71 |
Dynamic prediction of repair costs in heavy-duty trucksSaigiridharan, Lakshidaa January 2020 (has links)
Pricing of repair and maintenance (R&M) contracts is one among the most important processes carried out at Scania. Predictions of repair costs at Scania are carried out using experience-based prediction methods which do not involve statistical methods for the computation of average repair costs for contracts terminated in the recent past. This method is difficult to apply for a reference population of rigid Scania trucks. Hence, the purpose of this study is to perform suitable statistical modelling to predict repair costs of four variants of rigid Scania trucks. The study gathers repair data from multiple sources and performs feature selection using the Akaike Information Criterion (AIC) to extract the most significant features that influence repair costs corresponding to each truck variant. The study proved to show that the inclusion of operational features as a factor could further influence the pricing of contracts. The hurdle Gamma model, which is widely used to handle zero inflations in Generalized Linear Models (GLMs), is used to train the data which consists of numerous zero and non-zero values. Due to the inherent hierarchical structure within the data expressed by individual chassis, a hierarchical hurdle Gamma model is also implemented. These two statistical models are found to perform much better than the experience-based prediction method. This evaluation is done using the mean absolute error (MAE) and root mean square error (RMSE) statistics. A final model comparison is conducted using the AIC to draw conclusions based on the goodness of fit and predictive performance of the two statistical models. On assessing the models using these statistics, the hierarchical hurdle Gamma model was found to perform predictions the best
|
72 |
Overcomplete Mathematical Models with Applications / Overcomplete Mathematical Models with ApplicationsTonner, Jaromír January 2010 (has links)
Chen, Donoho a Saunders (1998) studují problematiku hledání řídké reprezentace vektorů (signálů) s použitím speciálních přeurčených systémů vektorů vyplňujících prostor signálu. Takovéto systémy (někdy jsou také nazývány frejmy) jsou typicky vytvořeny buď rozšířením existující báze, nebo sloučením různých bazí. Narozdíl od vektorů, které tvoří konečně rozměrné prostory, může být problém formulován i obecněji v rámci nekonečně rozměrných separabilních Hilbertových prostorů (Veselý, 2002b; Christensen, 2003). Tento funkcionální přístup nám umožňuje nacházet v těchto prostorech přesnější reprezentace objektů, které, na rozdíl od vektorů, nejsou diskrétní. V této disertační práci se zabývám hledáním řídkých representací v přeurčených modelech časových řad náhodných veličin s konečnými druhými momenty. Numerická studie zachycuje výhody a omezení tohoto přístupu aplikovaného na zobecněné lineární modely a na vícerozměrné ARMA modely. Analýzou mnoha numerických simulací i modelů reálných procesů můžeme říci, že tyto metody spolehlivě identifikují parametry blízké nule, a tak nám umožňují redukovat původně špatně podmíněný přeparametrizovaný model. Tímto významně redukují počet odhadovaných parametrů. V konečném důsledku se tak nemusíme starat o řády modelů, jejichž zjišťování je většinou předběžným krokem standardních technik. Pro kratší časové řady (100 a méně vzorků) řídké odhady dávají lepší predikce v porovnání s těmi, které jsou založené na standardních metodách (např. maximální věrohodnosti v MATLABu - MATLAB System Identification Toolbox (IDENT)). Pro delší časové řady (500 a více) obě techniky dávají v podstatě stejně přesné predikce. Na druhou stranu řešení těchto problémů je náročnější, a to i časově, nicméně výpočetní doba je stále přijatelná.
|
73 |
Predicting Large Claims within Non-Life Insurance / Prediktion av storskador inom sakförsäkringBarnholdt, Jacob, Grafford, Josefin January 2018 (has links)
This bachelor thesis within the field of mathematical statistics aims to study the possibility of predicting specifically large claims from non-life insurance policies with commercial policyholders. This is done through regression analysis, where we seek to develop and evaluate a generalized linear model, GLM. The project is carried out in collaboration with the insurance company If P&C Insurance and most of the research is conducted at their headquarters in Stockholm. The explanatory variables of interest are characteristics associated with the policyholders. Due to the scarcity of large claims in the data set, the prediction is done in two steps. Firstly, logistic regression is used to model the probability of a large claim occurring. Secondly, the magnitude of the large claims is modelled using a generalized linear model with a gamma distribution. Two full models with all characteristics included are constructed and then reduced with computer intensive algorithms. This results in two reduced models, one with two characteristics excluded and one with one characteristic excluded. / Det här kandidatexamensarbetet inom matematisk statistik avser att studera möjligheten att predicera särskilt stora skador från sakförsäkringspolicys med företag som försäkringstagare. Detta görs med regressionsanalys, där vi ämnar att utveckla och bedöma en generaliserad linjär modell, GLM. Projektet utförs i samarbete med försäkringsbolaget If Skadeförsäkring och merparten av undersökningen sker på deras huvudkontor i Stockholm. Förklaringsvariablerna som är av intresse att undersöka är egenskaper associerade med försäkringstagarna. På grund av sällsynthet av storskador i datamängden görs prediktionen i två steg. Först används logistisk regression för att modellera sannolikheten för en storskada att inträffa. Sedan modelleras storskadornas omfattning genom en generaliserad linjär modell med en gammafördelning. Två grundmodeller med alla förklaringsvariabler konstrueras för att sedan reduceras med datorintensiva algoritmer. Det resulterar i två reducerade modeller, med två respektive en kundegenskap utesluten.
|
74 |
Modeling risk and price of all risk insurances with General Linear Models / Modellering av risk och pris av drulleförsäkringar med Generaliserade Linjära ModellerDrakenward, Ellinor, Zhao, Emelie January 2020 (has links)
Denna kandidatexamen ligger inom området matematisk statistik. I samarbete med försäkringsbolaget Hedvig syftar denna avhandling till att utforska en ny metod för hantering av Hedvigs försäkringsdata genom att bygga en prissättningsmodell för alla riskförsäkringar med generaliserade linjära modeller. Två generaliserade linjära modeller byggdes, där den första förutspår frekvensen för ett anspråk och den andra förutspår svårighetsgraden. De ursprungliga uppgifterna delades in i 9 förklarande variabler. Båda modellerna inkluderade fem förklarande variabler i början och reducerades sedan. Minskningen resulterade i att fyra av fem egenskaper var förklarande signifikanta i frekvensmodellen och endast en av de fem var förklarande signifikanta i svårighetsmodellen. Var och en av modellerna erhöll relativa risker för nivåerna av deras förklarande variabler. De relativa riskerna resulterade i en total risk för varje nivå. Genom multiplicering av en skapad basnivå med en uppsättning kombination av riskparametrar kan premien för en vald kund erhållas. / Det här kandidatexamensarbetet ligger inom ämnet matematisk statistik. Jag samarbete med försäkringsbolaget Hedvig, avser uppsatsen att undersöka en ny metod att hantera Hedvigs försäkringsdata genom att bygga en prissättningsmodell för drulleförsäkring med hjälp av generaliserade linjära modeller. Två modeller skapades varav den första förutsättningen frekvensen av ett försäkringsanspråk och den andra förutsäger storleken. Originaldatan var indelad i 9 förklarande variabler. Båda modellerna innehöll till en början fem förklarande variabler, vilka sedan reducerades till fyra respektive en variabler i de motsvarande modellerna. Från varje modell kunde sedan de relativa riskerna tas fram för varje kategori av de förklarande variablerna. Tillsammans bildades sedan totalrisken för alla grupper.
|
75 |
How Unlucky People Continue to be Unlucky: : A Study of the Predictive Capabilities of Insurance Claim Data / Hur Olycksdrabbade Människor Fortsätter vara Olycksdrabbade: : En Studie av de Prediktiva Förmågorna hos Anspråksdata inom FörsäkringGustavsson, Jacob, Lövgren, Alex January 2023 (has links)
This bachelor thesis in the field of mathematical statistics was carried out in collaboration with an upcoming insurance start-up, Hedvig, and had the objective of investigating the predictive capabilities of different types of insurance claims. This was done through regression analysis, and more specifically the area in regression analysis called generalized linear models. Logistic regression was employed as the modeling technique, and data points were modeled in various ways to then be used to fit models in order to determine the most optimal one based on some pre-determined statistical evaluation metrics. The final model had an accuracy of above 96%, and the results showed that certain types of claims had a bigger contribution to the probability of a claim occurring the next period. This study contributes to the understanding of the predictive capabilities of insurance claim data and provides insights that could aid in the development of more accurate and efficient insurance pricing models. / Denna kandidatuppsats inom området matematisk statistik utfördes i samarbete med ett nyetablerat försäkringsföretag, Hedvig, och hade som syfte att undersöka den prediktiva förmågan hos olika typer av ersättningsanspråk. Detta gjordes genom regressionsanalys, och mer specifikt det område inom regressionanalys som kallas generaliserade linjära modeller. Logistisk regression användes som modelleringsteknik, och datapunkterna modellerades på olika sätt för att sedan skapa modeller, med syfte att fastställa den mest optimala modellen utifrån vissa förutbestämda statistiska utvärderingsmått. Den slutliga modellen hade en exakthet på över 96%, och resultaten visade att vissa typer av anspråk bidrog i större utsträckning till sannolikheten för att ett anspråk skulle inträffa under nästa period. Den här studien bidrar till förståelsen av den prediktiva förmågan hos data på ersättningsanspråk och ger insikter som kan bidra till utvecklingen av mer exakta och effektiva modeller för prissättning av försäkringar.
|
76 |
Décodage neuronal dans le système auditif central à l'aide d'un modèle bilinéaire généralisé et de représentations spectro-temporelles bio-inspirées / Neural decoding in the central auditory system using bio-inspired spectro-temporal representations and a generalized bilinear modelSiahpoush, Shadi January 2015 (has links)
Résumé : Dans ce projet, un décodage neuronal bayésien est effectué sur le colliculus inférieur du cochon d'Inde. Premièrement, On lit les potentiels évoqués grâce aux électrodes et ensuite on en déduit les potentiels d'actions à l'aide de technique de classification des décharges des neurones.
Ensuite, un modèle linéaire généralisé (GLM) est entraîné en associant un stimulus acoustique en même temps que les mesures de potentiel qui sont effectuées.
Enfin, nous faisons le décodage neuronal de l'activité des neurones en utilisant une méthode d'estimation statistique par maximum à posteriori afin de reconstituer la représentation spectro-temporelle du signal acoustique qui correspond au stimulus acoustique.
Dans ce projet, nous étudions l'impact de différents modèles de codage neuronal ainsi que de différentes représentations spectro-temporelles (qu'elles sont supposé représenter le stimulus acoustique équivalent) sur la précision du décodage bayésien de l'activité neuronale enregistrée par le système auditif central. En fait, le modèle va associer une représentation spectro-temporelle équivalente au stimulus acoustique à partir des mesures faites dans le cerveau. Deux modèles de codage sont comparés: un GLM et un modèle bilinéaire généralisé (GBM), chacun avec trois différentes représentations spectro-temporelles des stimuli d'entrée soit un spectrogramme ainsi que deux représentations bio-inspirées: un banc de filtres gammatones et un spikegramme. Les paramètres des GLM et GBM, soit le champ récepteur spectro-temporel, le filtre post décharge et l'entrée non linéaire (seulement pour le GBM) sont adaptés en utilisant un algorithme d'optimisation par maximum de vraisemblance (ML). Le rapport signal sur bruit entre la représentation reconstruite et la représentation originale est utilisé pour évaluer le décodage, c'est-à-dire la précision de la reconstruction. Nous montrons expérimentalement que la précision de la reconstruction est meilleure avec une représentation par spikegramme qu'avec une représentation par spectrogramme et, en outre, que l'utilisation d'un GBM au lieu d'un GLM augmente la précision de la reconstruction. En fait, nos résultats montrent que le rapport signal à bruit de la reconstruction d'un spikegramme avec le modèle GBM est supérieur de 3.3 dB au rapport signal à bruit de la reconstruction d'un spectrogramme avec le modèle GLM. / Abstract : In this project, Bayesian neural decoding is performed on the neural activity recorded from the inferior colliculus of the guinea pig following the presentation of a vocalization. In particular, we study the impact of different encoding models on the accuracy of reconstruction of different spectro-temporal representations of the input stimulus. First voltages recorded from the inferior colliculus of the guinea pig are read and the spike trains are obtained. Then, we fit an encoding model to the stimulus and associated spike trains. Finally, we do neural decoding on the pairs of stimuli and neural activities using the maximum a posteriori optimization method to obtain the reconstructed spectro-temporal representation of the signal. Two encoding models, a generalized linear model (GLM) and a generalized bilinear model (GBM), are compared along with three different spectro-temporal representations of the input stimuli: a spectrogram and two bio-inspired representations, i.e. a gammatone filter bank (GFB) and a spikegram. The parameters of the GLM and GBM including spectro-temporal receptive field, post spike filter and input non linearity (only for the GBM) are fitted using the maximum likelihood optimization (ML) algorithm. Signal to noise ratios between the reconstructed and original representations are used to evaluate the decoding, or reconstruction accuracy. We experimentally show that the reconstruction accuracy is better with the spikegram representation than with the spectrogram and GFB representation. Furthermore, using a GBM instead of a GLM significantly increases the reconstruction accuracy. In fact, our results show that the spikegram reconstruction accuracy with a GBM fitting yields an SNR that is 3.3 dB better than when using the standard decoding approach of reconstructing a spectrogram with GLM fitting.
|
77 |
Evaluación en el modelado de las respuestas de recuentoLlorens Aleixandre, Noelia 10 June 2005 (has links)
Este trabajo presenta dos líneas de investigación desarrolladas en los últimos años en torno a la etapa de evaluación en datos de recuento. Los campos de estudio han sido: los datos de recuento, concretamente el estudio del modelo de regresión de Poisson y sus extensiones y la etapa de evaluación como punto de inflexión en el proceso de modelado estadístico. Los resultados obtenidos ponen de manifiesto la importancia de aplicar el modelo adecuado a las características de los datos así como de evaluar el ajuste del mismo. Por otra parte la comparación de pruebas, índices, estimadores y modelos intentan señalar la adecuación o la preferencia de unos sobre otros en determinadas circunstancias y en función de los objetivos del investigador. / This paper presents two lines of research that have been developed in recent years on the evaluation stage in count data. The areas of study have been both count data, specifically the study of Poisson regression modelling and its extension, and the evaluation stage as a point of reflection in the statistical modelling process. The results obtained demonstrate the importance of applying appropriate models to the characteristics of data as well as evaluating their fit. On the other hand, comparisons of trials, indices, estimators and models attempt to indicate the suitability or preference for one over the others in certain circumstances and according to research objectives.
|
78 |
ANATOMY OF FLOOD RISK AND FLOOD INSURANCE IN THE U.S.Arkaprabha Bhattacharyya (9182267) 13 November 2023 (has links)
<p dir="ltr">The National Flood Insurance Program (NFIP), which is run by the U.S. Federal Emergency Management Agency (FEMA), is presently under huge debt to the U.S. treasury. The debt is primarily caused by low flood insurance take-up rate, low willingness to pay for flood insurance, and large payouts after major disasters. Addressing this insolvency problem requires the NFIP to understand (1) what drives the demand for flood insurance so that it can be increased, (2) how risk factors contribute towards large flood insurance payouts so that effective risk reduction policies can be planned, and (3) how to predict the future flood insurance payouts so that the NFIP can be financially prepared. This research has answered these three fundamental questions by developing empirical models based on historical data. To answer the first question, this research has developed a propensity score-based causal model that analyzed one of the key components that influences the demand for flood insurance – the availability of post-disaster government assistance. It was found that the availability of the federal payout in a county in a year increased the number of flood insurance policies by 5.2% and the total insured value of the policies by 4.6% in the following year. Next, this research has developed Mixed Effects Regression model that quantified the causal relationships between the annual flood insurance payout in a county and flood related risk factors such as flood exposure, infrastructure vulnerability, social vulnerability, community resilience, and the number of mobile homes in the county. Based on the derived causal estimates, it was predicted that climate change, which is expected to increase flood exposure in coastal counties, will increase the annual NFIP payout in New Orleans, Louisiana by $2.04 billion in the next 30 years. Lastly, to make the NFIP financially prepared for future payouts, this research has developed a predictive model that can predict the annual NFIP payout in a county with adequate predictive accuracy. The predictive model was used to predict the NFIP payout for 2021 and it was able to predict that with a 9.8% prediction error. The outcomes of this research create new knowledge to inform policy decisions and strategies aimed at fortifying the NFIP. This includes strategies such as flood protection infrastructure, tailored disaster assistance, and other interventions that can bolster flood insurance uptake while mitigating the risk of substantial payouts. Ultimately, this research contributes to sustaining the NFIP's ability to provide vital flood insurance coverage to millions of Americans.</p>
|
Page generated in 0.0755 seconds