do tipo Neumann. Tal sistema foi proposto para modelar o movimento de uma população de amebas unicelulares e tem como base o processo de locomoção chamado quimiotaxia positiva, na qual as amebas se movimentam em direção à região de alta concentração de uma certa substância química, que, neste caso, é produzida pelas próprias amebas. Embora adicionando os detalhes técnicos, este trabalho seguiu livremente o método de resolução proposto no artigo de A. Boy, Analysis for a System of Coupled Reaction-Diffusion Parabolic Equations Arising in Biology, Computers Math. Applic. Vol. 32, No. 4, páginas 15-21, 1996 / Abstract: We will be analyzing a nonlinear parabolic reaction diffusion system with two equations, defined in ]0,T[x'omega', (0 < T < 'infinite' and Q 'belongs' R³) with Neumann boundary conditions. This system was proposed in order to model the movement of a population of single-cell amoebae and is based on the process of movement called chemotaxis, in which the amoebae move in the direction of the region of high concentration of a certain chemical substance, which, in this case, is produced by the amoebae themselves.While adding the technical details, this dissertation followed freely the solution method proposed in the paper: A. Boy, Analysis for a System of Coupled Reaction-Diffusion Parabolic Equations Arising in Biology, Computers Math. Applic. Vol. 32, No. 4, pages 15-21, 1996 / Mestrado / Matematica / Mestre em Matemática
|
93 |
Desenvolvimento de metodo implicito para simulador numerico tridimensional de escoamentos compressiveis inviscidosSantos, Erick Slis Raggio 30 July 2004 (has links)
Orientadores: Philippe Remy Bernard Devloo, Sonia Maria Gomes / Dissertação (Mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-04T00:26:41Z (GMT). No. of bitstreams: 1
Santos_ErickSlisRaggio_M.pdf: 3573187 bytes, checksum: 016737de065f039de0141d987e4bdd7a (MD5)
Previous issue date: 2004 / Resumo: A simulação de escoamentos compressíveis considerados sem viscosidade tem grande aplicabilidade na aeronáutica. Atualmente tem sido foco de muitas pesquisas o desenvolvimento destas simulações segundo o método de Galerkin descontínuo[7, 12, 16, 20], que alia as boas características dos métodos de elementos finitos e volumes finitos, beneficiando-se da modelagem polinomial no interior de subdomínios e escontínua nas interfaces entre subdomínios. Neste trabalho o autor se propõe a estender as funcionalidades do ambiente de elementos finitos PZ[28], habilitando-o a modelar as equações de Euler de dinâmica dos gases com o método de Galerkin descontínuo em 3 dimensões. Para cálculo dos fluxos nas interfaces entre os subdomínios emprega-se o fluxo de Roe de primeira ordem e para estabilizar eventuais oscilações na distribuição da solução no interior dos subdomínios são adicionados termos de difusão artificial à formulação. O esquema de integração temporal a empregar é o de Euler implícito, resolvido pelo método de Newton-Raphson. O cálculo da matriz jacobiana do resíduo de Euler, necessário para o método de Newton-Raphson, é desafiador devido à complexidade dos termos de difusão e fluxo numérico, mas viabilizado pelo emprego de técni-cas de diferenciação automática. Dada a qualidade do integrador temporal consistentemente implícito, algoritmos de evolução de CFL são desenvolvidos e aplicados, visando a redução dos tempos de simulação. A validação do esquema proposto e a avaliação da qualidade dos resultados fornecidos pelo simulador são obtidas através da simulação de problemas teste modelados pelo autor. O resultado é um simulador 2D e 3D robusto e que fornece resultados consistentes com os da literatura. Destaca-se o desenvolvimento de um esquema de evolução de CFL que reduz o número de iterações para convergência até a solução estacionária, a com-paração de eficiência dos termos de difusão artificial e o desenvolvimento matricial destes. O trabalho evidencia as qualidades da aproximação numérica segundo o método de Galerkin descontínuo em comparação com resultados analíticos e de simulações por volumes finitos e as qualidades do integrador temporal desenvolvido, guiando futuros desenvolvimentos e elencando sugestões de extensões que visam aumentar a eficiência e ampliar as funcionalidades do simulador / Abstract: The simulation of compressible flows considered inviscid is largely appliable to aeronautics. The development of such simulations using the Garlekin discontinuous method[7,12,16,20], wich presents the good characteristics of fine element and finite volume methods, benefitting from the polynomial interpolation within subdomains and discontinuous across interfaces among them, has been the focus of many current researches. In this work the author extends the functionalities of the PZ finite element environment[28], enabling it to model the Euler equations of gas dynamics with the discontinuous Galerkin method in three space dimensions. The flux evaluation across interfaces uses the first order Roe¿s numerical flux. Artificial diffusive terms added to the formulation aatempt to stabilize spatial oscillations of the distribution of the solution within each subdomain. The time marcing scheme applied is the implicit first order Euler, solved by a Newton-Raphson method. The evaluation of the matrix tangent to the Euler residual required by the neton-Raphson method is challenging due to the complexity of the artificial diffusive and numerical flux terms, but feasible thanks to the automatic differentiation techniques. Given the quality of the consistently implicit time integrator. CFL evolution algorithms are developed and applied to reduce the simulation ti-ming. The proposed scheme validation as well as the result quality juclgements are obtained through the simulation of test problems proposed by the author. The result is a 2D and 3D robust simulator that off'ers results consistent ivith those availabe in the bibliography. Outstanding qualities are presented by the CFL c.volution scheme. which reduces the num-ber of time marching iterations required to converge to steady-state solutions. An efficiency benchmark of the artificial cliff'usive terms and the matricial development of such are also emphasized. This work evinces the qualities of the discontinuous Galerkin approximation method compared to analytical and finite volume simulation solutions and the qualities of the developed time integrator. guiding future developments and stating suggestions on pos-sible extensions focusing performance enhancement and additional features / Mestrado / Estruturas / Mestre em Engenharia Civil
|
94 |
Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues / High order discontinuous Galerkin methods for time-harmonic elastodynamicsBonnasse-Gahot, Marie 15 December 2015 (has links)
Le contexte scientifique de cette thèse est l'imagerie sismique dont le but est de reconstituer la structure du sous-sol de la Terre. Comme le forage a un coût assez élevé, l'industrie pétrolière s'intéresse à des méthodes capables de reconstituer les images de la structure terrestre interne avant de le faire. La technique d'imagerie sismique la plus utilisée est la technique de sismique-réflexion qui est basée sur le modèle de l'équation d'ondes. L'imagerie sismique est un problème inverse qui requiert de résoudre un grand nombre de problèmes directs. Dans ce contexte, nous nous intéressons dans cette thèse à la résolution du problème direct en régime harmonique, soit à la résolution des équations d'Helmholtz. L'objectif principal est de proposer et de développer un nouveau type de solveur élément fini (EF) caractérisé par un opérateur discret de taille réduite (comparée à la taille des solveurs déjà existants) sans pour autant altérer la précision de la solution numérique. Nous considérons les méthodes de Galerkine discontinues (DG). Comme les méthodes DG classiques sont plus coûteuses que les méthodes EF continues si l'on considère un même problème à cause d'un grand nombre de degrés de liberté couplés, résultat des approximations discontinues, nous développons une nouvelle classe de méthode DG réduisant ce problème : la méthode DG hybride (HDG). Pour valider l'efficacité de la méthode HDG proposée, nous comparons les résultats obtenus avec ceux obtenus avec une méthode DG basée sur des flux décentrés en 2D. Comme l'industrie pétrolière s'intéresse au traitement de données réelles, nous développons ensuite la méthode HDG pour les équations élastiques d'Helmholtz 3D. / The scientific context of this thesis is seismic imaging which aims at recovering the structure of the earth. As the drilling is expensive, the petroleum industry is interested by methods able to reconstruct images of the internal structures of the earth before the drilling. The most used seismic imaging method in petroleum industry is the seismic-reflection technique which uses a wave equation model. Seismic imaging is an inverse problem which requires to solve a large number of forward problems. In this context, we are interested in this thesis in the modeling part, i.e. the resolution of the forward problem, assuming a time-harmonic regime, leading to the so-called Helmholtz equations. The main objective is to propose and develop a new finite element (FE) type solver characterized by a reduced-size discrete operator (as compared to existing such solvers) without hampering the accuracy of the numerical solution. We consider the family of discontinuous Galerkin (DG) methods. However, as classical DG methods are much more expensive than continuous FE methods when considering steady-like problems, because of an increased number of coupled degrees of freedom as a result of the discontinuity of the approximation, we develop a new form of DG method that specifically address this issue: the hybridizable DG (HDG) method. To validate the efficiency of the proposed HDG method, we compare the results that we obtain with those of a classical upwind flux-based DG method in a 2D framework. Then, as petroleum industry is interested in the treatment of real data, we develop the HDG method for the 3D elastic Helmholtz equations.
|
95 |
hp-Adaptive Discontinuous Galerkin Finite Element In Time For Rotor Dynamics ProblemGudla, Pradeep Kumar 07 1900 (has links) (PDF)
No description available.
|
96 |
Modeling of Transport Phenomena and Macrosegregation during Directional Solidification of AlloysSajja, Udaya Kumar 30 April 2011 (has links)
This dissertation mainly focuses on the development of new numerical models to simulate transport phenomena and predict the occurrence of macrosegregation defects known as freckles in directional solidification processes. Macrosegregation models that include double diffusive convection are very complex and require the simultaneous solution of the conservation equations of mass, momentum, energy and solute concentration. The penalty method and Galerkin Least Squares (GLS) method are the most commonly employed methods for predicting the interdendritic flow of the liquid melt during the solidification processes. The solidification models employing these methods are computationally inefficient since they are based on the formulations that require the coupled solution to velocity components in the momentum equation Motivated by the inefficiency of the previous solidification models, this work presents three different numerical algorithms for the solution of the volume averaged conservation equations. First, a semi explicit formulation of the projection method that allows the decoupled solution of the velocity components while maintaining the coupling between body force and pressure gradient is presented. This method has been implemented with a standard Galerkin finite element formulation based on bi-linear elements in two dimensions and tri-linear elements in three dimensions. This formulation is shown to be robust and very efficient in terms of both the memory and the computational time required for the macrosegregation computations. The second area addressed in this work is the use of adaptive meshing with linear triangular elements together with the Galerkin finite element method and the projection formulation. An unstructured triangular mesh generator is integrated with the solidification model to produce the solution adapted meshes. Strategies to tackle the different length scales involved in macrosegregation modeling are presented. Meshless element free Galerkin method has been investigated to simulate the solidification processes to alleviate the difficulties associated with the dependence on the mesh. This method is combined with the fractional step method to predict macrosegregation. The performance of these three numerical algorithms has been analyzed and two and three dimensional simulations showing the directional solidification of binary Pb-Sn and multicomponent Ni base alloys are presented.
|
97 |
Mass Conservation Analysis For The Lower St. Johns River Using Continuous And Discontinuous Galerkin Finite Element MethodsThomas, Lillie E 01 January 2011 (has links)
This thesis provides a mass conservation analysis of the Lower St. Johns River for the purpose of providing basis for future salinity transport modeling. The analysis provides an assessment of the continuous (CG) and discontinuous (DG) Galerkin finite element methods with respect to their mass conservation properties. The following thesis also presents a rigorous literature review pertaining to salinity transport in the Lower St. Johns River, from which this effort generates the data used to initialize and validate numerical simulations. Two research questions are posed and studied in this thesis: can a DG-based modeling approach produce mass conservative numerical solutions; and what are the flow interactions between the river and the marshes within the coastal region of the Lower St. Johns River? Reviewing the available data provides an initial perspective of the ecosystem. For this, salinity data are obtained and assembled for three modeling scenarios. Each scenario, High Extreme, Most Variable, and Low Extreme, is 30 days long (taken from year 1999) and represents a unique salinity regime in the Lower St. Johns River. Time-series of salinity data is collected at four stations in the lower and middle reaches of the Lower St. Johns River, which provides a vantage point for assessing longitudinal variation of salinity. As an aside, precipitation and evaporation data is presented for seven stations along the entire St. Johns River, which provides added insight into salinity transport in the river. A mass conservation analysis is conducted for the Lower St. Johns River. The analysis utilizes a segmentation of the Lower St. Johns River, which divides the domain into sections iv based on physical characteristics. Mass errors are then calculated for the CG and DG finite element methods to determine mass conservative abilities. Also, the flow interactions (i.e., volume exchange) between the river and marshes are evaluated through the use of tidal prisms. The CG- and DG- finite element methods are then tested in tidal simulation performance, which the results are then compared to observed tides and tidal currents at four stations within the lower portion of the Lower St. Johns River. Since the results show that the DG model outperforms the CG model, the DG model is used in the tidally driven salinity transport simulations. Using four stations within the lower and middle part of the Lower St. Johns River, simulated and observed water levels and salinity concentrations are compared.
|
98 |
Design, Analysis, and Application of Immersed Finite Element MethodsGuo, Ruchi 19 June 2019 (has links)
This dissertation consists of three studies of immersed finite element (IFE) methods for inter- face problems related to partial differential equations (PDEs) with discontinuous coefficients. These three topics together form a continuation of the research in IFE method including the extension to elasticity systems, new breakthroughs to higher degree IFE methods, and its application to inverse problems.
First, we extend the current construction and analysis approach of IFE methods in the literature for scalar elliptic equations to elasticity systems in the vector format. In particular, we construct a group of low-degree IFE functions formed by linear, bilinear, and rotated Q1 polynomials to weakly satisfy the jump conditions of elasticity interface problems. Then we analyze the trace inequalities of these IFE functions and the approximation capabilities of the resulted IFE spaces. Based on these preparations, we develop a partially penalized IFE (PPIFE) scheme and prove its optimal convergence rates.
Secondly, we discuss the limitations of the current approaches of IFE methods when we try to extend them to higher degree IFE methods. Then we develop a new framework to construct and analyze arbitrary p-th degree IFE methods. In this framework, each IFE function is the extension of a p-th degree polynomial from one subelement to the whole interface element by solving a local Cauchy problem on interface elements in which the jump conditions across the interface are employed as the boundary conditions. All the components in the analysis, including existence of IFE functions, the optimal approximation capabilities and the trace inequalities, are all reduced to key properties of the related discrete extension operator. We employ these results to show the optimal convergence of a discontinuous Galerkin IFE (DGIFE) method.
In the last part, we apply the linear IFE methods in the literature together with the shape optimization technique to solve a group of interface inverse problems. In this algorithm, both the governing PDEs and the objective functional for interface inverse problems are discretized optimally by the IFE method regardless of the location of the interface in a chosen mesh. We derive the formulas for the gradients of the objective function in the optimization problem which can be implemented efficiently in the IFE framework through a discrete adjoint method. We demonstrate the properties of the proposed algorithm by applying it to three representative applications. / Doctor of Philosophy / Interface problems arise from many science and engineering applications modeling the transmission of some physical quantities between multiple materials. Mathematically, these multiple materials in general are modeled by partial differential equations (PDEs) with discontinuous parameters, which poses challenges to developing efficient and reliable numerical methods and the related theoretical error analysis. The main contributions of this dissertation is on the development of a special finite element method, the so called immersed finite element (IFE) method, to solve the interface problems on a mesh independent of the interface geometry which can be advantageous especially when the interface is moving. Specifically, this dissertation consists of three projects of IFE methods: elasticity interface problems, higher-order IFE methods and interface inverse problems, including their design, analysis, and application.
|
99 |
Sur quelques problèmes elliptiques de type Kirchhoff et dynamique des fluides / On some elliptic problems ok Kirchhoff-type and fluid dynamicsBensedik, Ahmed 07 June 2012 (has links)
Cette thèse est composée de deux parties indépendantes. La première est consacrée à l'étude de quelques problèmes elliptiques de type de Kirchhoff de la forme suivante : -M(ʃΩNul² dx) Δu = f(x, u) xЄΩ ; u(x) = o xЄƋΩ où Ω cRN, N ≥ 2, f une fonction de Carathéodory et M une fonction strictement positive et continue sur R+. Dans le cas où la fonction f est asymptotiquement linéaire à l’infini par rapport à l'inconnue u, on montre, en combinant une technique de troncature et la méthode variationnelle, que le problème admet au moins une solution positive quand la fonction M est non décroissante. Et si f(x, u) = |u|p-1 u + λg(x), où p >0, λ un paramètre réel et g une fonction de classe C1 et changeant de signe sur Ω, alors sous certaines hypothèses sur M, il existe deux réels positifs λ. et λ. tels que le problème admet des solutions positives si 0 < λ <λ. et n'admet pas de solutions positives si λ > λ.. Dans la deuxième partie, on étudie deux problèmes soulevés en dynamique des fluides. Le premier est une généralisation d'un modèle décrivant la propagation unidirectionnelle dispersive des ondes longues dans un milieu à deux fluides. En écrivant le problème sous la forme d'une équation de point fixe, on montre l'existence d'au moins une solution positive. On montre ensuite sa symétrie et son unicité. Le deuxième problème consiste à prouver l'existence de la vitesse, la pression et la température d'un fluide non newtonien, incompressible et non isotherme, occupant un domaine borné, en prenant en compte un terme de convection. L’originalité dans ce travail est que la viscosité du fluide ne dépend pas seulement de la vitesse mais aussi de la température et du module du tenseur des taux de déformations. En se basant sur la notion des opérateurs pseudo-monotones, le théorème de De Rham et celui de point fixe de Schauder, l'existence du triplet, (vitesse, pression, température) est démontré / This thesis consists of two independent parts. The first is devoted to the study of some elliptic problems of Kirchhoff-type in the following form : -M(ʃΩNul² dx) Δu = f(x, u) xЄΩ ; u(x) = o xЄƋΩ where Ω cRN, N ≥ 2, f is a Caratheodory function and M is a strictly positive and continuous function on R+. In the case where the function f is asymptotically linear at infinity with respect to the unknown u, we show, by combining a truncation technique and the variational method, that the problem admits a positive solution when the function M is nondecreasing. And if f(x, u) = |u|p-1 u + λg(x) where p> 0, λ a real parameter and g is a function of class C1 and changes the sign in Ω, then under some assumptions on M, there exist two positive real λ. and λ. such that the problem admits positive solutions if 0 < λ <λ., and no positive solutions if λ > λ.. In the second part, we study two problems arising in fluid dynamics. The first is a generalization of a model describing the unidirectional propagation of long waves in dispersive medium with two fluids. By writing the problem as a fixed point equation, we prove the existence of at least one positive solution. We then show its symmetry and uniqueness. The second problem is to prove the existence of the velocity, pressure and temperature of a non-Newtonian, incompressible and isothermal fluid, occupying a bounded domain, taking into account a convection term. The originality in this work is that the fluid viscosity depends not only on the velocity but also on the temperature and the modulus of deformation rate tensor. Based on the notion of pseudo-monotone operators, the De Rham theorem and the Schauder fixed point theorem, the existence of the triplet, (velocity, pressure, temperature) is shown
|
100 |
Un modèle Maxwell-élasto-fragile pour la déformation et dérive de la banquise / A Maxwell-Elasto-Brittle model for the drift and deformation of sea iceDansereau, Véronique 17 February 2016 (has links)
De récentes analyses statistiques de données satellitales et de bouées dérivantes ont révélé le caractère hautement hétérogène et intermittent de la déformation de la banquise Arctique, démontrant de ce fait que le schéma rhéologique visco-plastique utilisé traditionnellement en modélisation climatique et opérationnelle ne simule pas adéquatement le comportement dynamique des glaces ainsi que les efforts mécaniques en leur sein.Un cadre rhéologique alternatif, baptisé "Maxwell-Élasto-Fragile" (Maxwell-EB) est donc développé dans le but de reproduire correctement la dérive et la déformation des glaces dans les modèles continus de la banquise à l'échelle régionale et globale. Le modèle se base en partie sur un cade de modélisation élasto-fragile utilisé pour les roches et la glace. Un terme de relaxation visqueuse est ajouté à la relation constitutive d'élasticité linéaire ainsi qu'une viscosité effective, ou "apparente", laquelle évolue en fonction du niveau d'endommagement local du matériel simulé, comme son module d'élasticité. Ce cadre rhéologique permet la dissipation partielle des contraintes internes par le biais de déformations permanentes, possiblement grandes, le long de failles (ou "leads") lorsque le matériel est fortement endommagé ainsi que la conservation de la mémoire des contraintes associées aux déformations élastiques dans les zones où le matériel reste relativement peu endommagé.The schéma numérique du modèle Maxwell-EB est basé sur des méthodes de calcul variationnel et par éléments finis. Une représentation Eulérienne des équations du mouvement est utilisée et des méthodes dites Galerkin discontinues sont implémentées pour le traitement des processus d'advection.Une première série de simulations idéalisées et sans advection est présentée, lesquelles démontrent que la rhéologie Maxwell-Élasto-Fragile reproduit les caractéristiques principales du comportement mécanique de la banquise, c'est-à-dire la localisation spatiale, l'anisotropie et l'intermittence de la déformation ainsi que les lois d'échelle qui en découlent. La représentation adéquate de ces propriétés de la déformation se traduit par la présence de très forts gradients au sein des champs de contrainte, de déformation et du niveau d'endommagement simulés par le modèle. Des tests visant à évaluer la diffusion numérique découlant de l'advection de ces gradients extrêmes ainsi qu'à identifier certaines contraintes numériques du modèle sont ensuite présentés. De premières simulations en grandes déformations, incluant les processus d'advection, sont réalisées, lesquelles permettent une comparaison aux résultats d'une expérience de Couette annulaire sur de la glace fabriquée en laboratoire. Le modèle reproduit en partie le comportement mécanique observé. Par ailleurs, les différences entre les résultats des simulations et ceux obtenus en laboratoire permettent d'identifier certaines limitations, numériques et physiques, du modèle en grandes déformations. Finalement, le modèle rhéologique est utilisé pour modéliser la dérive et la déformation des glaces à l'échelle de la banquise Arctique. Des simulations idéalisées de l'écoulement de glace dans un chenal étroit sont présentées. Le modèle simule une propagation localisée de l'endommagement, définissant des failles en forme d'arche, et la formation de ponts de glace stables. / In recent years, analyses of available ice buoy and satellite data have revealed the strong heterogeneity and intermittency of the deformation of sea ice and have demonstrated that the viscous-plastic rheology widely used in current climate models and operational modelling platforms does not simulate adequately the drift, deformation and mechanical stresses within the ice pack.A new alternative rheological framework named ''Maxwell-Elasto-Brittle” (Maxwell-EB) is therefore developed in the view of reproducing more accurately the drift and deformation of the ice cover in continuum sea ice models at regional to global scales. The model builds on an elasto-brittle framework used for ice and rocks. A viscous-like relaxation term is added to a linear-elastic constitutive relationship together with an effective viscosity that evolves with the local level of damage of the material, like its elastic modulus. This framework allows for part of the internal stress to dissipate in large, permanent deformations along the faults/leads once the material is highly damaged while retaining the memory of small, elastic deformations over undamaged areas. A healing mechanism is also introduced, counterbalancing the effects of damaging over large time scales.The numerical scheme for the Maxwell-EB model is based on finite elements and variational methods. The equations of motion are cast in the Eulerian frame and discontinuous Galerkin methods are implemented to handle advective processes.Idealized simulations without advection are first presented. These demonstrate that the Maxwell-EB rheological framework reproduces the main characteristics of sea ice mechanics and deformation : the strain localization, the anisotropy and intermittency of deformation and the associated scaling laws. The successful representation of these properties translates into very large gradients within all simulated fields. Idealized numerical experiments are conducted to evaluate the amount of numerical diffusion associated with the advection of these extreme gradients in the model and investigate other limitations of the numerical scheme. First large-deformation simulations are carried in the context of a Couette flow experiment, which allow a comparison with the result of a similar laboratory experiment performed on fresh-water ice. The model reproduces part of the mechanical behaviour observed in the laboratory. Comparison of the numerical and experimental results allow identifying some numerical and physical limitations of the model in the context of large-deformation and laboratory-scale simulations. Finally, the Maxwell-EB framework is implemented in the context of modelling the drift and deformation of sea ice on geophysical scales. Idealized simulations of the flow of sea ice through a narrow channel are presented. The model simulates the propagation of damage along arch-like features and successfully reproduces the formation of stable ice bridges.
|
Page generated in 0.0543 seconds