Spelling suggestions: "subject:"hauptkomponenten""
21 |
Country size, growth and the economic and monetary unionAlouini, Olfa 12 June 2012 (has links)
Der Zweck dieser Arbeit ist es, die Beziehung zwischen die Größe des Landes und das Wachstum auf internationaler Ebene und vergleichsweise in der Wirtschafts-und Währungsunion zu untersuchen und erarbeiten ihre Folgen für das Verhalten der wachstumsorientierte Finanzpolitik. Um ein globales Verständnis des Zusammenhangs zwischen Größe des Landes und das Wachstum in der EWU weiter verfolgen wir einen interdisziplinären Ansatz, einschließlich der makroökonomischen Modellierung (DSGE), Ökonometrie und Analyse der politischen Ökonomie. Die Kombination dieser Untersuchungen schließen wir, dass die Größe des Landes einen Einfluss auf die wirtschaftlichen Strukturen der Nationen, die Auswirkungen ihrer Politik und damit auf ihre Wachstumsdynamik hat. Aus diesem Grund ist es notwendig, die Bedeutung der Größe des Landes und ihre Folgen für die WWU wieder. / The purpose of this dissertation is to investigate the relationship between country size and growth at the international level and comparatively in the Economic and Monetary Union, and to draw up its consequences for the conduct of growth-orientated fiscal policies. To further a global understanding of the link between country size and growth in the EMU, we follow an interdisciplinary approach, including macro-economic modelling (DSGE), econometrics and political economy analysis. Combining these analyses, we conclude that country size has an incidence on the economic structures of nations, the effects of their policies and therefore on their pace of growth. For this reason there is a need to reinstate the importance of country size and its consequences for the EMU.
|
22 |
Odor coding and memory traces in the antennal lobe of honeybeeGalan, Roberto Fernandez 17 December 2003 (has links)
In dieser Arbeit werden zwei wesentliche neue Ergebnisse vorgestellt. Das erste bezieht sich auf die olfaktorische Kodierung und das zweite auf das sensorische Gedaechtnis. Beide Phaenomene werden am Beispiel des Gehirns der Honigbiene untersucht. In Bezug auf die olfaktorische Kodierung zeige ich, dass die neuronale Dynamik waehrend der Stimulation im Antennallobus duftspezifische Trajektorien beschreibt, die in duftspezifischen Attraktoren enden. Das Zeitinterval, in dem diese Attraktoren erreicht werden, betraegt unabhaengig von der Identitaet und der Konzentration des Duftes ungefaehr 800 ms. Darueber hinaus zeige ich, dass Support-Vektor Maschinen, und insbesondere Perzeptronen, ein realistisches und biologisches Model der Wechselwirkung zwischen dem Antennallobus (dem kodierenden Netwerk) und dem Pilzkoerper (dem dekodierenden Netzwerk) darstellen. Dieses Model kann sowohl Reaktionszeiten von ca. 300 ms als auch die Invarianz der Duftwahrnehmung gegenueber der Duftkonzentration erklaeren. In Bezug auf das sensorische Gedaechtnis zeige ich, dass eine einzige Stimulation ohne Belohnung dem Hebbschen Postulat folgend Veraenderungen der paarweisen Korrelationen zwischen Glomeruli induziert. Ich zeige, dass diese Veranderungen der Korrelationen bei 2/3 der Bienen ausreichen, um den letzten Stimulus zu bestimmen. In der zweiten Minute nach der Stimulation ist eine erfolgreiche Bestimmung des Stimulus nur bei 1/3 der Bienen moeglich. Eine Hauptkomponentenanalyse der spontanen Aktivitaet laesst erkennen, dass das dominante Muster des Netzwerks waehrend der spontanen Aktivitaet nach, aber nicht vor der Stimulation das duftinduzierte Aktivitaetsmuster bei 2/3 der Bienen nachbildet. Man kann deshalb die duftinduzierten (Veraenderungen der) Korrelationen als Spuren eines Kurzzeitgedaechtnisses bzw. als Hebbsche "Reverberationen" betrachtet werden. / Two major novel results are reported in this work. The first concerns olfactory coding and the second concerns sensory memory. Both phenomena are investigated in the brain of the honeybee as a model system. Considering olfactory coding I demonstrate that the neural dynamics in the antennal lobe describe odor-specific trajectories during stimulation that converge to odor-specific attractors. The time interval to reach these attractors is, regardless of odor identity and concentration, approximately 800 ms. I show that support-vector machines and, in particular perceptrons provide a realistic and biological model of the interaction between the antennal lobe (coding network) and the mushroom body (decoding network). This model can also account for reaction-times of about 300 ms and for concentration invariance of odor perception. Regarding sensory memory I show that a single stimulation without reward induces changes of pairwise correlation between glomeruli in a Hebbian-like manner. I demonstrate that those changes of correlation suffice to retrieve the last stimulus presented in 2/3 of the bees studied. Succesful retrieval decays to 1/3 of the bees within the second minute after stimulation. In addition, a principal-component analysis of the spontaneous activity reveals that the dominant pattern of the network during the spontaneous activity after, but not before stimulation, reproduces the odor-induced activity pattern in 2/3 of the bees studied. One can therefore consider the odor-induced (changes of) correlation as traces of a short-term memory or as Hebbian reverberations.
|
23 |
Lane Change Prediction in the Urban AreaGriesbach, Karoline 18 July 2019 (has links)
The development of Advanced Driver Assistance Systems and autonomous driving is one of the main research fields in the area of vehicle development today. Initially the research in this area focused on analyzing and predicting driving maneuvers on highways. Nowadays, a vast amount of research focuses on urban areas as well. Driving maneuvers in urban areas are more complex and therefore more difficult to predict than driving maneuvers on highways. The goals of predicting and understanding driving maneuvers are to reduce accidents, to improve traffic density, and to develop reliable algorithms for autonomous driving. Driving behavior during different driving maneuvers such as turning at intersections, emergency braking or lane changes are analyzed.
This thesis focuses on the driving behavior around lane changes and thus the prediction of lane changes in the urban area is applied with an Echo State Network. First, existing methods with a special focus on input variables and results were evaluated to derive input variables with regard to lane change and no lane change sequences. The data for this first analyses were obtained from a naturalistic driving study. Based on theses results the final set of variables (steering angle, turn signal and gazes to the left and right) was chosen for further computations.
The parameters of the Echo State Network were then optimized using the data of the naturalistic driving study and the final set of variables. Finally, left and right lane changes were predicted. Furthermore, the Echo State Network was compared to a feedforward neural network. The Echo State Network could predict left and right lane changes more successful than the feedforward neural network. / Fahrerassistenzsysteme und Algorithmen zum autonomen Fahren stellen ein aktuelles Forschungsfeld im Bereich der Fahrzeugentwicklung dar. Am Anfang wurden vor allem Fahrmanöver auf der Autobahn analysiert und vorhergesagt, mittlerweile hat sich das Forschungsfeld auch auf den urbanen Verkehr ausgeweitet. Fahrmanöver im urbanen Raum sind komplexer als Fahrmanöver auf Autobahnen und daher schwieriger vorherzusagen. Ziele für die Vorhersage von Fahrmanövern sind die Reduzierung von Verkehrsunfällen, die Verbesserung des Verkehrsflusses und die Entwicklung von zuverlässigen Algorithmen für das autonome Fahren. Um diese Ziele zu erreichen, wird
das Fahrverhalten bei unterschiedlichen Fahrmanövern analysiert, wie z.B. beim Abbiegevorgang an Kreuzungen, bei der Notbremsung oder beim Spurwechsel.
In dieser Arbeit wird der Spurwechsel im urbanen Straßenverkehr mit einem Echo State Network vorhergesagt. Zuerst wurden existierende Methoden zur Spurwechselvorhersage bezogen auf die Eingaben und die Ergebnisse bewertet, um danach die spurwechselbezogenen Variableneigenschaften bezüglich Spurwechsel- und Nicht-Spurwechselsequenzen zu analysieren. Die Daten, die Basis für diese ersten Untersuchungen waren, stammen aus einer Realfahrstudie. Basierend auf diesen Resultaten wurden die finalen Variablen (Lenkwinkel, Blinker und Blickrichtung) für weitere Berechnungen ausgewählt.
Mit den Daten aus der Realfahrstudie und den finalen Variablen wurden die Parameter des Echo State Networks optimiert und letztendlich wurden linke und rechte Spurwechsel vorhergesagt. Zusätzlich wurde das Echo State Network mit einem vorwärtsgerichteten neuronalen Netz verglichen. Das Echo State Network konnte linke und rechte Spurwechsel erfolgreicher vorhersagen als das vorwärtsgerichtete neuronale Netz.
|
24 |
Assessment of blind source separation techniques for video-based cardiac pulse extractionWedekind, Daniel, Trumpp, Alexander, Gaetjen, Frederik, Rasche, Stefan, Matschke, Klaus, Malberg, Hagen, Zaunseder, Sebastian 09 September 2019 (has links)
Blind source separation (BSS) aims at separating useful signal content from distortions. In the contactless acquisition of vital signs by means of the camera-based photoplethysmogram (cbPPG), BSS has evolved the most widely used approach to extract the cardiac pulse. Despite its frequent application, there is no consensus about the optimal usage of BSS and its general benefit. This contribution investigates the performance of BSS to enhance the cardiac pulse from cbPPGs in dependency to varying input data characteristics. The BSS input conditions are controlled by an automated spatial preselection routine of regions of interest. Input data of different characteristics (wavelength, dominant frequency, and signal quality) from 18 postoperative cardiovascular patients are processed with standard BSS techniques, namely principal component analysis (PCA) and independent component analysis (ICA). The effect of BSS is assessed by the spectral signal-tonoise ratio (SNR) of the cardiac pulse. The preselection of cbPPGs, appears beneficial providing higher SNR compared to standard cbPPGs. Both, PCA and ICA yielded better outcomes by using monochrome inputs (green wavelength) instead of inputs of different wavelengths. PCA outperforms ICA for more homogeneous input signals. Moreover, for high input SNR, the application of ICA using standard contrast is likely to decrease the SNR.
|
Page generated in 0.0909 seconds