Spelling suggestions: "subject:"hydrotherapy"" "subject:"hadronthérapie""
1 |
Etude des signaux bystander émis par des cellules de cartilage cultivées en 3D et irradiées in vitro dans un contexte de radiothérapie conventionnelle et d'Hadronthérapie / Study of bystander signals emitted by cartilage 3D culture cells after irradiation in vitro with X-rays and Carbon ionsLepleux, Charlotte 02 November 2018 (has links)
Lors d’une radiothérapie conventionnelle (Rayons X) ou non-conventionnelle (Hadronthérapie), l’impact des irradiations sur les tissus sains pose des questions essentielles de radiobiologie, ces tissus sains se trouvant sur le trajet du faisceau lors du traitement d’une tumeur. Parmi ces questions, quel est l’impact de l’effet Bystander radio-induit ? Ce mécanisme fait intervenir des signaux de stress encore mal identifiés, émis par une ou plusieurs cellules irradiées vers les cellules non irradiées adjacentes ou très proches, pouvant produire des effets biologiques proches de ceux obtenus dans la zone irradiée.Afin d’étudier ce phénomène, nous avons utilisé différentes techniques de biologie moléculaire dont : des tests de clonogénicité permettant d’étudier la survie des cellules après un traitement, des électrophorèses bidimensionnelles permettant l’analyse du protéome cellulaire, des analyses de milieux conditionnés permettant d’identifier les signaux Bystander émis par les cellules irradiées et des expériences de protéo-génomique visant à étudier des cellules en mélange. En parallèle de ces techniques d’étude, nous avons développé un modèle de culture de cellules en 3D via l’utilisation de « pellets » (agrégats cellulaires).Nos résultats ont montré une diminution de la survie des cellules bystander après transfert de milieu provenant de cellules irradiées, l'implication potentiel de certaines cytokines dans la signalisation bystander ainsi que plusieurs protéines candidates pouvant expliquer en partie la réponse bystander. / In conventional radiotherapy (X-ray) or unconventional radiotherapy (Hadrontherapy), the impact of irradiation on healthy tissue raises essential questions of radiobiology, these healthy tissues being in the path of the beam during the treatment of a patient. tumor. Among these questions, what is the impact of the radio-induced Bystander effect? This mechanism involves stress signals still poorly identified, emitted by one or more irradiated cells to adjacent or very close non-irradiated cells, which can produce biological effects close to those obtained in the irradiated zone.To study this phenomenon, we used various molecular biology techniques including: clonogenic assay to study the survival fraction of cells after treatment, two-dimensional electrophoresis allowing the analysis of the cellular proteome, conditioned medium analysis for identify Bystander signals emitted by irradiated cells and proteomembrane experiments aimed at studying cells in a mix. In parallel with these study techniques, we have developed a 3D cell culture model via the use of "pellets" (cell aggregates).Our results showed a decrease in the survival of bystander cells after transfer of medium from irradiated cells, the potential involvement of some cytokines in bystander signaling as well as several candidate proteins that may partly explain the bystander response.
|
2 |
Évaluation du Statut télomérique : vers une thérapeutique personnalisée du glioblastome : application en Hadronthérapie par ions carbone / Telomere profiling : toward glioblastoma medicine : application to carbon ion hadrontherapyFerrandon, Sylvain 28 January 2013 (has links)
Le glioblastome, tumeur maligne des tissus astrocytaires, est de mauvais pronostic. Malgré un traitement standard invasif (chirurgie, radiochimiothérapie), la médiane de survie des patients n’excède pas 14 mois, essentiellement due à la récidive tumorale (radiorésistance des cellules résiduelles). L’hadronthérapie par ion carbone offre des atouts radiobiologiques importants : i) Balistique très précise (épargne les tissus sains), ii) Efficacité Biologique Relative (EBR) supérieure à la radiothérapie conventionnelle (augmentation de la dose possible), iii) Réponse indépendante de l’effet oxygène (tumeurs hypoxiques). L’hadronthérapie a montré des résultats prometteurs en traitement du glioblastome. Cependant, la rareté des centres offrant cette thérapeutique oblige les cliniciens à utiliser des marqueurs prédictifs de réponse à la radiothérapie conventionnelle afin de mieux orienter les patients diagnostiqués mauvais répondeur. L’homéostasie télomérique est connue pour moduler la radiosensibilité de différents types de cancer. Aussi, ce travail présente deux axes. D’une part, nous avons déterminé que la taille des télomères et l’expression de POT-1 (Protection Of Telomere1) peuvent être utilisées par les cliniciens pour diagnostiquer les patients mauvais répondeurs au traitement standard et ainsi les orienter vers l’hadronthérapie où leurs pronostics seraient meilleurs. D’autre part, nous avons montré qu’un traitement pharmacologique dirigé contre la télomérase (GRN163L, Geron Corp) pouvait améliorer les résultats de la radiothérapie conventionnelle sur un modèle in vivo de glioblastome humain chez la souris / Glioblastoma, high grade tumor of neuroepithelial tissue, is poor prognosis cancer. Despite an invasive standard treatment (surgery, radiochemotherapy), the overall survival of patients does not exceed 15 months, largely due to aggressive recurrence (radioresistance of residual cells). Hadrontherapy with Carbon ion beam have strong radiobiological arguments: i) high ballistic precision (save healthy tissues), ii) Relative Biological Efficiency (RBE) above conventional radiotherapy (dose escalation), iii) independent response of oxygen enhancement ratio (hypoxic tumors). Hadrontherapy have shown promising preliminary results in treatment of brain tumors. However, the rareness of health centers which purposed Handrontheray necessitates the use of predictive markers of resistance to conventional radiotherapy to address bad responder patient. Telomere homeostasis is also known to modulate radiosensitivity of different types of cancer. Thus, this work has two arms. On the one hand, we have shown that telomere length and POT1 (Protection Of Telomere1) level (RNA and protein) can be used by clinicians to diagnose bad responder of standard treatment and towards the hadrontherapy. On the other hand, we have shown that pharmacological treatment inhibitory of telomerase (GRN163L, Geron Corp) can improve the radiationinduced responses to conventional radiotherapy on human glioblastoma mice model
|
3 |
Utilisation des nanoparticules pour ameliorer les performances de la hadrontherapie / Improvement of hadrontherapy by addition of nanoparticlesPorcel, Erika 10 November 2011 (has links)
Le cancer est l'une des principales causes de décès dans le monde, trouver des traitements plus efficaces est donc d’un intérêt majeur. La radiothérapie conventionnelle utilisant des rayons X peut détruire des tumeurs, mais provoque des effets secondaires nocifs pour les tissus sains environnants. L'hadronthérapie est un outil utilisant des ions pour irradier la tumeur et qui s’avère très efficace pour le traitement du cancer. Les propriétés physiques particulières des ions permettent de mieux cibler et donc d’irradier un volume bien défini comme la tumeur. Afin de renforcer le ciblage et l'efficacité des traitements, une amplification de la mort cellulaire spécifiquement dans la tumeur est nécessaire. Pour améliorer les traitements, nous proposons une stratégie innovante qui combine des nano-médicaments et l'irradiation par des ions rapides.Nous avons déjà montré que les sels de platine renforcent fortement l’endommagement à l'ADN induit par les différentes irradiations (telles que les rayons X et les ions rapides) et accélèrent la mort des cellules. Cet effet est attribué à l'ionisation des électrons du platine en couche interne par les électrons produits le long de la trace, suivi par la désexcitation Auger du métal. Ces électrons Auger peuvent induire des dommages de façon directe ou par effet indirect via les radicaux produits dans l’eau. Le défi est de déposer ces sensibilisateurs dans la tumeur. Les développements récents en matière de nanotechnologie apportent de nouvelles perspectives par l’utilisation de nanoparticules, qui peuvent être fonctionnalisées afin de cibler des tissus spécifiques.Notre étude montre que l'irradiation avec des ions carbone provenant du HIMAC (centre médical Japonais, leader en hadronthérapie) en présence de ces nanoparticules induit une augmentation significative des dommages à l'ADN. En particulier, notre travail permet de comprendre que cette combinaison induit des dommages plus complexes que lorsque les sels de platine sont utilisés. Cet effet est expliqué par l'auto-amplification des cascades d'électrons Auger à l'intérieur des nanoparticules. Des radicaux de l'eau sont produits à l'échelle de l’ADN et conduisent à son endommagement. Cette amplification des dommages a été observée dans les cellules vivantes en présence de nanoparticules bien qu’elles se trouvent exclusivement dans le cytoplasme. L’amplification des dommages décrite pour l’ADN peut avoir lieu dans n'importe quelle molécule contenue dans le cytoplasme ce qui peut mener à la destruction d’organites.Ce travail à l'interface de la physique, de la chimie et de la biologie présente un fort intérêt pour l'élaboration de protocoles médicaux tels que l'hadronthérapie et la nanomédecine, ceci afin d’améliorer l'efficacité et la précision des traitements. / Cancer is one of the major causes of death in the world, finding more effective treatments is therefore of major interest. Conventional radiotherapy using X-rays can destroy tumors but causes harmful side effects to surrounding healthy tissues. The hadrontherapy is a powerful tool for cancer treatment which uses ions to irradiate the tumor. The particular physical properties of ions allow better targeting, and therefore, an irradiation of the well-defined volume of the tumor. In order to further enhance the targeting and the efficiency of the treatments, an amplification of the cell death rate specifically in the tumor is of strong interest. To improve treatments, we propose an innovative strategy that combines nano-drugs and irradiation by fast ions.We already showed that platinum salts enhance strongly DNA damage induced by different radiations (such as X-rays and fast ions) and accelerate cell death. This effect is attributed to the ionization of inner shell electrons of platinum by the electrons produced along the track, followed by Auger de-excitation of the metal. These Auger electrons can induce damage by direct or indirect effect (water radicals mediated). The challenge is to locate these sensitizers in the tumor. Recent developments in nanotechnology pointed out new perspectives by using nanoparticles, which can be functionalized to target specific tissues.Our study shows that irradiation with carbon ions from HIMAC (Japanese medical center, leader in hadrontherapy) in presence of these nanoparticles induces a significant increase of DNA damage. In particular, our work helps to understand that this combination induces more complex lethal damage compared to platinum salts. This effect is explained by the auto-amplification of Auger electron cascades inside the nanoparticles. Numerous water radicals are produced at DNA scale leading to its damage. Same observation of damage amplification has been made in living cells loaded with nanoparticles while they stay exclusively in the cytoplasm. The amplification of damage described on DNA can occur in a cytoplasm included molecule and may induce organelle destruction.This work at the interface of physics, chemistry and biology finds strong interest for developing medical protocols such as hadrontherapy and nanomedicine improving effectiveness and accuracy of treatment.
|
4 |
Tests and characterization of gamma cameras for medical applications / Test et caractérisation de caméras gamma pour le médicalFontana, Mattia 14 December 2018 (has links)
Ce travail de thèse a été effectué dans le cadre de la collaboration CLaRyS, qui a pour objectif le développement d'une caméra gamma multi-collimatée et d'une caméra Compton pour les applications médicales notamment pour le contrôle en ligne de l’hadronthérapie. La caméra Compton pourrait également être utilisée en médecine nucléaire. L’objectif principal de ce travail de thèse était la caractérisation complète des détecteurs qui composent les caméras et le test des deux systèmes complets avec des faisceaux d’ions cliniques. En parallèle, des études en simulation ont permis d'estimer les performances de la caméra Compton à la fois pour le contrôle de l’hadronthérapie et la médecine nucléaire / This thesis work has been carried out within the CLaRyS French collaboration, which is involved in the development of a multi-collimated gamma camera and a Compton camera for the application in ion beam therapy monitoring through prompt-gamma detection and in nuclear medicine examinations. The main goal of the thesis was the complete characterization of the camera detector components, and the test of the whole systems on clinical ion beams. In parallel, simulation works have been performed to assess the performance of the Compton camera for the measurement of ion range during proton and carbon therapy, and for single photon emission computed tomography application in the nuclear medicine field
|
5 |
Charged particle therapy, ion range verification, prompt radiationTesta, Mauro 14 October 2010 (has links) (PDF)
This PhD thesis reports on the experimental investigation of the prompt photons created during the fragmentation of the carbon beam used in particle therapy. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12C6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the C-ion range and the prompt photon profile. A major issue of these measurements is the discrimination between the prompt photon signal (which is correlated with the ion path) and a vast neutron background uncorrelated with the Bragg-Peak position. Two techniques are employed to allow for this photon-neutron discrimination: the time-of-flight (TOF) and the pulse-shape-discrimination (PSD). The TOF technique allowed demonstrating the correlation of the prompt photon production and the primary ion path while the PSD technique brought great insights to better understand the photon and neutron contribution in TOF spectra. In this work we demonstrated that a collimated set-up detecting prompt photons by means of TOF measurements, could allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions. In the second part of the PhD thesis a simulation study was performed with Geant4 Monte Carlo code to assess the influence of the main design parameters on the efficiency and spatial resolution achievable with a multidetector and multi-collimated Prompt Gamma Camera. Several geometrical configurations for both collimators and stack of detectors have been systematically studied and the considerations on the main design constraints are reported.
|
6 |
Optimisation de la trajectoire du patient dans les centres de radiothérapie ou d'hadronthérapie / Care-Trajectory optimization in radiotherapy and hadrontherapy facilitiesJacquemin, Yoan 25 October 2011 (has links)
L’optimisation de la planification des traitements par rayons ionisants est bénéfique tant aux patients qu’aux structures de soins bien que particulièrement difficile du fait de la rareté des ressources et de l'importante répétition des séances. Face à cette problématique, un modèle d'optimisation linéaire à nombres entiers a été créé permettant de planifier des protocoles de traitement complexes tout en prenant en compte la disponibilité des patients ainsi que des radiothérapeutes qui les suivent avec pour résultat une amélioration significative des performances sur des indicateurs couvrant les ressources humaines et matérielles ainsi que les délais de prise en charge. De plus nous avons développé des solutions adaptées à des contextes concrets : i) une planification heuristique de la trajectoire des patients au sein du Centre de Protonthérapie d’Orsay (CPO) assortie d'indicateurs de performances, et ii) une adaptation au monde hospitalier de la solution industrielle de planification PREACTOR permettant de conserver la finesse obtenue dans les modélisations linéaires tout en tirant parti des capacités de résolution des heuristiques complexes intégrées à PREACTOR / Ionizing therapy treatment scheduling optimization can improve both patients’ care and care structures’ efficiency. Despite its complexity, mainly because of scarce resources and essential care activities’ repetition, we designed a linear programming model which allows scheduling complex treatment protocols better than existing models on several performance indicators regarding material and human resources while minimizing waiting times and taking into account both patients’ and radiotherapists’ availabilities. Furthermore, we developed two practical applications of heuristic scheduling methods : i) a constructive heuristic scheduling model for the Protontherapy Center of Orsay (CPO) able to plan whole care trajectory base on available resources and ii) an healthcare adaptation of the industrial scheduling platform PREACTOR which achieve linear model's precision resolved through complex heuristics from PREACTOR
|
7 |
Charged particle therapy, ion range verification, prompt radiation / Mesures physiques pour la vérification du parcours des ions en hadronthérapieTesta, Mauro 14 October 2010 (has links)
Cette thèse porte sur les mesures expérimentales des γ-prompts créés lors de la fragmentation du faisceau d'ions carbone en hadronthérapie. Deux expériences ont été effectuées aux laboratoires GANIL et GSI avec des ions 12C6+ de 95MeV/u et 305MeV/u irradiant une cible d'eau ou de PMMA. Dans les deux expériences une nette corrélation a été obtenue entre le parcours des ions carbone et le profil longitudinal des γ- prompts. Une des plus grandes difficultés de ces mesures vient de la discrimination entre le signal des γ-prompts (qui est corrélé avec le parcours des ions) et un important bruit de fond dû aux neutrons (non corrélé au parcours). Deux techniques sont employées pour effectuer la discrimination entre γ et neutrons: le temps de vol (TDV) et la discrimination par forme de signal (DFS). Le TDV a permis de démontrer la corrélation entre la production de γ-prompts et le parcours des ions. La DFS a fourni des informations précieuses pour la compréhension des caractéristiques des spectres en TDV. Dans ce travail on a démontré qu'un système de détection de γ-prompt collimaté, basé sur la technique du temps de vol, peut permettre une vérification en temps réel de la position du Pic de Bragg en conditions cliniques. Dans la dernière partie de la thèse, un travail de simulation a été effectué à l'aide du code de simulation Geant4 pour évaluer l'influence des principaux paramètres du design d'un dispositif de multi-détecteurs et multicollimateurs sur la résolution spatiale et l'efficacité atteignable par une Camera γ-Prompt. Plusieurs configurations géométriques ont été étudiées de façon systématique et les principales contraintes du design sont analysées. / This PhD thesis reports on the experimental investigation of the prompt photons created during the fragmentation of the carbon beam used in particle therapy. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12C6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the C-ion range and the prompt photon profile. A major issue of these measurements is the discrimination between the prompt photon signal (which is correlated with the ion path) and a vast neutron background uncorrelated with the Bragg-Peak position. Two techniques are employed to allow for this photon-neutron discrimination: the time-of-flight (TOF) and the pulse-shape-discrimination (PSD). The TOF technique allowed demonstrating the correlation of the prompt photon production and the primary ion path while the PSD technique brought great insights to better understand the photon and neutron contribution in TOF spectra. In this work we demonstrated that a collimated set-up detecting prompt photons by means of TOF measurements, could allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions. In the second part of the PhD thesis a simulation study was performed with Geant4 Monte Carlo code to assess the influence of the main design parameters on the efficiency and spatial resolution achievable with a multidetector and multi-collimated Prompt Gamma Camera. Several geometrical configurations for both collimators and stack of detectors have been systematically studied and the considerations on the main design constraints are reported.
|
8 |
Development of platinum based nanoparticles to enhance cancer cell killing by gamma rays and carbon ion radiation / Développement de nanoparticules à base de platine visant à améliorer la destruction de cellules cancéreuses par des rayons gamma et par ions carboneSalado Leza, Daniela 25 November 2016 (has links)
La radiothérapie basée sur l'utilisation des photons de haute énergie (rayons X) est l'approche la plus courante dans le traitement du cancer. Toutefois, elle est limitée par la tolérance des tissus sains. Par conséquent, il est d'un intérêt majeur de développer de nouvelles techniques et protocoles pour améliorer le ciblage dans les tumeurs. Dans cette perspective, la hadronthérapie (irradiation de la tumeur par des protons ou des ions carbone) est considérée comme l'une des techniques les plus prometteuses car le dépôt d'énergie est maximum en fin de parcours, ce qui permet de cibler la tumeur. Pourtant, l’utilisation de cette modalité reste limitée du fait de la dose reçue par les tissus sains situés à l'entrée du faisceau.Pour améliorer les performances des thérapies par radiation, une nouvelle stratégie basée sur la combinaison de nanoparticules métalliques (nano-médecine) avec des rayonnements ionisants a été développée par le groupe. En effet, les nanoparticules ont une chimie de surface remarquable qui permet de les fonctionnaliser avec des ligands qui les rendent plus futiles et moins reconnus des macrophages afin de les concentrer dans les tumeurs.Le but de mon travail a été de développer des nanoparticules à base de platine (NPs de platine pelylée et des nanoparticules bimétalliques) visant à améliorer l’effet des rayonnements ionisants (photons et ions carbone) dans les cellules.Une méthode originale de synthèse en une seule étape combinant la radiolyse et la PEGylation in situ a été optimisée. Cette méthode a permis d’obtenir des NPs stables, de taille homogène (cœur métallique proche de 3 nm).L'impact biologique de ces nouvelles NPs a été évalué sur deux lignées de cellules cancéreuses humaines. Il a été observé que les NPs, non-toxiques, ont un mode d’internalisation qui dépend de la lignée cellulaire. Celles-ci sont, dans tous les cas, localisées exclusivement dans le cytoplasme. Les NPs de platine développées dans ce travail permettent d’amplifier significativement la destruction des cellules cancéreuses, en particulier lorsqu’un faisceau médical d’ions carbone est utilisé comme rayonnement. Les mécanismes moléculaires à l’origine de cet effet ont été étudiés grâce à l’utilisation d’une nanosonde biologique. Ces expériences ont montré que les NPs sont responsables de l’augmentation de dommages nanométriques, qui peuvent être létaux pour les cellules. Cet effet est attribué à des processus électroniques d’activation et de reneutralisation de la NP qui engendre une forte perturbation dans le volume nanométrique qui l’entoure tel que la production groupée de radicaux fortement réactifs et toxiques.En conclusion, ce travail à l’interface de la physique, chimie et biologie montre les capacités des NPs à base de platine à améliorer l’éradication par radiation des cellules cancéreuses. / Radiotherapy based on the use of high energy photons (X-rays) is the most common approach in cancer treatment. However, its implementation is limited by the tolerance of healthy tissue. Therefore, it is of major interest the development of new techniques and protocols to improve the selectivity of radiation effects within the tumor. In this perspective, the hadrontherapy (tumor irradiation by protons or carbon ions) is considered as one of the most promising techniques due to the energy deposition of ions in depth which is maximum at the end of the track. However, the use of this modality remains restricted by the lower but significant damage induced to the normal tissue located at the entrance of the ion beam.To improve the performance of radiation therapies, a new strategy based on the combination of metallic nanoparticles (nanomedicine) with ionizing radiations was studied. These treatments have been developed by the group. Indeed, the nanoparticles present a remarkable surface chemistry that allows their functionalization with ligands which make them less recognized by macrophages allowing an important accumulation of these nano-agents selectively into the tumors.The goal of my work was thus to develop platinum based nanoparticles (mono- and bimetallic Pt NPs) to enhance the effect of radiations (photons and carbon ions) into the cells.A novel one-step method of synthesis combining radiolysis and in situ PEGylation has been optimized. This method enabled to obtain stable NPs with a uniform size (metallic core diameter close to 3 nm) and shape. The biological impact of these new Pt NPs was evaluated in two human cancer cell lines.It has been observed that non-toxic Pt NPs have an internalization pathway that strongly depends on the cell line. These are, in all cases, exclusively localized in the cytoplasm. The Pt NPs developed in this work significantly enhanced cancer cell killing, particularly when medical carbon ions are used to irradiate.The molecular mechanisms underlying this effect were investigated through the use of a bio-nanoprobe. These experiments showed that NPs are responsible for the increase of nanometric damage, lesions that can be lethal to cells. This effect is attributed to an electronic activation processes and to the reneutralisation of NPs, which generates a strong perturbation in the surrounding nanometer volume producing highly reactive and toxic free radical clusters.In conclusion, this work at the interface of physics, chemistry and biology shows the potential of platinum NPs to improve the eradication of cancer cells by radiation.
|
9 |
Etude de la fragmentation du ¹²C pour la hadronthérapie / Study of¹²C fragmentation for hadrontherapyDivay, Clovis 04 October 2017 (has links)
Lors du traitement d'une tumeur par radiothérapie utilisant des ions comme le 12C, le faisceau peut subir des réactions nucléaires avec les noyaux des tissus menant à la création de particules secondaires plus légères. Cela a pour conséquences de délocaliser une partie de la dose dans les tissus sains et de créer un champ d'irradiation mixte. Afin d'améliorer les connaissances sur la fragmentation du projectile, une expérience a été réalisée par notre collaboration en Mars 2015 au GANIL avec un faisceau de 12C à 50 MeV/n. Cette expérience a permis de mesurer les sections efficaces doublement différentielles en angle et en énergie pour tous les isotopes créés, et ce, sur différentes cibles d'intérêt médical (C, H, O et Ca). Les distributions angulaires et les taux de production ont également été obtenus pour chaque fragment et pour chaque cible. Les résultats ont ensuite été comparés à différents modèles de réactions nucléaire disponibles dans les outils de simulation Monte Carlo GEANT4 et PHITS. Des écarts importants ont été observés avec les résultats expérimentaux, mais aussi entre les différents modèles. Ces conclusions avaient déjà poussé notre collaboration à créer un nouveau modèle, appelé SLIIPIE, spécialisé dans les réactions d'ions légers aux énergies intermédiaires. Les paramètres de ce modèle ont ainsi été ajustés de façon à reproduire au mieux les données expérimentales obtenues. / During the treatment of cancerous diseases using ions such as 12C, the beam will undergo nuclear reactions with the tissues leading to the production of lighter secondary fragments. This tends to delocate a part of the dose into healthy tissues and create a mixed radiation field. In order to improve the knowledge on the projectile fragmentation, an experiment was performed by our collaboration in March 2015 with a 50 MeV/n 12C beam at GANIL. This led to the measurement of double differential cross sections in angle and energy of every isotope created by the fragmentation of carbon on targets of medical interest (C, H, O and Ca). Energy and angular distributions, as well as production rates have also been obtained for every fragment and every target. Experimental data were then compared with nuclear reaction models included in the Monte-Carlo (MC) simulation codes, GEANT4 and PHITS. Important discrepancies were observed with our data, as well as between models. These observations had already led our collaboration in creating a new MC model called SLIIPIE, specialized in intermediate energies reactions with light ions. The parameters of this model were then adjusted in order to best fit the experimental data.
|
10 |
Oxygen effect in medical ion beam radiation combined with nanoparticles / Effet de l’oxygène dans l'irradiation par des ions médicaux combinés avec des nanoparticulesBolsa Ferruz, Marta 18 December 2017 (has links)
Environ 50% des patients recevant un traitement contre le cancer bénéficient de la radiothérapie. La radiothérapie conventionnelle consiste à utiliser des rayons X de haute énergie capables de traverser les tissus et de traiter des tumeurs situées en profondeur de façon non-invasive. Malheureusement, les rayons X ne font pas la distinction entre les tumeurs et les tissus sains, qui peuvent donc être endommagés. Cette non-sélectivité est à l’origine de graves effets secondaires, voire du développement de cancers secondaires. Par conséquent, l’amplification des effets radiatifs au sein de la tumeur par rapport aux tissus environnants représente un défi majeur.L’hadronthérapie (traitement par faisceaux de protons ou d’ions carbone) est considérée comme l’une des techniques les plus prometteuses car, contrairement aux rayons X, la quantité d’énergie déposée atteint son maximum en fin de trajectoire. Lorsque le faisceau est réglé de manière à ce que ce maximum atteigne la tumeur, aucun dommage n’est causé aux tissus situés au-delà. Un autre avantage majeur est que les ions lourds sont plus efficaces pour traiter les tumeurs radiorésistantes. L’utilisation de cette technique est cependant restreinte du fait des dommages – plus faibles mais néanmoins significatifs – causés aux tissus normaux situés sur la trajectoire du faisceau d’ions en amont de la tumeur. Afin d’améliorer les performances de l’hadronthérapie, l’équipe a développé à l’ISMO une nouvelle stratégie combinant l’utilisation de nanoparticules (NPs) métalliques avec l’irradiation par faisceaux d’ions. L’utilisation de NPs a pour but non seulement d’amplifier les effets des rayonnements dans la tumeur mais également d’améliorer l'imagerie médicale à l’aide des mêmes agents (théranostic). Les NPs possèdent une chimie de surface permettant leur fonctionnalisation avec des ligands capable d’améliorer la biocompatibilité, la stabilité ainsi que la circulation sanguine et l’accumulation dans la tumeur. L’équipe a déjà démontré que les petites NPs d’or et de platine (≈ 3 nm) avaient la capacité d’amplifier les effets causés par les faisceaux d’ions carbone médicaux en présence d’oxygène. Cependant, les tumeurs radiorésistantes sont susceptibles de contenir des régions hypoxiques. Il est donc urgent de quantifier et de caractériser l’influence de l’oxygène sur l’effet radio-amplificateur. Le but de ma thèse était d’étudier l’influence de l’oxygène lors d’irradiations par des faisceaux d’ions médicaux en présence de NPs d’or et de platine. Pour cela, deux lignes de cellules cancéreuses humaines radiorésistantes ont été testées: HeLa (col de l’utérus) et BxPC-3 (pancréas). Plusieurs techniques d’irradiation ont été utilisées : des faisceaux d’ions carbone et hélium générés par « passive scattering » et des faisceaux d’ions carbone générés par « pencil beam scanning ». Les principaux résultats de cette étude sont les suivants. En condition oxique (concentration d’O₂ = 20%), une amplification des effets radiatifs a été observée pour les deux types de NPs (à concentration de métal égale). Ce phénomène se réduit à mesure que la concentration d’oxygène diminue mais reste significatif jusqu’à 0.5%. Aucune différence significative n’a été observée entre les deux lignes cellulaires. Il est intéressant de noter que la dépendance à l’oxygène varie en fonction de la technique d’irradiation utilisée. Une tentative d’explication de l’influence de l’oxygène par des processus moléculaires est proposée. Des perspectives de développements ultérieurs sont suggérées. / About 50% of the cancer patients who are treated benefit from radiation therapy. Conventional radiotherapy consists of high energy X-rays traveling through the tissues, so that deeply sited tumors are treated in a non-invasive way. Unfortunately, X-rays are not tumor selective and healthy tissues may be damaged. This lack of selectivity is responsible for severe side effects and/or secondary cancers. Hence, improving the differential of radiation effects between the tumor and surrounding tissues remains a major challenge. Particle therapy (treatment by protons or carbon ion beams) is considered as one of the most promising technique because, by opposition to X-rays, the energy deposition of ions is maximum at the end of their tracks. When the beam is tuned so that the maximum reaches the tumor, there is no damage induced in tissues siting after the tumor. Another important added value is that heavy ions are more efficient to treat radioresistant tumors. The use of this modality is however restricted by the low but significant damage that is induced to normal tissues located at the entrance of the track prior to reaching the tumor. To improve the performance of particle therapy, a new strategy based on the combination of high-Z nanoparticles with ion beam radiation has been developed by the group at ISMO. This approach aims at using nano-agents not only to increase radiation effects in the tumor but also to improve medical imaging with the same agent (theranostic). Nanoparticles present a remarkable surface chemistry, which allows functionalization with ligands able to improve biocompatibility, stability as well as blood circulation and accumulation in tumors. The group already demonstrated the efficiency of small (≈ 3 nm) gold and platinum nanoparticles to amplify the effects of medical carbon ions in normoxic conditions (in the presence of oxygen). However, radioresistant tumors may host hypoxic regions. It is thus urgent to quantify and characterize the influence of oxygen on the radio-enhancement effect. The goal of my thesis was to study the influence of oxygen on medical ion radiation effects in the presence of gold and platinum nanoparticles. This was performed using two radioresistant human cancer cell lines: HeLa (uterine cervix) and BxPC-3 (pancreas). Different radiation modalities were used: carbon and helium ion beams delivered by a passive scattering delivery system and carbon ion beams delivered by a pencil beam scanning system. The major results of this work are the following. In oxic conditions (O₂ concentration = 20%), an enhancement of ion radiation effects was observed for the two nanoparticles (at the same concentration in metal). This effect decreased with the oxygen concentration but remained significant for a concentration of 0.5%. No significant difference was found between the cell lines. Interestingly, the oxygen-dependence varied with the type of radiation. An attempt to explain the effect of oxygen by molecular processes is proposed. Perspectives of further developments are suggested.
|
Page generated in 0.0881 seconds