• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 1
  • Tagged with
  • 17
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The dynamics of bivalent chromatin during development in mammals

Mantsoki, Anna January 2017 (has links)
Mammalian cell types and tissues have diverse functional roles within an organism but can be derived by the differentiation of the embryonic stem cells (ESCs). ESCs are pluripotent cells with self-renewal properties. During development subsets of genes in ESCs are activated or silenced for manifestation of the cell type specific function. Gene expression changes occur transiently in early developmental stages, through signals received and executed by a variety of transcription factors (TFs), regulatory elements (promoters, enhancers) and epigenetic modifications of chromatin. Post-translational modifications of the histone tails are regulated by chromatin modifiers and transform the chromatin architecture. Polycomb (PcG) and Trithorax (TrxG) group proteins are the most commonly studied histone modifiers. They were first discovered as repressors (H3K27me3) and activators (H3K4me3) respectively of Homeobox (Hox) genes in Drosophila and they are conserved in mammals. Bivalent chromatin is defined as the simultaneous presence of silencing (H3K27me3) and activating (H3K4me3) histone marks and was first discovered as a feature of many developmental gene promoters of ESCs. Bivalent promoters are thought to be in a ‘poised’ state for later activation or repression during differentiation due to the presence of the two counter-acting histone modifications and a pausing variant of RNA polymerase II (RNAPII) accompanied with intermediate-low levels of expression. By integrative analysis of publicly available ChIP sequencing (ChIP-seq) datasets in murine and human ESCs, we predicted 3,659 and 4,979 high–confidence (HC) bivalent promoters in mouse and human ESCs respectively. Using a peak-based method, we acquire a set of bivalent promoters with high enrichment for developmental regulators. Over 85% of Polycomb targets were bivalent and their expression was particularly sensitive to TF perturbation. Moreover, murine HC bivalent promoters were occupied by both Polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions. HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters and a ‘TCCCC’ sequence motif was specifically enriched in bivalent promoters. Using the recent technology of single cell RNA sequencing (scRNA-seq) we focused on gene expression heterogeneity and how it may affect the output of differentiation. We collected single cell gene expression profiles for 32 human and 39 murine ESCs and studied the correlation between diverse characteristics such as network connectivity and coefficient of variation (CV) across single cells. We further characterized properties unique to genes with high CV. Highly expressed genes tended to have a low CV and were enriched for cell cycle genes. In contrast, High CV genes were co-expressed with other High CV genes, were enriched for bivalent promoters and showed enrichment for response to DNA damage and DNA repair. Bivalent promoters in ESCs grouped in four distinct classes of variable biological functions according to Polycomb occupancy and three RNAPII variants. To study the dynamics of epigenetic and transcription control at promoters during development, we collected ChIPseq data for two chromatin modifications (H3K4me3 and H3K27me3) and RNAPII (8WG16 antibody) as well as expression data (RNA-seq) across 8 cell types (ESCs and seven committed cell types) in mouse. Hierarchical clustering of 22,179 unique gene promoters across cell types, showed that H3K4me3 peaks are in agreement with the expression data while H3K27me3 and RNAPII peaks were not highly consistent with the hierarchical tree of gene expression. Unsupervised clustering of ChIP-seq and RNA-seq profiles has resulted in 31 distinct profiles, which were subsequently narrowed down to nine major profile groups across cell types. TF enrichment at individual clusters using ChIP sequencing data did not fully agree with the classification of 8 major profile groups. Considering all the above results, three major epigenetic profiles (active, bivalent and latent) seem to be conserved across the species and cell types in our study. These states could recapitulate only a fraction of the transcriptional information - adding other chromatin marks could enrich it - since they are seemingly unaffected by their respective expression profiles. H3K27me3 only state has low CpG density and shows stronger signatures at differentiated cell types. Transcriptional control is tighter in active than bivalent promoters and the different occupancy levels of PcG subunits and RNAPII can be reflected at the expression variance of bivalent genes, where a fraction of them are involved in developmental functions while others are more tissue-specific. Last, there is a striking similarity in the pausing patterns of RNAPII in the progenitor cell types, which suggests that RNAPII pausing is correlated with the developmental potential of the cell type. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during development.
12

CHANGES IN HEMOGLOBIN AND EPIGENETIC CONTROL IN MULTIPLE SCLEROSIS

Alkhayer, kholoud 05 August 2019 (has links)
No description available.
13

Analysis of Plant Homeodomain Proteins and the Inhibitor of Growth Family Proteins in Arabidopsis thaliana

Safaee, Natasha Marie 04 January 2010 (has links)
Eukaryotic organisms require the ability to respond to their environments. They do so by utilizing signal transduction pathways that allow for signals to effect final biological responses. Many times, these final responses require new gene expression events that have been stimulated or repressed within the nucleus. Thus, much of the understanding of signal transduction pathways converges on the understanding of how signaling affects gene expression alterations (Kumar et al., 2004). The regulation of gene expression involves the modification of chromatin between condensed (closed, silent) and expanded (open, active) states. Histone modifications, such as acetylation, can determine the open versus closed status of chromatin. The PHD (Plant HomeoDomain) finger is a structural domain primarily found in nuclear proteins across eukaryotes. This domain specifically recognizes the epigenetic marks H3K4me2 and H3K4me3, which are di- and tri-methylated lysine 4 residues of Histone H3 (Loewith et al., 2000; Kuzmichev et al., 2002; Vieyra et al. 2002; Shiseki et al., 2003; Pedeux et al., 2005, Doyon et al., 2006). It is estimated that there are ~150 proteins that contain the PHD finger in humans (Solimon and Riabowol, 2007). The PHD finger is conserved in yeast and plants, however an analysis of this domain has only been performed done in Arabidopsis thaliana (Lee et al., 2009). The work presented in this report aims to extend the analysis of this domain in plants by identifying the PHD fingers of the crop species Oryza sativa (rice). In addition, a phylogenetic analysis of all PHD fingers in Arabidopsis and rice was undertaken. From these analyses, it was determined that there are 78 PHD fingers in Arabidopsis and 70 in rice. In addition, these domains can be categorized into classes and groups by defining features within the conserved motif. In a separate study, I investigated the function of two of the PHD finger proteins from Arabidopsis, ING1 (INhibitor of Growth1) and ING2. In humans, these proteins can be found in complexes associated with both open and closed chromatin. They facilitate chromatin remodeling by recruiting histone acetyltransferases and histone deacetylases to chromatin (Doyon et al., 2006, Pena et al., 2006). In addition, these proteins recognize H3K4me2/3 marks and are believed to be "interpreters" of the histone code (Pena et al., 2006, Shi et al., 2006). To understand the function of ING proteins in plants, I took a reverse genetics approach and characterized ing1 and ing2 mutants. My analysis revealed that these mutants are altered in time of flowering, as well as their response to nutrient and stress conditions. Lastly, I was able to show that ING2 protein interacts in vitro with SnRK1.1, a nutrient/stress sensor (Baena-Gonzalez et al., 2007). These results indicate a novel function for PHD proteins in plant growth, development and stress response. / Master of Science
14

Fonctions et organisations de l’hétérochromatine au cours du développement sexué chez le champignon filamenteux Podospora anserina / Heterochromatin Functions and Organizations during Sexual Development in the Filamentous Fungus Podospora anserina

Carlier, Florian 26 November 2018 (has links)
Pour se défendre des effets délétères des éléments transposables, les pezizomycotina ont développé un système de défense génétique et épigénétique appelé « Repeat Induced Point Mutation » (RIP). Chez N. crassa, le RIP survient dans la cellule dicaryotique avant la caryogamie et conduit à la méthylation de novo des cytosines (5mC) inclues dans les séquences répétées de chacun des noyaux parentaux haploïdes. De plus, certaines de ces cytosines sont la cible d’un processus de mutation qui les transforme en thymines. Cette étape est suivie par la mise en place locale de l’hétérochromatine constitutive permettant une répression transcriptionnelle durable des séquences cibles du RIP au cours des divisions nucléaires. L’acteur majeur du RIP correspond à une cytosine méthyltransférase putative appelée RID (RIP Defective). Bien que son génome ne montre pas une quantité significative de 5mC, l’inactivation de PaRid chez Podospora anserina aboutit à un blocage du développement sexué survenant après la fécondation. Dans ce contexte, nous avons voulu déterminer si la fonction de PaRid dans le développement sexué consiste à éteindre l’expression de gènes cibles via l’installation de foyers d’hétérochromatine constitutive aux loci concernés. Pour ce faire, nous avons identifié les gènes PaKmt1 et PaHP1, codant respectivement l’histone méthyltransférase PaKmt1 (l’homologue de SU(VAR)39 qui catalyse la tri-méthylation du résidu H3K9 (H3K9me3) et PaHP1 (l’homologue de Heterochromatin Protein 1 qui se lie à H3K9me3). Les deux protéines interviennent dans une même voie de régulation qui aboutit à la mise en place de l’hétérochromatine constitutive. Par opposition, PaKmt6, homologue de l’histone méthyltransférase E(Z), correspond à la sous-unité catalytique du complexe PRC2 qui catalyse la marque H3K27me3 pour permettre l’établissement de l’hétérochromatine facultative. Nos résultats ont montré que l’absence de PaKmt1 et PaHP1 ne provoquent que des défauts mineurs. A l’inverse, l’inactivation du gène PaKmt6 conduit à un ensemble de défauts sévères : croissance végétative altérée, surproduction des gamètes mâles, malformations critiques des fructifications, production très réduite d’ascospores dont la germination est pour partie déficiente. Une étude d’épistasie a montré que les protéines PaRid et PaKmt6 interviennent chacune dans deux voies développementales distinctes. Par ailleurs, nous avons établi par immuno-précipitation de la chromatine les profils de distribution à l’échelle du génome entier des modifications H3K9me3, H3K27me3 et H3K4me3. Caractéristique rare, la marque H3K9me3 colocalise avec H3K27me3 sur des gènes transcriptionnellement réprimés et les séquences répétées ripées. Conformément à sa fonction canonique, H3K4me3 est présente en 5’ des gènes transcrits et est exclue des domaines H3K9me3 et H3K27me3. Comme attendue, PaKmt6 est essentielle à la mise en place de la marque H3K27me3, mais, de manière surprenante, elle serait aussi impliquée dans le dépôt et/ou le maintien d’une partie des marques H3K9me3, dévoilant ainsi une voie de méthylation non canonique de ces résidus. / In pezizomycotina, transposable elements are targeted by a genome defense system named Repeat Induced Point Mutation (RIP). First described in Neurospora crassa, RIP occurs before karyogamy in each parental haploid nucleus of the dikaryotic cells and results, within the repeats, in de novo methylation of cytosine (5mC) and mutations, mainly C to T transitions. This initial step triggers local assembly of constitutive heterochromatin, which allows transcriptional gene silencing. RID (RIP Defective) is a putative cytosine methyltransferase essential for RIP. Despite the absence of 5mC in its genome, PaRid inactivation in Podospora anserina results in sexual reproduction arrest right after fertilization. In this context, we asked whether PaRid is required to silence expression of some of sexual development-specific genes by nucleation of constitutive heterochromatin. To this end, we identified PaKmt1 and PaHp1 genes encoding respectively the histone methyltransferase PaKmt1 (SU(VAR)39 homologue protein) and the heterochromatin protein 1 (PaHP1). To assemble constitutive heterochromatin, PaKmt1 catalyses tri-methylation of H3K9 (H3K9me3), latter on bound by PaHP1. By contrast, the E(Z) histone methyltransferase homologue PaKmt6, as part of the PRC2 complex, catalyses tri-methylation of H3K27 (H3K27me3) to form facultative heterochromatin. Our results showed that loss of either PaKmt1 or PaHP1 does not cause major defects. Conversely, PaKmt6 gene inactivation results in severe defects: altered mycelium and vegetative growth rate, overproduction of male gamete, development of crippled fructifications, reduced production ascospores, part of which does not germinate. Furthermore, epistatic study showed that PaRid and PaKmt6 likely act in two different developmental pathways, with respect to sexual reproduction. In addition, using chromatin immuno-precipitation we characterized H3K9me3, H3K27me3 and H3K4me3 genome-wide distribution patterns. We observed an uncommon overlapping distribution between H3K9me3 and H3K27me3 on transcriptionally repressed genes and RIP target repeats. As expected, H3K4me3 localizes in 5’ of the transcribed genes and is excluded from the H3K9me3 and H3K27me3 domains. As expected, PaKmt6 is essential for H3K27me3 modification, but surprisingly, could also be responsible for some of the H3K9me3 setting up or maintenance.
15

Investigation of SARS-CoV-2 and HIV-1 virus-host interactions

Li, Tai-Wei January 2022 (has links)
No description available.
16

Epigenetic Drifts during Long-Term Intestinal Organoid Culture

Thalheim, Torsten, Siebert, Susann, Quaas, Marianne, Herberg, Maria, Schweiger, Michal R., Aust, Gabriela, Galle, Joerg 03 May 2023 (has links)
Organoids retain the morphological and molecular patterns of their tissue of origin, are self-organizing, relatively simple to handle and accessible to genetic engineering. Thus, they represent an optimal tool for studying the mechanisms of tissue maintenance and aging. Long-term expansion under standard growth conditions, however, is accompanied by changes in the growth pattern and kinetics. As a potential explanation of these alterations, epigenetic drifts in organoid culture have been suggested. Here, we studied histone tri-methylation at lysine 4 (H3K4me3) and 27 (H3K27me3) and transcriptome profiles of intestinal organoids derived from mismatch repair (MMR)-deficient and control mice and cultured for 3 and 20 weeks and compared them with data on their tissue of origin. We found that, besides the expected changes in short-term culture, the organoids showed profound changes in their epigenomes also during the long-term culture. The most prominent were epigenetic gene activation by H3K4me3 recruitment to previously unmodified genes and by H3K27me3 loss from originally bivalent genes. We showed that a long-term culture is linked to broad transcriptional changes that indicate an ongoing maturation and metabolic adaptation process. This process was disturbed in MMR-deficient mice, resulting in endoplasmic reticulum (ER) stress and Wnt activation. Our results can be explained in terms of a mathematical model assuming that epigenetic changes during a long-term culture involve DNA demethylation that ceases if the metabolic adaptation is disturbed.
17

ORGAN-SPECIFIC EPIGENOMIC AND TRANSCRIPTOMIC CHANGES IN RESPONSE TO NITRATE IN TOMATO

Russell S Julian (8810357) 21 June 2022 (has links)
Nitrogen (N), an essential plant macronutrient, is among the most limiting factors of crop yield. To sustain modern agriculture, N is often amended in soil in the form of chemical N fertilizer, a major anthropogenic contributor to nutrient pollution that affects climate, biodiversity and human health. To achieve agricultural sustainability, a comprehensive understanding of the regulation of N response in plants is required, in order to engineer crops with higher N use efficiency. Recently, epigenetic mechanisms, such as histone modifications, have gained increasing importance as a new layer of regulation of biological processes. However, our understanding of how epigenetic processes regulate N uptake and assimilation is still in its infancy. To fill this knowledge gap, we first performed a meta-analysis that combined functional genomics and network inference approaches to identify a set of N-responsive epigenetic regulators and predict their effects in regulating epigenome and transcriptome during plant N response. Our analysis suggested that histone modifications could serve as a regulatory mechanism underlying the global transcriptomic reprogramming during plant N response. To test this hypothesis, I applied chromatin immunoprecipitation-sequencing (ChIP-Seq) to monitor the genome-wide changes of four histone marks (H3K27ac, H3K4me3, H3K36me3 and H3K27me3) in response to N supply in tomato plants, followed by RNA-Seq to profile the transcriptomic changes. To investigate the organ specificity of histone modifications, I assayed shoots and roots separately. My results suggest that up to two-thirds of differentially expressed genes (DEGs) are modified in at least one of the four histone marks, supporting an integral role of histone modification in regulating N response. I observed a synergistic modification of active histone marks (H3K27ac, H3K4me3 and H3K36me3) at gene loci functionally relevant to N uptake and assimilation. Surprisingly, I uncovered a non-canonical role of H3K27me3, which is conventionally associated with repressed genes, in modulating active gene expression. Interestingly, such regulatory role of H3K27me3 is specifically associated with highly expressed genes or low expressed genes, depending on the organ context. Overall, I revealed the multi-faceted role of histone marks in mediating the plant N response, which will guide breeding and engineering of better crops with higher N use efficiency

Page generated in 0.0352 seconds