151 |
The Weinstein conjecture with multiplicities on spherizations / Conjecture de Weinstein avec multiplicités pour les spherisations.Heistercamp, Muriel 02 September 2011 (has links)
Soit M une variété lisse fermée et considérons sont fibré cotangent T*M muni de la structure symplectique usuelle induite par la forme de Liouville. Une hypersurface S de T*M$ est dite étoilée fibre par fibre si pour tout point q de M, l'intersection Sq de S avec la fibre au dessus de q est le bord d'un domaine étoilé par rapport à l'origine 0q de la fibre T*qM. Un flot est naturellement associé à S, il s'agit de l'unique flot généré par le champ de Reeb le long de S, le flot de Reeb. <p><p>L'existence d'une orbite orbite fermée du flot de Reeb sur S fut annoncée par Weinstein dans sa conjecture en 1978. Indépendamment, Weinstein et Rabinowitz ont montré l'existence d'une orbite fermée sur les hypersurfaces de type étoilées dans l'espace réel de dimension 2n. Sous les hypothèses précédentes, l'existence d'une orbite fermée fut démontrée par Hofer et Viterbo. Dans le cas particulier du flot géodésique, l'existence de plusieurs orbites fermées fut notamment étudiée par Gromov, Paternain et Paternain-Petean. Dans cette thèse, ces résultats sont généralisés. <p><p>Les résultats principaux de cette thèse montrent que la structure topologique de la variété M implique, pour toute hypersurface étoilée fibre par fibre, l'existence de beaucoup d'orbites fermées du flot de Reeb. Plus précisément, une borne inférieure de la croissance du nombre d'orbites fermées du flot de Reeb en fonction de leur période est mise en évidence. /<p><p>Let M be a smooth closed manifold and denote by T*M the cotangent bundle over M endowed with its usual symplectic structure induced by the Liouville form. A hypersurface S of T*M is said to be fiberwise starshaped if for each point q in M the intersection Sq of S with the fiber at q bounds a domain starshaped with respect to the origin 0q in T*qM. There is a flow naturally associated to S, generated by the unique Reeb vector field R along S ,the Reeb flow. <p><p>The existence of one closed orbit was conjectured by Weinstein in 1978 in a more general setting. Independently, Weinstein and Rabinowitz established the existence of a closed orbit on star-like hypersurfaces in the 2n-dimensional real space. In our setting the Weinstein conjecture without the assumption was proved in 1988 by Hofer and Viterbo. The existence of many closed orbits has already been well studied in the special case of the geodesic flow, for example by Gromov, Paternain and Paternain-Petean. In this thesis we will generalize their results.<p><p>The main result of this thesis is to prove that the topological structure of $M$ forces, for all fiberwise starshaped hypersurfaces S, the existence of many closed orbits of the Reeb flow on S. More precisely, we shall give a lower bound of the growth rate of the number of closed Reeb-orbits in terms of their periods. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
152 |
Sobre sistemas hamiltonianos suaves por partes / On piecewise Hamiltonian systemsSouza, Wender José de, 1984- 12 October 2014 (has links)
Orientador: Marco Antonio Teixeira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T09:33:59Z (GMT). No. of bitstreams: 1
Souza_WenderJosede_D.pdf: 1230622 bytes, checksum: 578f86e5fe4ff35247fcfb0fb04975b8 (MD5)
Previous issue date: 2014 / Resumo: Neste trabalho consideramos alguns aspectos da teoria qualitativa de sistemas dinâmicos suaves por partes. Nosso principal objetivo é estudar uma classe de tais sistemas, onde o conjunto de descontinuidade é dado por uma hipersuperfície ? e além disso, assumimos que em cada região determinada por ? o campo de vetores definido é um sistema Hamiltoniano. Apresentamos estudos relacionados à regularização de campos de vetores suaves por partes em Rn que preservam volume nas componentes suaves. Abordamos também singularidades de funções suaves por partes, onde formas normais e seus desdobramentos são apresentados. Por fim estudamos bifurcações de campos de vetores Hamiltonianos refrativos / Abstract: In this work, we consider some aspects of the qualitative theory of non smooth dynamical systems in Rn. Our main goal is to study a class of such systems where the discontinuity set is concentrated in a hypersurface ? and moreover, we assume that in each region determined by ? the vector field is a Hamiltonian system. We present studies related to the regularization of piecewise vector fields in Rn that are volume preserving on each smooth components. We also analyze singularities of piecewise smooth functions where normal forms and their unfolding are presented. Finally, we study bifurcations of refractive Hamiltonian vector fields / Doutorado / Matematica / Doutor em Matemática
|
153 |
Stabilization of a class of nonlinear systems with passivity properties / Stabilisation d'une classe de systèmes non linéaires avec propriétés de passivitéBorja Rosales, Luis Pablo 06 July 2017 (has links)
Dans cette thèse, nous abordons le problème de la stabilisation des systèmes non linéaires. En particulier, nous nous concentrons sur les modèles où l'énergie joue un rôle fondamental. Ce cadre énergétique est adapté pour capturer les phénomènes de plusieurs domaines physiques tels que les systèmes mécaniques, les systèmes électriques, les systèmes hydrauliques, etc. Le point de départ des contrôleurs proposés sont les concepts de système passif, des sorties passives et des fonctions d'énergie (ou stockage). Dans ce travail, nous étudions deux classes de systèmes dynamiques, à savoir les Hamiltoniens à ports (PH) et les Euler-Lagrange (EL), qui conviennent pour représenter de nombreux processus physiques. Une première étape vers la construction des contrôleurs est de montrer la passivité des systèmes PH et la caractérisation de leurs sorties passives. Par la suite, nous explorons l'utilisation des différentes sorties passives dans deux techniques bien connues de contrôle par passivité (PBC), c'est-à-dire le contrôle par interconnexion (CbI) et l'équilibrage énergétique (EB), et nous comparons les résultats obtenus dans les deux approches. De plus, nous proposons une nouvelle méthodologie dans laquelle la loi de commande est composée d'un terme proportionnel (P), un terme intégral (I) et, éventuellement, un terme dérivatif (D) de la sortie passive. Dans cette stratégie, l'énergie du système en boucle fermée est façonnée sans qu'il soit nécessaire de résoudre des équations différentielles partielles (PDE). Nous analysons le scénario du régulateur PID à l'aide des différentes sorties passives précédemment caractérisées. Enfin, nous appliquons un schéma PID-PBC récemment proposé dans la littérature à un système mécanique complexe, à savoir un pendule inversé ultra flexible, représenté sous la forme d'un modèle contraint EL. La conception du contrôleur, la preuve de stabilité, ainsi que les simulations et les résultats expérimentaux sont présentés pour montrer l'applicabilité de cette technique aux systèmes physiques. / In this thesis we address the problem of stabilization of nonlinear systems. In particular, we focus on models where the energy plays a fundamental role. This energy-based framework is suitable to capture the phenomena of several physical domains, such as mechanical systems, electrical systems, hydraulic systems, etc. The starting point in the proposed controllers are the concepts of passive system, passive outputs and energy (storage) functions. In this work we study two classes of dynamical systems, namely port-Hamiltonian (PH) and Euler-Lagrange (EL), which are suitable to represent many physical processes. A first step towards the controller design is to show the passivity of the PH systems and the characterization of their passive outputs. Thereafter, we explore the use of the different passive outputs in two well-known passivity-based control (PBC) techniques, that is control by interconnection (CbI) and energy balancing (EB), and we compare the obtained results in both approaches. In addition, we propose a novel methodology in which the controller consists in a proportional (P), an integral (I) and, possibly, a derivative (D) term of the passive output. In this approach the energy of the closed-loop system is shaped without the necessity of solving partial differential equations (PDEs). We analyze the scenario of the PID controller using the different passive outputs previously characterized. Finally, we apply a PID-PBC scheme recently proposed in the literature to a complex mechanical system, namely an ultra flexible inverted pendulum, which is represented as a constrained EL model. The controller design, the stability proof, as well as simulations and experimental results are presented to show the applicability of this technique to physical systems.
|
154 |
Bifurcations of families of 1-tori in 4D symplectic mapsOnken, Franziska 14 August 2015 (has links)
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized around a skeleton of families of elliptic 1D-tori, which can be visualized by 3D phase-space slices. An analysis of the different bifurcations of the families of 1D-tori in phase space and in frequency space by computing the involved hyperbolic and elliptic 1D-tori is presented. Applying known results of normal form analysis, both the local and the global structure can be understood: Close to a bifurcation of a 1D-torus, the phase-space structures are surprisingly similar to bifurcations of periodic orbits in 2D maps. Far away the phase-space structures can be explained by remnants of broken resonant 2D-tori. / Die Dynamik Hamilton'scher Syteme (z.B. Planetenbewegung, Elektronenbewegung in Nanostrukturen, Moleküldynamik) kann mit Hilfe symplektischer Abbildungen untersucht werden. Bezüglich 2D Abbildungen wurde bereits umfassende Forschungsarbeit geleistet, doch für Systeme höherer Dimension ist noch vieles unverstanden. In einer generischen 4D Abbildung sind reguläre 2D-Tori um ein Skelett aus Familien von elliptischen 1D-Tori organisiert, was in 3D Phasenraumschnitten visualisiert werden kann. Durch die Berechnung der beteiligten hyperbolischen und elliptischen 1D-Tori werden die verschiedenen Bifurkationen der Familien von 1D-Tori im Phasenraum und im Frequenzraum analysiert. Die Anwendung bekannter Ergebnisse aus Normalformanalysen ermöglicht das Verständnis sowohl des lokalen, als auch des globalen Regimes. Nahe an der Bifurkation eines 1D-Torus sind die Phasenraumstrukturen denen von Bifurkationen periodischer Orbits in 2D Abbildungen überraschend ähnlich. Weit entfernt können die Phasenraumstrukturen als Überreste eines zerplatzten resonanten 2D-Torus erklärt werden.
|
155 |
Nonequilibrium statistical mechanics of a crystal interacting with medium / Mécanique statistique hors d'équilibre d'un cristal interagissant avec un milieu continuDymov, Andrey 17 June 2015 (has links)
Dans cette thèse nous étudions des systèmes hamiltoniens de particules en interaction, où chaque particule est faiblement couplée avec son propre thermostat de type Langevin de température positive arbitraire. Les modèles peuvent être vu comme des cristaux plongés dans un milieu continue et interagissants faiblement avec ce dernier.Nous nous intéressons au transport d'énergie dans les systèmes quand les couplages des particules avec leurs thermostats tendent vers zéro simultanément avec les couplages entre eux.Nous examinons deux situations opposées, quand la mesure de Lebesgue des resonances du système de particules découplées est nulle et quand elle est pleine. Dans le premier cas, en utilisant la méthode de moyennisation stochastique, nous démontrons que dans la limite ci-dessus le comportement de l'énergie locale des particules sur des intervalles de temps longs, et dans le régime stationnaire est donné par une équation autonome stochastique, laquelle predit uniquement le transport d'énergie non hamiltonien.Dans le second cas, en utilisant la méthode de moyennisation resonante stochastique, nous prouvons que la dynamique limite de l'énergie locale est contrôlée par une équation efficace stochastique. La dernière prevoit le transport d'energie hamiltonien entre les particules. Cependant, elle n'est pas autonome pour l'énergie locale. En utilisant cette asymptotique, nous montrons que dans la limite ci-dessus le flux d'énergie hamiltonien du système satisfait des relations qui ressemblent à la loi de Fourier et à la formule de Green-Kubo (cependant, elles ne le sont pas).La plupart des résultats et convergences que nous obtenons dans la thèse sont uniformes par rapport au nombre de particules dans les systèmes, qui rend nos résultats pertinents du point de vue de la physique statistique. / In the present thesis we study Hamiltonian systems of particles with weak nearest-neighbour interaction, where each particle is weakly coupled with its own stochastic Langevin-type thermostat of arbitrary positive temperature.The models can be seen as crystals plugged in some medium and weakly interacting with it.We are interested in the energy transport through the systems when the couplings of the particles with the thermostats go to zero simultaneously with their couplings with each other.We investigate two opposite situations, when resonances of the system of uncoupled particles have Lebesgue measure zero and when they are of full Lebesgue measure.In the first case, using the method of stochastic averaging, we prove that under the limit above behaviour of the local energy of particles on long time intervals and in a stationary regime is given by an autonomous stochastic equation, which does not provide any Hamiltonian energy transport.For the second situation, using the method of resonant stochastic averaging, we show that the limiting dynamics of the local energy is governed by a stochastic effective equation. The latter provides Hamiltonian energy transport between the particles, however, is not an autonomous equation for the local energy. Using this asymptotics, we prove that under the limit above the Hamiltonian energy flow in the system satisfies some relations which resemble the Fourier law and the Green-Kubo formula (however, which are not).Most of results and convergences obtained in the thesis are uniform with respect to the number of particles in the systems, what makes our results relevant from the point of view of statistical physics.
|
156 |
Chaotic transport by a turnstile mechanism in 4D symplectic mapsHübner, Franziska 13 October 2020 (has links)
Many systems in nature, e.g. atoms, molecules and planetary motion, can be described as Hamiltonian systems. In such systems, the transport between different regions of phase space determines some of their most important properties like the stability of the solar system and the rate of chemical reactions. While the transport in lower-dimensional systems with two degrees of freedom is well understood, much less is known for the higher-dimensional case. A central new feature in higher-dimensional systems are transport phenomena due to resonance channels. In this thesis, we clarify the complex geometry of resonance channels in phase space and identify a turnstile mechanism that dominates the transport out of such channels.
To this end, we consider the coupled standard map for numerical investigations as it is a generic example for 4D symplectic maps. At first, we visualize resonance channels in phase space revealing their highly non-trivial geometry. Secondly, we study the transport away from such channels. This is governed by families of hyperbolic 1D-tori and their stable and unstable manifolds. We provide an approach to measure the volume of a turnstile in higher dimensions as well as the corresponding transport. From the very good agreement of the two measurements we conclude that these structures are a suitable generalization of the well-known 2D turnstile mechanism to higher dimensions. / Viele Systeme in der Natur, z.B. Atome, Moleküle und Planetenbewegungen, können als Hamilton'sche Systeme beschrieben werden. In solchen Systemen bestimmt der Transport zwischen verschiedenen Regionen des Phasenraums einige ihrer wichtigsten Eigenschaften wie die Stabilität des Sonnensystems und die Geschwindigkeit chemischer Reaktionen. Während der Transport in niedrigdimensionalen Systemen mit zwei Freiheitsgraden gut verstanden ist, ist für den höherdimensionalen Fall deutlich weniger bekannt. Eine zentrales neues Merkmal von höherdimensionalen Systemen sind Transportphänomene aufgrund von Resonanzkanälen. In dieser Arbeit verdeutlichen wir die komplexe Geometrie von Resonanzkanälen im Phasenraum und identifizieren einen Drehkreuzmechanismus, der den Transport aus einem solchen Kanal heraus dominiert.
Zu diesem Zweck betrachten wir die gekoppelte Standardabbildung für numerische Untersuchungen, da sie ein generisches Beispiel für 4D symplektische Abbildungen ist. Zuerst visualisieren wir Resonanzkanäle im Phasenraum und zeigen ihre höchst nicht-triviale Geometrie. Zweitens untersuchen wir den Transport weg von solchen Kanälen. Dieser wird durch Familien von hyperbolischen 1D-Tori sowie deren stabile und instabile Mannigfaltigkeiten bestimmt. Wir stellen einen Ansatz zur Messung sowohl des eingeschlossenen Volumens in höheren Dimensionen als auch des entsprechenden Transports vor. Aus der sehr guten Übereinstimmung der beiden Messungen schließen wir, dass diese Strukturen eine geeignete Verallgemeinerung des bekannten 2D Drehkreuzmechanismus in höheren Dimensionen sind.
|
157 |
Commande robuste par façonnement d’énergie de systèmes non-linéaires / Robust energy shaping control of nonlinear systemsRomero Velázquez, José Guadalupe 08 February 2013 (has links)
Cette thèse porte sur la conception de commandes robustes pour les systèmes non linéaires, mettant l'accent sur les systèmes mécaniques. Des résultats concluants sont présentés pour résoudre deux situations très abordées dans la théorie du contrôle : 1) La stabilité des systèmes non linéaires perturbés ; 2) Le suivi global de trajectoire dans les systèmes mécaniques en ayant seulement connaissance de la position. Nous avons commencé par donner une méthode de conception des commandes robustes pour assurer une régulation de sortie non passive. En outre, si le système est perturbé (pas appariés), des preuves rigoureuses pour les rejeter sont fournies. Ce résultat est principalement inspiré d'un changement de coordonnées et de l'action intégrale dynamique. Si le scénario à traiter concerne des systèmes mécaniques avec des perturbations variant dans le temps, nous dotons le système de propriétés comme IISS (Integral Input- State Stable) et ISS (Input-State Stable). Ce résultat est obtenu en modifiant la procédure de conception de manière à rejeter les perturbations constantes (pas appariés). Cependant, en raison de la non-linéarité du système, les commandes qui en résultent ont une grande complexité. Pour le même problème, un deuxième et élégant résultat est donné au cas où un changement préalable de variable (impulsions) est réalisé. Finalement, une réponse convaincante au problème de suivi de trajectoire pour les systèmes mécaniques est donnée en tenant compte uniquement des informations de position. Nous résolvons ce problème en deux étapes. Premièrement, quelques modifications sont apportées à la preuve de stabilité d'un observateur de vitesse basée sur la théorie de l'invariance et l’Immersion récemment publié. Notez que ceci est un observateur satisfaisant la convergence exponentielle de vitesse dans les systèmes mécaniques. Deuxièmement et sur la base du changement de coordonnées (impulsions), un contrôleur de suivi avec stabilité exponentielle, tenant compte de la position et de la vitesse, est proposé. De telle sorte qu'avec la combinaison des deux résultats, le suivi de trajectoire exponentielle avec retour de position est donné. / This thesis focuses on the design of robust control for nonlinear systems, mainly on mechanical systems. The results presented are to two situations widely discussed in control theory: 1) The stability of nonlinear systems disturbed; 2) The global tracking trajectory in mechanical systems having only knowledge of the position. We started giving a design method of robust controls to ensure regulation on non-passive output. In addition, if the system is perturbed (constant unmatched), rigorous proof to its rejection is provided. This result is based mainly on change of coordinates and integral dynamic control. When the scenario to deal are mechanical systems with time-varying matched and unmatched, disturbance, the system is endowed with strong properties as IISS (Integral Input-State Stable) and ISS (Input-State Stable). This is achieved based on the design method to rejection of constant disturbances (unmatched). However, due to the nonlinearity of the system, the controllers have a high complexity. For the same problem, a second and elegant result is given making a initial change of coordinate on the momenta variable, such that the controller significantly simplifies, preserving the aforementioned robustness properties. Finally, a convincing answer to the problem of global exponential tracking of mechanical systems is given taking into account only the position information. We solve this problem in two steps. First, some slight variation is presented to the proof of stability of a speed observer based on Immersion and Invariance theory recently published. Note that this is a speed observer satisfying the exponential convergence speed in mechanical systems. Secondly, and based on the change of coordinates (momenta), a globally exponentially stable tracking controller with position and velocity known is proposed. The combination of both results give the first global exponential tracking controller of mechanical systems without velocity measurements.
|
158 |
Fenômeno Fuller em problemas de controle ótimo: trajetórias em tempo mínino de veículos autônomos subaquáticos / Fuller Phenomenon in optimal control problems: minimum time path of autonomous underwater vehicles.Eduardo Oda 03 June 2008 (has links)
As equações do modelo bidimensional de veículos autônomos subaquáticos fornecem um exemplo de sistema de controle não linear com o qual podemos ilustrar propriedades da teoria de controle ótimo. Apresentamos, sistematicamente, como os conceitos de formalismo hamiltoniano e teoria de Lie aparecem de forma natural neste contexto. Para tanto, estudamos brevemente o Princípio do Máximo de Pontryagin e discutimos características de sistemas afins. Tratamos com cuidado do Fenômeno Fuller, fornecendo critérios para decidir quando ele está ou não presente em junções, utilizando para isso uma linguagem algébrica. Apresentamos uma abordagem numérica para tratar problemas de controle ótimo e finalizamos com a aplicação dos resultados ao modelo bidimensional de veículo autônomo subaquático. / The equations of the two-dimensional model for autonomous underwater vehicles provide an example of a nonlinear control system which illustrates properties of optimal control theory. We present, systematically, how the concepts of the Hamiltonian formalism and the Lie theory naturally appear in this context. For this purpose, we briefly study the Pontryagin\'s Maximum Principle and discuss features of affine systems. We treat carefully the Fuller Phenomenon, providing criteria to detect its presence at junctions with an algebraic notation. We present a numerical approach to treat optimal control problems and we conclude with an application of the results in the bidimesional model of autonomous underwater vehicle.
|
159 |
Modelling and control of systems of conservation laws with a moving interface : an application to an extrusion process / Étude des systèmes de lois de conservation à interfaces mobiles : application à un procédé d'extrusionDiagne, Mamadou Lamine 26 June 2013 (has links)
Cette thèse porte sur l’étude des systèmes de lois de conservation couplés par une interface mobile. Un modèle dynamique d’un procédé d’extrusion obtenu à partir des bilans de masse, de taux d’humidité et d’énergie est proposé. Ce modèle exprime le transport de la matière et de la chaleur dans une extrudeuse par des systèmes d’équations hyperboliques définis sur deux domaines complémentaires variant dans le temps. L’évolution des domaines est dictée par une Equation aux Dérivées Ordinaires (EDO) issue du bilan de masse total dans une extrudeuse. Par le principe des applications contractantes l’existence et l’unicité de la solution pour cette classe de système sont prouvées. Le problème de stabilisation de l’interface mobile est aussi abordé en utilisation le formalisme des systèmes à retard. La méthode des caractéristiques permet de représenter le système composé des équations issues du bilan de masse par un système à retard sur l’entrée. Au moyen d’un contrôleur prédictif la position de l’interface est stabilisée autour d’un point équilibre. La dernière partie de ce travail est dédiée à l’étude des systèmes Hamiltoniens à ports frontière couplés par une interface mobile. Ces systèmes augmentés de variables couleur qui sont des fonctions caractéristiques du domaine peuvent s’exprimer comme des systèmes Hamiltoniens à ports frontière / This thesis is devoted to the analysis of Partial Differential Equations (PDEs) which are coupled through a moving interface. The motion of the interface obeys to an Ordinary Differential Equation (ODE) which arises from a conservation law. The first part of this thesis concerns the modelling of an extrusion process based on mass, moisture content and energy balances. These balances laws express heat and homogeneous material transport in an extruder by hyperbolic PDEs which are defined in complementary time-varying domains. The evolution of the coupled domains is given by an ODE which is derived from the conservation of mass in an extruder. In the second part of the manuscript, a mathematical analysis has been performed in order to prove the existence and the uniqueness of solution for such class of systems by mean of contraction mapping principle. The third part of the thesis concerns the transformation of an extrusion process mass balance equations into a particular input delay system framework using characteristics method. Then, the stabilization of the moving interface by a predictor-based controller has been proposed. Finally, an extension of the analysis of moving interface problems to a particular class of systems of conservations laws has been developed. Port-Hamiltonian formulation of systems of two conservation laws defined on two complementary time-varying intervals has been studied. It has been shown that the coupled system is a port-Hamiltonian system augmented with two variables being the characteristic functions of the two spatial domains
|
160 |
Fenômeno Fuller em problemas de controle ótimo: trajetórias em tempo mínino de veículos autônomos subaquáticos / Fuller Phenomenon in optimal control problems: minimum time path of autonomous underwater vehicles.Oda, Eduardo 03 June 2008 (has links)
As equações do modelo bidimensional de veículos autônomos subaquáticos fornecem um exemplo de sistema de controle não linear com o qual podemos ilustrar propriedades da teoria de controle ótimo. Apresentamos, sistematicamente, como os conceitos de formalismo hamiltoniano e teoria de Lie aparecem de forma natural neste contexto. Para tanto, estudamos brevemente o Princípio do Máximo de Pontryagin e discutimos características de sistemas afins. Tratamos com cuidado do Fenômeno Fuller, fornecendo critérios para decidir quando ele está ou não presente em junções, utilizando para isso uma linguagem algébrica. Apresentamos uma abordagem numérica para tratar problemas de controle ótimo e finalizamos com a aplicação dos resultados ao modelo bidimensional de veículo autônomo subaquático. / The equations of the two-dimensional model for autonomous underwater vehicles provide an example of a nonlinear control system which illustrates properties of optimal control theory. We present, systematically, how the concepts of the Hamiltonian formalism and the Lie theory naturally appear in this context. For this purpose, we briefly study the Pontryagin\'s Maximum Principle and discuss features of affine systems. We treat carefully the Fuller Phenomenon, providing criteria to detect its presence at junctions with an algebraic notation. We present a numerical approach to treat optimal control problems and we conclude with an application of the results in the bidimesional model of autonomous underwater vehicle.
|
Page generated in 0.0539 seconds