Spelling suggestions: "subject:"gpc"" "subject:"gpr""
151 |
The regulation of cellular trafficking of the human lysophosphatidic acid receptor 1: identification of the molecular determinants required for receptor traffickingUrs, Nikhil Mahabir 16 May 2007 (has links)
The following thesis research was undertaken to gain a better understanding of the mechanisms that regulate the cellular trafficking and signaling of the endothelial differentiation gene (EDG) family of G-protein coupled receptors, LPA1, LPA2, and LPA3. This thesis will specifically focus on the regulation of the trafficking of the LPA1 Lysophosphatidic acid receptor, which is the most widely expressed and has been shown to be a major regulator of migration of cells expressing it.
The initial studies undertaken in this project were aimed at understanding the endocytic pathway followed by the LPA1 receptor. Lysophosphatidic acid (LPA), an abundant serum phospholipid, stimulates heterotrimeric G protein signaling by activating three closely related receptors, termed LPA1, LPA2 and LPA3. In the first part of the project we show that in addition to promoting LPA1 signaling, membrane cholesterol is essential for the association of LPA1 with β-arrestin, which leads to signal attenuation and clathrin dependent endocytosis of LPA1.
The second phase of the project was aimed at elucidating the different structural motifs required for the trafficking and signaling of the LPA1 receptor and helping us gain a more mechanistic view of the processes involved in its regulation. In the second part of the project we show that agonist-independent internalization of the LPA1 receptor is clathrin adaptor, AP-2 dependent and PKC-dependent and that it requires a distal dileucine motif, whereas agonist-dependent internalization of the LPA1 receptor is β-arrestin and clathrin-dependent and requires a cluster of serine residues in the tail region, which is upstream of the dileucine motif.
These studies collectively vastly enhance our understanding of mechanisms that regulate LPA1 trafficking and signaling. These studies can also be applied to other G-protein coupled receptors making the task easier for other scientists to understand this vast family of receptors.
|
152 |
The Molecular Characterization of a Diuretic Hormone Receptor (GPRdih1) From Females of the Yellow Fever Mosquito, Aedes aegypti (L.)Jagge, Christopher Lloyd 2009 December 1900 (has links)
In the yellow fever mosquito, Aedes aegypti (L.), hemolymph-circulating diuretic hormones act upon the renal organs (Malpighian tubules) to regulate primary urine composition and secretion rate; however, the molecular endocrine mechanisms underlying rapid water elimination upon adult eclosion and blood feeding are not fully understood. Bioinformatic analysis of the current Aedes aegypti genome assembly reveals only a single predicted corticotropin releasing factor (CRF)-like diuretic hormone 44 (DH44) gene, but two DH44 receptor genes. The tissue expression profiles of the DH44 receptor(s), and specifically the identity of the DH44 receptor(s) in the Malpighian tubule, are undetermined in any mosquito species.
This dissertation shows that Vectorbase gene ID AAEL008292 encodes a DH44 receptor (AaegGPRdih1) transcribed in Malpighian tubules. Sequence analysis and transcript localization indicate that AaegGPRdih1 is the co-ortholog of the Drosophila melanogaster DH44 receptor (CG12370-PA). The presence of conserved amino acid residues between AaegGPRdih1 and vertebrate CRF receptors suggests this mosquito receptor modulates multiple G protein-dependent intracellular signaling pathways. Quantitative PCR analysis of a time course of Malpighian tubule cDNA reveals AaegGPRdih1 abundance increases paralleling periods of observed urination. This suggests that target tissue receptor biology is linked to the known periods of release of diuretic hormones from the nervous system, pointing to a common up-stream regulatory mechanism. Higher relative abundance of AaegGPRdih1 transcript in female Malpighian tubules 24 hours after blood feeding suggests a role for AaegGPRdih1 in the excretion of nitrogen waste. RNA-mediated silencing to establish the significance of AaegGPRdih1 to mosquito Malpighian tubule physiology was inconclusive.
|
153 |
Optimization Of Fret Method To Detect Dimerization Of Dopamine D2 And Adenosine A2a Receptors In Live CellsUnlu, Gokhan 01 July 2011 (has links) (PDF)
Recent studies demonstrate that there are several G-protein coupled receptors
(GPCRs) that dimerize with other GPCRs and form heterodimers. Adenosine
A2A-Dopamine D2 receptor interaction is one of the examples for GPCR
heterodimerization. Both receptors bear critical roles in physiological processes.
Adenosine A2A receptor has functions in neurotransmission, cardiovascular
system and immune response. On the other hand, dopamine receptors are the
key point of dopaminergic system, which controls the regulation of memory,
attention, food intake, endocrine regulation, psychomotor activity and positive
reinforcement. Deregulation in dopamine signaling could cause neurological
disorders such as Parkinson&rsquo / s disease and schizophrenia. Dopamine D2R and
adenosine A2AR have been shown to interact in striatum and modulate
dopaminergic activity.
The purpose of this study is to optimize Fluorescence Resonance Energy
Transfer (FRET) method to detect dimerization of D2R and A2AR by tagging
them with EGFP (enhanced green fluorescent protein) and mCherry (a red
fluorescent protein) in live N2a cell line using laser scanning confocal
microscope. Establishing this model will pave the ways for understanding
mechanisms of interaction between dopamine and adenosine signaling, thereby,
contributing to the understanding molecular mechanisms of some
neurophysiological events and disorders. Moreover, the fluorescence based live
cell model will be used to detect effects of potential anti-psychotic drugs on the
interaction of these two receptors.
Indeed, follow-up studies are necessary to extend the limits of this project.
Further imaging analyses and drug-receptor interaction studies can be readily
applied to extract more information on dopamine-adenosine signaling by using
the system developed with this thesis study.
|
154 |
Detecting G-protein Coupled Receptor Interactions Using Enhanced Green Fluorescent Protein ReassemblyKumas, Gozde 01 February 2012 (has links) (PDF)
The largest class of cell surface receptors in mammalian genomes is the superfamily of G protein-coupled receptors (GPCRs) which are activated by a wide range of extracellular responses such as hormones, pheromones, odorants, and neurotransmitters. Drugs which have therapeutic effects on a wide range of diseases are act on GPCRs. In contrast to traditional idea, it is recently getting accepted that G-protein coupled receptors can form homo- and hetero-dimers and this interaction could have important role on maturation, internalization, function or/and pharmacology.
Bimolecular fluorescence complementation technique (BiFC) / is an innovative approach based on the reassembly of protein fragments which directly report interactions. In our study we implemented this technique for detecting and visualizing the GPCR interactions in yeast cells. The enhanced green fluorescent protein (EGFP) fractionated into two fragments at genetic level which does not possess fluorescent function. The target proteins which are going to be tested in terms of interaction are modified with the non-functional fragments, to produce the fusion proteins. The interaction between two target proteins, in this study Ste2p receptors which are alpha pheromone receptors from Saccharomyces cerevisiae, enable the fragments to come in a close proximity and reassemble. After reassembly, EGFP regains its fluorescent function which provides a direct read-out for the detection of interaction.
Further studies are required to determine subcellular localization of the interaction. Moreover, by using the fusion protein partners constructed in this study, effects of agonist/antagonist binding and post-translational modifications such as glycosylation and phosphorylation can be examined. Apart from all, optimized conditions for BiFC technique will guide for revealing new protein-protein interactions.
|
155 |
Multivalent Interactions Based on Supramolecular Self-Assembly and Peptide-Labeled Quantum Dots for Imaging GPCRsZhou, Min January 2006 (has links)
Multivalent interactions are common in nature, such as influenza virus infecting epithelial cells, clearance of pathogens by antibody-mediated attachment to macrophages, etc. To mimic nature, we utilized a bottom-up approach to develop various multivalent self-assembling systems based on leucine-zipper peptides. We tethered several pairs of leucine-zipper peptides to PAMAM dendrimers to form leucine-zipper dendrimers (LZDs). We conjugated Fos/Jun to the dendrimer to make D0Fos4 and D0Jun4, and studied the interactions between these LZDs and their cognate peptide target, either Jun or Fos. Our experiments showed that the D0Fos4 can non-covalently assemble four copies of Jun, and this approach can be further used for the rapid non-covalently assembling of multimeric ligands. We also pursued the multivalent target of GPCRs with a Fos/Jun assembly, and found the complex can potentially be used as a molecular switch to target GPCRs with controlled ligand activity. In a related project for bio-material design based on self-assembly of LZDs, we synthesized a different pair of LZDs, D-Ez4 and D-Kz4, and established that they can assemble at neutral pH to form helical fibrils which display higher order self-organized structures, providing a new methodology for bio-material design. In another effort for studying multivalent interactions, we conjugated three copies of the F23, mini-protein that binds the HIV-1 capsid protein, to a trimesic acid and obtained a trivalent inhibitor, Tri-F23. Tri-F23 showed enhanced binding in ELISA against gp120, but was not significantly more effective preventing HIV entry. This methodology provides a new strategy for developing multivalent inhibitors for preventing HIV-1 infection at the entry level. In a related area, we are developing imaging agents based on quantum dots that can detect GPCRs on whole cells and at the single molecule level. To this end, a new method was developed for biocompatible amphphilic polymers to coat quantum dots. This amphiphilic polymer facilitates rapid quantum dot conjugation to any ligand with a free thiol or engineered cysteine. Several GPCR targeted peptides have been utilized for imaging receptors on whole cells and as single molecules. These efforts will guide the rational design of multivalent ligands for targeting GPCRs and other cell surface proteins.
|
156 |
The Molecular and Behavioural Effects of Glial Modulators Propentofylline and PJ34 in a Rodent Model of Neuropathic PainGRENIER, PATRICK, 31 August 2010 (has links)
Neuronal-glial interactions play an important role in the development of neuropathic (NP) pain states. Earlier studies in our laboratory suggest a role for activated glia in morphine-induced delta opioid receptor (DOR) trafficking by altering DOR functional competence. Thus, chronic treatment with the glial inhibitor, propentofylline (PF) blocks the anti-allodynic and anti-hyperalgesic effects of the DOR agonist deltorphin II. The present study aimed to determine whether NP pain-induced changes in DOR function and trafficking are dependent on glial activation.
The first global aim of this study was to determine the molecular and behavioural effects of glial activation by two glial inhibitors, PF and PJ34 in a model of neuropathic pain. Glial activation was assessed via changes in specific proteins using fluorescent immunohistochemistry (IHC). Neuropathy-induced c-Fos activation was assessed by IHC and pain hypersensitivity was assessed, including mechanical allodynia and spontaneous pain. The second global aim determined the role of activated glia in changes in neuropathy-induced increases in DOR function and DOR subcellular localization using immunogold IHC and transmission electron microscopy (EM).
Chronic PJ34 attenuated chronic constriction injury (CCI)-induced mircoglial, but not astrocyte activation. Chronic administration of either PF or PJ34 attenuated the CCI-induced increase in c-Fos immunoreactive expression. However, neither drug attenuated CCI-induced mechanical allodynia or spontaneous pain.
Both chronic PF and PJ34 administration in NP animals attenuated the anti-allodynic effects of the DOR-selective agonist deltorphin II, suggesting glial inhibition blocks DOR function. However, chronic PF, but not PJ34, blocked the anti-allodynic effects of another DOR agonist, SNC80. These data suggest that SNC80 might be targeting a different DOR molecular species that is not affected by factors released from microglia. Finally, EM experiments revealed that chronic PF treatment prevented the CCI-induced increase in DOR trafficking providing a positive correlation between behaviour and receptor localization.
This study suggests that activated glia contribute to changes in DOR function and trafficking in NP pain states. It also suggests that there is a dissociation between glial inhibition and pain hypersensitivity. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2010-08-31 14:45:47.888
|
157 |
Nouveaux mécanismes de régulation des récepteurs couplés aux protéines G : lien entre complexes protéiques, localisation et signalisationPontier, Stéphanie M. January 2005 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
158 |
An examination of how Rab GTPases and molecular chaperones influence plasma membrane expression of chemokine receptor dimersGillies, Kelsie 07 November 2013 (has links)
Signal termination processes of GPCRs are well established, unlike processes that
regulate the assembly and intracellular trafficking of these signaling complexes.
Bimolecular fluorescence complementation was used to study GPCR dimer formation in two projects. Firstly, the importance of Rab GTPases on the cell surface expression and signaling of two chemokine receptors expressed on prostate cancer cells was examined. Rab GTPases necessary for CXCR4 and CCR2 cell surface expression and signaling were different from those necessary for the CXCR4/CCR2 heterodimer. Therefore, this project emphasizes the importance of studying heterodimers as unique entities from their constituent receptors. Secondly, interactions between molecular chaperones and two coreceptors necessary for HIV infection – CCR5, a chemokine GPCR, and the main HIV receptor, CD4, a glycoprotein – were investigated. Further emphasizing the unique characteristics of GPCR dimers, this project found that molecular chaperones interact differently with CCR5 homodimers, when compared to CCR5/CD4 heterodimers.
|
159 |
Immunolocalization and in vivo Functional Analysis by RNAi of the Aedes Kinin Receptor in Female Mosquitoes of Aedes aegypti (L.) (Diptera, Culicidae)Kersch, Cymon 2011 December 1900 (has links)
The evolution of the blood feeding adaptation has required precise coordination of multiple physiological processes in the insect, such as reproduction, behavior, digestion and diuresis. These processes are under careful synchronous hormonal control. For rapid excretion, multiple diuretic hormones are known. Although originally described based on their ability to stimulate hindgut contractions, the Aedes kinins have been shown to stimulate fluid secretion in female mosquitoes of Aedes aegypti. Aedes kinins are leucokinin-like neuropeptides released from neurosecretory cells in the brain and abdominal ganglia. They act by binding to the Aedes kinin receptor, a G proteincoupled receptor (GPCR). The Aedes kinin receptor has been cloned, sequenced, functionally characterized, and immunolocalized to stellate cells in the Malpighian tubules of Ae. aegypti. In addition to their myotropic and diuretic roles, leucokinin-like peptides and/or their receptors have been also been discovered in the nervous, digestive, and reproductive systems of other arthropod species. Therefore, the Aedes kinins have the potential to function in several simultaneous physiological processes that are stimulated by blood feeding. This thesis aims to understand better their role in the whole mosquito by investigating the Aedes kinin receptor's global expression as well as its in vivo contribution to post-prandial diuresis.
Presence of the Aedes kinin receptor was investigated in the head, posterior midgut (stomach), hindgut, ovaries, and Malpighian tubules of both non blood-fed and blood-fed females by western blot using anti-receptor antibodies. The receptor was then immunolocalized in the posterior midgut and rectum. Finally, RNAi was employed to knock down kinin receptor expression, followed by measurement of in vivo urine excretion post blood feeding in a precision humidity chamber. Transcript and protein knockdown were confirmed by qPCR and immunohistochemistry, respectively.
Results indicate widespread expression of the Aedes kinin receptor protein in organs novel for hematophagous insects and demonstrate the receptor's fundamental role in rapid diuresis. These findings strongly point to the Aedes kinins as integrative signaling molecules that could coordinate multiple physiological systems. The Aedes kinins could therefore have contributed to the success of the blood feeding adapation in mosquitoes.
|
160 |
Identifizierung und Charakterisierung essentieller Aminosäuren im humanen ADP-Rezeptor P2Y12Wittkopf, Doreen 27 November 2014 (has links) (PDF)
Kardiovaskuläre Ereignisse bilden die Haupttodesursache in den westlichen Ländern. Mit der Einführung von Clopidogrel, welches am ADP-Rezeptor P2Y12 wirkt, konnte die Mortalität und Morbidität von kardiovaskulären Ereignissen signifikant gesenkt werden. Der P2Y12 gehört als G-Protein-gekoppelter Rezeptor (GPCR) zur größten Gruppe membranständiger Rezeptoren, welche durch ihr ubiquitäres Vorkommen einen idealen Angriffspunkt in der Pharmakotherapie bilden. Zur intelligenten und gezielten Entwicklung von neuen Arzneimitteln bedarf es umfassender Kenntnisse der Struktur- und Wirkungsbeziehung von GPCR. Um den Modellrezeptor P2Y12 strukturell und funktionell zu charakterisieren, wurde eine sättigende Mutagenese in einem funktionell essentiellen Bereich des Rezeptors (Transmembranhelices 6 und 7 sowie 3. extrazellulärer Loop) durchgeführt. Hiermit sollten die Auswirkungen von Punktmutationen auf die Funktionsweise des Rezeptors untersucht werden. Hierfür wurden sättigende Mutantenbibliotheken für 66 Positionen erstellt, wobei jede Aminosäure (AS) durch jede nicht natürlicherweise im humanen P2Y12 vorkommende AS ersetzt wurde (1254 Mutanten). Diese wurden funktionell im Expressionssystem der Hefe Saccharomyces cerevisiae mit steigenden Agonistenkonzentrationen charakterisiert und anhand ihrer Funktionalität klassifiziert. Dabei wiesen 90,8 ± 1,9 % der Rezeptormutanten keine Wildtypeigenschaften auf. Die Auswertung von 77 Wirbeltierorthologen zeigte ebenso eine hohe Konservierung von 90,7 ± 1,5 % pro Position. Im direkten positionalen Vergleich zwischen evolutionären und in vitro Daten konnte eine Übereinstimmung der in vitro und in vivo Daten von 90,2 % gefunden werden. Die funktionellen Daten wurden in eine Online-Mutantendatenbank eingearbeitet und wurden in einem 3D-Rezeptor-Homologiemodell visualisiert. Damit ist der Beweis geführt worden, dass es mit guter Vorhersagewahrscheinlichkeit möglich ist, von evolutionären Daten Rückschlüsse auf die Relevanz von Mutationen zu ziehen.
|
Page generated in 0.0315 seconds