81 |
Coalgebras, clone theory, and modal logicRößiger, Martin 11 July 2000 (has links)
gekürzte Fassung: Coalgebren wurden sowohl in der Mathematik (seit den 70er Jahren) als auch in der theoretischen Informatik (seit den 90er Jahren) untersucht. In der Mathematik sind Coalgebren dual zu universellen Algebren definiert. Sie bestehen aus einer Trägermenge A zusammen mit Cofunktionen ? : A ? , die A in die n-fache disjunkte Vereinigung von sich selbst abbilden. Das Ziel der Forschung ist hier vor allem, duale Versionen von Definitionen und Resultaten aus der universellen Algebra für die Welt der Coalgebren zu finden. Die theoretische Informatik betrachtet Coalgebren von kategorieller Seite aus. Für einen gegebenen Funktor F : C ? C sind Coalgebren als Paare (S,"alpha") definiert, wobei S ein Objekt von C und "alpha" : S ? F(S) ein Morphismus in C ist. Somit stellt der obige Ansatz mit Cofunktionen einen Spezialfall dar. Begriffe wie Homomorphismus oder Bisimularität lassen sich auf einfache Weise ausdrücken und handhaben. Solche Coalgebren modellieren eine große Anzahl von dynamischen Systemen. Das liefert eine kanonische und vereinheitlichende Sicht auf diese Systeme. Die vorliegende Dissertation führt beide genannten Forschungsrichtungen der Coalgebren weiter: Teil I beschäftigt sich mit "klassischen" Coalgebren, also solchen, wie sie in der universellen Algebra untersucht werden. Insbesondere wird das Verhältnis zur Klontheorie erforscht. Teil II der Arbeit widmet sich dem kategoriellen Ansatz aus der theoretischen Informatik. Von speziellem Interesse ist hier die Anwendung von Coalgebren zur Spezifikation von Systemen. Coalgebren und Klontheorie In der universellen Algebra spielen Systeme von Funktionen eine bedeutende Rolle, u.a. in der Klontheorie. Dort betrachtet man Funktionen auf einer festen gegebenen Grundmenge. Klone von Funktionen sind Mengen von Funktionen, die alle Projektionen enthalten und die gegen Superposition (d.h. Einsetzen) abgeschlossen sind. Extern lassen sich diese Klone als Galois-abgeschlossene Mengengzgl. der Galois-Verbindung zwischen Funktionen und Relationen darstellen. Diese Galois-Verbindung wird durch die Eigenschaft einer Funktion induziert, eine Relation zu bewahren. Dual zu Klonen von Funktionen wurde von B. Csákány auch Klone von Cofunktionen untersucht. Folglich stellt sich die Frage, ob solche Klone ebenfalls mittels einer geeigneten Galois-Verbindung charakterisiert werden können. Die vorliegende Arbeit führt zunächst den Begriff von Corelationen ein. Es wird auf kanonische Weise definiert, was es heißt, daß eine Cofunktion eine Corelation bewahrt. Dies mündet in einer Galois-Theorie, deren Galois-abgeschlossene Mengen von Cofunktionen tatsächlich genau die Klone von Cofunktionen sind. Überdies entsprechen die Galois-abgeschlossenen Mengen von Corelationen genau den Klonen von Corelationen. Die Galois-Theorien von Funktionen und Relationen einerseits und Cofunktionen und Corelationen anderseits sind sich sehr ähnlich. Das wirft die Frage auf, welche Voraussetzungen allgemein nötig sind, um solche und ähnliche Galois-Theorien aufzustellen und die entsprechenden Galois-abgeschlossenen Mengen zu charakterisieren. Das Ergebnis ist eine Metatheorie, bei der die Gemeinsamkeiten in den Charakterisierungen der Galois-abgeschlossenen Mengen herausgearbeitet sind. Bereits bekannte Galois-Theorien erweisen sich als Spezialfälle dieser Metatheorie, und zwar die Galois-Theorien von partiellen Funktionen und Relationen, von mehrwertigen Funktionen und Relationen und von einstelligen Funktionen und Relationen....
|
82 |
Global and local Q-algebrization problems in real algebraic geometrySavi, Enrico 10 May 2023 (has links)
In 2020 Parusiński and Rond proved that every algebraic set X ⊂ R^n is homeomorphic to an algebraic set X’ ⊂ R^n which is described globally (and also locally) by polynomial equations whose coefficients are real algebraic numbers. In general, the following problem was widely open: Open Problem. Is every real algebraic set homeomorphic to a real algebraic set defined by polynomial equations with rational coefficients? The aim of my PhD thesis is to provide classes of real algebraic sets that positively answer to above Open Problem. In Chapter 1 I introduce a new theory of real and complex algebraic geometry over subfields recently developed by Fernando and Ghiloni. In particular, the main notion to outline is the so called R|Q-regularity of points of a Q-algebraic set X ⊂ R^n. This definition suggests a natural notion of a Q-nonsingular Q-algebraic set X ⊂ R^n. The study of Q-nonsingular Q-algebraic sets is the main topic of Chapter 2. Then, in Chapter 3 I introduce Q-algebraic approximation techniques a là Akbulut-King developed in collaboration with Ghiloni and the main consequences we proved, that are, versions ‘over Q’ of the classical and the relative Nash-Tognoli theorems. Last results can be found in in Chapters 3 & 4, respectively. In particular, we obtained a positive answer to above Open Problem in the case of compact nonsingular algebraic sets. Then, after extending ‘over Q’ the Akbulut-King blowing down lemma, we are in position to give a complete positive answer to above Open Problem also in the case of compact algebraic sets with isolated singularities in Chapter 4. After algebraic Alexandroff compactification, we obtained a positive answer also in the case of non-compact algebraic sets with isolated singularities. Other related topics are investigated in Chapter 4 such as the existence of Q-nonsingular Q-algebraic models of Nash manifolds over every real closed field and an answer to the Q-algebrization problem for germs of an isolated algebraic singularity. Appendices A & B contain results on Nash approximation and an evenness criterion for the degree of global smoothings of subanalytic sets, respectively.
|
83 |
Sobre bases normais para extensões galoisianas de corpos / On normal bases for galoisian extensions of fieldsMello, Thiago Castilho de 28 February 2008 (has links)
Neste trabalho apresentamos várias demonstrações do Teorema da Base Normal para certos tipos de extensões galoisianas de corpos, algumas existenciais e outras construtivas, destacando as diferenças e dificuldades de cada situação. Apresentamos também generalizações de tal teorema e mostramos que toda extensão galoisiana de grau ímpar de corpos admite uma base normal autodual com respeito µa forma bilinear traço / In this work we present several demonstrations of The Normal Basis Theorem for certain kinds of galoisian extensions of fields, some of them existential and others constructive, pointing the diffculties and differences in each situation. We also present generalizations of such theorem and show that every odd degree galoisian extension of fields admits a self-dual normal base with respect to the trace bilinear map
|
84 |
A General Duality Theory for ClonesKerkhoff, Sebastian 12 October 2011 (has links) (PDF)
In this thesis, we generalize clones (as well as their relational counterparts and the relationship between them) to categories. Based on this framework, we introduce a general duality theory for clones and apply it to obtain new results for clones on finite sets.
|
85 |
Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτωνΝομικός, Δημήτριος 20 October 2010 (has links)
Στην παρούσα διατριβή μελετήσαμε την ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Størmer (ASP) και του ισοσκελούς προβλημάτος τριών σωμάτων (IP), με εφαρμογή της θεωρίας Morales-Ramis-Simó. Τα αποτελέσματα της μελέτης δημοσιεύθηκαν στο περιοδικό Physica D: Nonlinear Phenomena.
Ένα σύστημα Hamilton SH, Ν βαθμών ελευθερίας, είναι ολοκληρώσιμο (κατά Liouville) όταν επιδέχεται Ν συναρτησιακώς ανεξάρτητα και σε ενέλιξη πρώτα ολοκληρώματα. Οι J.J. Morales-Ruiz, J.P. Ramis και C. Simó απέδειξαν ότι αν ένα SH είναι ολοκληρώσιμο, τότε η ταυτοτική συνιστώσα G0k της διαφορικής ομάδας Galois των εξισώσεων μεταβολών VE¬k τάξης k , που αντιστοιχούν σε μια ολοκληρωτική καμπύλη του SH, είναι αβελιανή.
Το ASP μπορεί να θεωρηθεί ότι είναι ένα σύστημα Hamilton δυο βαθμών ελευθερίας που περιέχει τις παραμέτρους pφ και ν2>0, το οποίο περιγράφει την κίνηση ενός φορτισμένου σωματιδίου υπό την επίδραση του μαγνητικού πεδίου ενός διπόλου. Οι Α. Almeida, T. Stuchi είχαν αποδείξει ότι το ASP είναι μη-ολοκληρώσιμο για pφ≠0 και ν2>0, ενω για pφ=0 είχαν αποδείξει τη μη-ολοκληρωσιμότητα των περιπτώσεων που αντιστοιχούν στις τιμές ν2≠5/12, 2/3. Η δική μας διερεύνηση απέδειξε ότι το ASP με pφ=0 (ASP0) είναι, επίσης, μη-ολοκληρώσιμο για ν2=5/12, 2/3. Αρχικά, με χρήση της μεθόδου Yoshida, αναλύσαμε τις G01 των VE¬1, που αντιστοιχούν σε δύο ολοκληρωτικές καμπύλες του ASP0, καταλήγοντας ότι οι G01 είναι μη-αβελιανές για ν2≠2/3. Στη συνέχεια, ορίσαμε τις VE3 κατά μήκος μιας τρίτης ολοκληρωτικής καμπύλης του ASP0 και δείξαμε ότι η αντίστοιχη G03 είναι μη-αβελιανή για ν2=2/3. Σύμφωνα με τη θεωρία Morales-Ramis-Simó, τα προαναφερόμενα αποδεικνύουν τη μη-ολοκληρωσιμότητα του ASΡ για pφ=0 και ν2>0.
Το ΙΡ είναι μια υποπερίπτωση του προβλήματος τριών σωμάτων και μπορεί να μελετηθεί ως ένα σύστημα Hamilton δύο βαθμών ελευθερίας με παραμέτρους pφ και m, m3>0. Η προγενέστερη ανάλυση του ΙΡ υπεδείκνυε τη μη-ολοκληρωσιμότητα του συστήματος, όμως είχε πραγματοποιηθεί με χρήση αριθμητικών μεθόδων. Βρίσκοντας από μια ολοκληρωτική καμπύλη για κάθε μια απο τις περιπτώσεις pφ=0, pφ≠0, ορίσαμε τις αντίστοιχες VE1 και αποδείξαμε τη μη-ολοκληρωσιμότητα του ΙΡ. Για pφ=0 χρησιμοποιήσαμε τη μέθοδο Yoshida για να μελετήσουμε την G01, ενώ για pφ≠0 εφαρμόσαμε τον αλγόριθμο Kovacic και ερευνητικά αποτελέσματα των D. Boucher, J.A. Weil για να διερευνήσουμε την αντίστοιχη G01. Οι G01 και στις δυο προαναφερόμενες περιπτώσεις είναι μη-αβελιανές, οπότε το ΙΡ είναι μη-ολοκληρώσιμο, σύμφωνα με τη θεωρία Morales-Ramis-Simó. / In the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena.
A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian.
The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0.
The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
|
86 |
Intégrabilité des équations différentielles / Integrability of differential equationsLazrag, Lanouar 19 December 2012 (has links)
Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire les théories de Ziglin, Yoshida et Morales-Ramis et les motiver. Dans la deuxième partie, on étudie l’intégrabilité des équations différentielles de Newton à trois degrés de liberté dont les forces sont des polynômes homogènes de degrés trois. En utilisant une analyse du groupe de Galois différentiel des équations aux variations d’ordre supérieur, nous faisons une classification (presque) complète des forces génériques et intégrables. Dans une dernière partie, nous intéressons à l’intégrabilité d’un système d’équations différentielles homogènes d’ordre un (système A). L’application directe de la théorie de Morales-Ramis ne donne des obstructions à l’intégrabilité. En dérivant le système A par rapport au temps, nous obtenons un système différentiel de Newton homogène d’ordre 2 (système B). L’avantage est que ce dernier possède des solutions particulières algébriquement non triviales et le critère classique de Morales-Ramis nous permet d’établir des conditions nécessaires d’intégrabilité. Nous prouvons qu’il existe des relations explicites entre les intégrales premières des deux systèmes et nous introduisons une nouvelle méthode de recherche d’intégrales premières que l’on appelle « Extension tangente double ». Nous appliquons cette méthode à des systèmes planaires homogènes quadratiques. Comme deuxième application, nous montrons que, sous certaines conditions, les racines newtoniennes d’un système différentiel de Newton avec force centrale sont intégrables par quadratures. Nous présentons plusieurs systèmes intégrables avec deux, trois et quatre degrés de liberté. / This thesis is divided into three parts. In the first part we begin by describing the theories of Ziglin, Yoshida and Morales-Ramis and motivating them. In the second part we study the integrability of three-dimensional differential Newton equations with homogeneous polynomial forces of degree three. Using an analysis of differential Galois group of higher order variational equations, we give an almost complete classification of integrable generic forces. The last part is devoted to a study of the integrability of a system of first order homogeneous differential equations (system A ). The direct application of the Morales-Ramis theory does not lead to obstructions to the integrability. If we differentiate the differential system A with respect to time, we obtain a homogeneous Newtonian system (system B). The advantage is that the system B has a non-trivial particular solution and the classical criterion of Morales-Ramis allows us to establish necessary conditions for integrability. We prove that there are explicit relationships between first integrals of the both systems and we introduce a new method for finding first integrals called ``Double tangent extension method''. We apply the obtained results for a detailed analysis of homogeneous planar differential system. Using the double tangent extension method, we formulate some conditions under which the Newtonian roots of Newton's system with central force are integrable by quadratures. Some new cases of integrability with two, three and four degrees of freedom are found.
|
87 |
Sobre bases normais para extensões galoisianas de corpos / On normal bases for galoisian extensions of fieldsThiago Castilho de Mello 28 February 2008 (has links)
Neste trabalho apresentamos várias demonstrações do Teorema da Base Normal para certos tipos de extensões galoisianas de corpos, algumas existenciais e outras construtivas, destacando as diferenças e dificuldades de cada situação. Apresentamos também generalizações de tal teorema e mostramos que toda extensão galoisiana de grau ímpar de corpos admite uma base normal autodual com respeito µa forma bilinear traço / In this work we present several demonstrations of The Normal Basis Theorem for certain kinds of galoisian extensions of fields, some of them existential and others constructive, pointing the diffculties and differences in each situation. We also present generalizations of such theorem and show that every odd degree galoisian extension of fields admits a self-dual normal base with respect to the trace bilinear map
|
88 |
A General Duality Theory for ClonesKerkhoff, Sebastian 28 June 2011 (has links)
In this thesis, we generalize clones (as well as their relational counterparts and the relationship between them) to categories. Based on this framework, we introduce a general duality theory for clones and apply it to obtain new results for clones on finite sets.
|
Page generated in 0.038 seconds