111 |
Deposição e caracterização de filmes finos de GaAs e 'Al IND. 2''O IND. 3' para potencial utilizado em transistoresSantos, Júlio César dos [UNESP] 24 August 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:28Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-08-24Bitstream added on 2014-06-13T20:50:23Z : No. of bitstreams: 1
santos_jc_me_bauru.pdf: 1909289 bytes, checksum: 46f1166eec4b53fcdc6e5fe6a3b31b70 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Neste trabalho foi realizada a deposição através da técnica de evaporação resistiva, de filmes finos de GaAs (arseneto de gálio) e de Al (alumínio) com posterior oxidação deste último, formando 'Al IND. 2''O IND. 3' (óxido de alumínio ou alumina) e a caracterização dos filmes de GaAs e da heteroestrutura formada por 'Al IND. 2''O IND. 3' e GaAs. A confecção do dispositivo combinando estes compostos serviu para a investigação das características relevantes do sistema para potencial aplicação em transistores. O trabalho compreendeu investigação sobre as condições de deposição, e foram avaliadas principalmente as características elétricas dos filmes produzidos individualmente. Os resultados apresentados incluem: resistividade em função da temperatura, corrente-voltagem em função da temperatura, difração de raios-X e transmitância na região do infravermelho. Para caracterização do desempenho do sistema 'Al IND. 2''O IND. 3'/GaAs, um transistor simples foi construído sob um substrato de vidro borossilicato com uma camada de GaAs e outra de 'Al IND. 2''O IND. 3'. Os contatos de fonte, dreno e gate foram feitos de In. Essa estrutura permite a medida da corrente de fuga e a avaliação de outras características do sistema. Neste dispositivo foram avaliadas as características corrente-voltagem em função da temperatura, e também a interação com luz, já que GaAs, por apresentar gap direto, torna-se atraente para aplicações opto-eletrônicas. Assim medidas de elétricas foto-induzidas foram realizadas com excitação com fontes de luz branca. Com o intuito de se avaliar a qualidade dos filmes de GaAs obtidos pela evaporação resistiva, tanto a caracterização estrutural quando elétrica também foram feitas em filmes finos de GaAs depositados por sputtering, de modo a se ter um padrão de comparação. / In this work, the deposition of GaAs (gallium arsenide) and Al (aluminum) thin films is carried out by the resistive evaporation technique. In the latter case, an oxidation of the film is accomplished, leading to 'Al IND. 2''O IND. 3' (alumina) formation. The characterization of GaAs thin films and the heterostructure formed by 'Al IND. 2''O IND. 3' and GaAs is also carried out. The elaboration of the device combining these compounds allows investigating the relevant characteristics of this system to potential application in transistors. The work evolved investigation on the deposition conditions, and the electrical characteristics of the films were also evaluated separately. Results includes: resistivity as function of temperature, X-ray diffraction and near infrared transmittance. For characterization of the performance of the 'Al IND. 2''O IND. 3'/GaAs system, a simple transistor was built on a borosilicate glass substrate, with a 'Al IND. 2''O IND. 3' layer on top of a GaAs layer. The contacts of source, drain and gate were done using In. This structure allows evaluating the leak current and other characteristics of this system. In this device, it was evaluated the current - voltage characteristics and the interaction with light, because GaAs, due to its direct bandgap, become very attractive for opto-electronic applications. The, the photo-induced electrical measurements were done under excitation with white light. Aiming the evaluation of the quality of films deposited by the resistive evaporation technique, electrical as well as structural characterization were also carried out for GaAs thin films deposited by sputtering, in order to have a comparing parameter.
|
112 |
Synthèse d'oligomères et de polymères enrichis en porphyrines pour la conversion de l'énergie solaire / Synthesis of oligomers and polymers doped with porphyrins for solar energy conversionBucher, Léo 20 April 2017 (has links)
Le projet de cette thèse consistait à élaborer de nouveaux matériaux donneurs d’électrons pour les cellules solaires organiques. Cette technologie photovoltaïque émergente en plein essor a d’ores et déjà atteint la limite d’efficacité lui permettant d’être industrialisée et commercialisée à grande échelle. Le faible coût de production des dispositifs photovoltaïques organiques les rendent compétitives vis-à-vis des technologies inorganiques déjà bien implantées. Mais leur plus gros avantage est surement leur légèreté et leurs propriétés mécaniques qui les rendent très souples. Elles devraient donc certainement avoir un rôle majeur à jouer dans le futur en complément des cellules solaires classiques, avec une utilisation pour des applications spécifiques. Nous avons ainsi développé des polymères en utilisant des chromophores réputés pour leurs propriétés photophysiques : les porphyrines, les BODIPY et les dicétopyrrolopyrroles. Ces différentes unités absorbent intensément la lumière, ce qui les rend adéquates pour être utilisées pour la conversion de l’énergie solaire en électricité. En concevant un design original et adapté à cette application, nous avons ainsi obtenu plusieurs nouveaux polymères prometteurs. Nous avons ensuite pu étudier leurs propriétés électrochimiques et électroniques, ainsi que leurs caractéristiques photophysiques. Pour cela nous avons utilisé de nombreux outils (caméra streak, absorption transitoire femtoseconde, etc.) afin de comprendre en détails leur propriétés d’absorption et de luminescence. Ces informations nous ont permis de pouvoir ensuite comprendre leur comportement une fois intégrés dans la couche active des dispositifs photovoltaïques. En effet, le mécanisme de fonctionnement pour la création d’un courant électrique met en jeu des transferts d’électrons ultrarapides (∼50 fs) vers un accepteur d’électron. Il est alors crucial de pouvoir comprendre et contrôler les paramètres pouvant influencer l’efficacité de ces transferts et la stabilisation des charges qui en résultent, pour pouvoir finalement mener à des rendements de conversion de l’énergie lumineuse élevés. / The aim of this thesis was to elaborate new electron donor materials for organic solarcells. This emerging photovoltaic technology is rapidly expanding, and has yet already reached the limit for its large-scale commercialization. The low manufacturing cost of organic photovoltaic devices make then competitive face to well-established inorganic technologies. Their biggest advantage is their weight and their mechanical properties which make them flexible. They should play a key role in future as a complement to classic solar cells, with their use in specific applications. We developed polymers by using different chomophores, well-known for their interesting photophysical properties: the porphyrin, the BODIPY and the diketopyrrolopyrrole. All these units intensively absorb the light, making them perfect candidates to be used to convert sunlight to electricity. By designing appropriate structures for this application, we synthesized several new promising polymers. Afterward, we studied their electrochemical and electronic properties, as well as their photophysics. We used powerful tools (streak camera, transient absorption, etc.) in order to understand in details their absorption and luminescence properties. These results enabled us to further understand their behavior once inside the active layer of photovoltaic devices. Indeed, the mechanism for the electric current creation involves ultrafast electron transfers (∼50 fs) toward electron acceptor. It is of utmost importance to understand and control parameters that could affect the electron transfer efficiency and the resulting charge stabilization, to finally lead to better power conversion efficiencies.
|
113 |
Novel poly(propylene thiophenoimine)-co poly(ethylenedioxythiophene) composites of naphthalene diimide for applications in organic photovoltaic cellsYonkeu, Anne Lutgarde Djoumessi January 2013 (has links)
Magister Scientiae - MSc / Solar energy generation arises as a result of direct conversion of sunlight into electricity a by solar cell; which is mainly made up of a semiconducting material incorporated into a system. It is emerging as one of the most reliable and cost efficient renewable energy sources. Within the solar field, organic bulk heterojunction photovoltaic cells have proved of being able to have a great impact in the future years; mainly due to the easy processability of the active layer and substrate, their cost effectiveness and above all, a good power conversion efficiency associated to the close 3-dimensional interpenetrating network that is generated from blending donor and acceptor semiconducting materials together in a bulk heterojunction active layer. In this research work, we therefore report on the study of a newly developed organic bulk heterojunction active layer based on a blend of a star-copolymer generation 1 poly(propylenethiophenoimine)-co-poly(ethylenedioxythiophene) (G1PPT-co-PEDOT) as donor material with N,N-diisopropylnaphthalene diimide (NDI) as acceptor material. Both materials were chemically synthesized. The synthesis of G1PPT-co-PEDOT started first by
the functionalization of generation 1 poly(propyleneimine) tetramine, G1PPI into G1PPT by condensation reaction in the presence of 2-thiophene carboxaldehyde under Nitrogen gas followed by the copolymerization of G1PPT with ethylene dioxythiophene (EDOT) monomer in the presence of ammonium persulfate, (NH4)2S2O8 as oxidant. On the other hand, NDI was also synthesized via condensation reaction of 1,4,5,8-naphthalene tetracarboxylic dianhydride in the presence of two (2) equivalences of N,N-diisopropylamine at 110 oC overnight in
DMF. Both materials were characterized using FT-IR, UV-Vis spectroscopy, Fluorescence spectroscopy, Voltammetry, HRSEM microscopy and XRD. Based on the cyclic voltammetry and UV-Vis results, we were able to calculate the HOMO, LUMO and band gap energy (Eg) values of both the donor and acceptor to be -4.03 eV, -6.287 eV and 2.25 eV for iii the donor G1PPT-co-PEDOT respectively and -4.302 eV, -7.572 eV and 3.27 eV for the acceptor respectively. From these results, the energy diagram for both donor and acceptor was drawn and it comes out that the separation between the HOMO of the donor and the LUMO of the acceptor ΔEg = 1.985 eV, the ideal value for a good donor-acceptor combination. Also the offset energy that is, the energy difference between the LUMO of the donor and the LUMO of the acceptor is 0.302 eV.
|
114 |
Gallium Phosphide Integrated with Silicon Heterojunction Solar CellsJanuary 2017 (has links)
abstract: It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells.
Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si.
In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM).
The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation during GaP epitaxial growth on Si by MBE were proposed. To achieve high performance of GaP/Si solar cells, different GaP/Si structures were designed, fabricated and compared, including GaP as a hetero-emitter, GaP as a heterojunction on the rear side, inserting passivation membrane layers at the GaP/Si interface, and GaP/wet-oxide functioning as a passivation contact. A designed of a-Si free carrier-selective contact MoOx/Si/GaP solar cells demonstrated 14.1% power conversion efficiency. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
115 |
Investigation of electrical and optical characterisation of HBTs for optical detectionZhang, Yongjian January 2016 (has links)
In this thesis, a detailed study of the electrical and optical characterisations of Heterojuction Bipolar Transistors (HBTs) for optical detection is presented. By comparing both DC and optical characterisations between In0.49Ga0.51P/GaAs Single Heterojuction Bipolar Transistors (SHBTs) and Double Heterojuction Bipolar Transistors (DHBTs), the advantages of using the DHBT as a short wavelength detector are shown. Phenomena related to the base region energy band bending in the DHBT caused by a self-induced effective electric field is discussed and its effects on the performance of the device are elaborated. The use of an eye diagram has been employed to provide requisite information for performance qualification of SHBT/DHBT devices. These give a more detailed understanding compared to conventional S-parameters method. A detailed comparison of In0.49Ga0.51P/GaAs SHBT and DHBT performance using an eye diagram as a functional tool by adopting a modified T-shaped small signal equivalent circuit are given. By adopting this modified T-shaped small signal equivalent circuit, the use of In0.49Ga0.51P/GaAs Double Heterojuction Phototransistors (DHPT) as a short wavelength photodetector is analysed. It is therefore shown that an eye diagram can act as a powerful tool in HBTs/HPTs design optimisations, for the first time in this work. In order to predict the spectral response (SR) and optical characterisations of GaAs-based HPTs, a detailed theoretical absorption model is also presented. The layer dependence of an optical flux absorption profile, along with doping dependent absorption coefficients are taken into account for the optical characterisation prediction. With the aim of eliminating the limitation of current gain as a prerequisite, analytical modelling of SR has been developed by resolving the continuity equation and applying realistic boundary conditions. Then, related physical parameters and a layer structure profile are used to implement simulations. A good agreement with the measured results of the Al0.3Ga0.7As/GaAs HPT is shown validating the proposed theoretical model.
|
116 |
Some Studies On Interface States In GaAs MESFET's & HJFET'sBalakrishnan, V R 07 1900 (has links) (PDF)
No description available.
|
117 |
Étude de dispositifs photovoltaïques à hétérojonctions a-Si˸H/c-Si : caractérisations vs. simulations en régime modulé de structures planaires et modélisations optoélectroniques de nanofils à structure radiale / Study of photovoltaic devices based on a-Si˸H/c-Si heterojunctions : characterizations vs. simulations in modulated regime of planar structures and optoelectrical modeling of radial nanowiresLevtchenko, Alexandra 01 February 2019 (has links)
Dans le contexte de la recherche sur l’amélioration des performances et la réduction des coûts des cellules solaires à base de silicium, nous nous sommes intéréssés dans cette thèse aux hétérojonctions entre le silicium amorphe hydrogéné (a-Si:H) et le silicium cristallin (c-Si). Nous avons étudié d’une part l’application de la technique de mesure du PhotoCourant Modulé (MPC) comme outil de caractérisation de l’interface a-Si:H/c-Si et que nous avons couplé à la technique de mesure de PhotoLuminescence Modulée (MPL) déjà largement utilisée pour étudier la qualité de passivation de l’interface. Nous avons alors caractérisé par ces deux techniques une série d'échantillons composées de (p)a-Si:H/(i)a-Si:H/(n)c-Si d'épaisseur de (i)a-Si:H allant de 2 à 50 nm. Une partie importante de cette étude a été réalisée par simulations numériques en 2D afin d’interpréter nos résultats expérimentaux. Une cohérence dans l'estimation de la densité d'état de défauts à l'interface a-Si:H/c-Si a été obtenue par les deux techniques. Nous avons conçu d’autre part un outil de couplage des simulations électriques et optiques pour le design de cellules à base de nanofils à hétérojonction. Grâce à cet outil nous avons réalisé une étude plus réaliste et plus complète qu'auparavant où ces deux simulations étaient effectuées de manière séparée. Nous montrons notamment comment les conditions sur les contacts électriques des nanofils affectent les performances de la cellule solaire. / In the context of the research on improving performances and reducing costs of silicon-based solar cells, we focused on heterojunctions between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). On the one hand, we studied the application of the Modulated PhotoCurrent technique (MPC) as a tool for characterizing the a-Si:H/c-Si interface and which we coupled to the Modulated PhotoLuminescence technique (MPL) widely used to study the quality of interface passivation. We characterized by these two techiques a serie of samples composed of (p)a-Si:H/(i)a-Si:H/(n)c-Si with a thickness of (i)a-Si:H going from 2 to 50 nm. An important part of this study was made by 2D numerical simulations in order to interpret our experimental results. We showed that both techniques give the same estimation of the density of interface defects between (i)a-Si:H and (n)c-Si. On the other hand, we developped a tool for coupling electrical and optical simulations for the design of nanowire-based solar cells with a radial heterojunction. Formerly, these simulations were most of the time performed separately and therefore were not allowing for a complete study of these kind of structures. We then made a study showing how the conditions of electrical contacts of nanowires affect the performances of these solar cells.
|
118 |
Improving linearity utilising adaptive predistortion for power amplifiers at mm-wave frequenciesValliarampath, J.T. (Joe) 29 July 2014 (has links)
The large unlicensed 3 GHz overlapping bandwidth that is available worldwide at 60 GHz has resulted in renewed interest in 60 GHz technology. This frequency band has made it attractive for short-range gigabit wireless communication. The power amplifier (PA) directly influences the performance and quality of this entire communication chain, as it is one of the final subsystems in the transmitter. Spectral efficient modulation schemes used at 60 GHz pose challenging requirements for the linearity of the PA. To improve the linearity, several external linearisation techniques currently exist, such as feedback, feedforward, envelope elimination and restoration, linear amplification with non-linear components and predistortion.
This thesis is aimed at investigating and characterising the distortion components found in PAs at mm-wave frequencies and evaluating whether an adaptive predistortion (APD) linearisation technique is suitable to reduce these distortion components. After a thorough literature study and mathematical analysis, it was found that the third-order intermodulation distortion (IMD3) components were the most severe distortion components. Predistortion was identified as the most effective linearisation technique in terms of minimising these IMD3 components and was therefore proposed in this research. It does not introduce additional complexity and can easily be integrated with the PA.
Furthermore, the approach is stable and has lower power consumption when compared to the aforementioned linearisation techniques. The proposed predistortion technique was developed compositely through this research by making it a function of the PA’s output power that was measured using a power detector. A comparator was used with the detected output power and the reference voltages to control the dynamic bias circuit of the variable gain amplifier. This provided control and flexibility on when to apply the predistortion to the PA and therefore allowing the linearity of the PA to be optimised. Three-stage non-linear and linear PAs were also designed at 60 GHz and implemented to compare the performance of the APD technique and form part of the hypothesis verification process.
The 130 nm silicon-germanium (SiGe) bipolar and complementary metal oxide semiconductor (BiCMOS) technology from IBM was used for the simulation of the entire APD and PA design and for the fabrication of the prototype integrated circuits (ICs). This technology has the advantage of integrating the high performance, low power intensive SiGe heterojunction bipolar transistors (HBTs) with the CMOS technology. The SiGe HBTs have a high cut-off frequency (fT > 200 GHz), which is ideal for mm-wave PA applications and the CMOS components were integrated in the control logic of the digital circuitry. The simulations and IC layout were accomplished with Cadence Virtuoso. The implemented IC occupies an area of 1.8 mm by 2.0 mm.
The non-linear PA achieves a Psat of 11.97 dBm and an IP1dB of -10 dBm. With the APD technique applied, the linearity of the PA is significantly improved with an IP1dB of -6 dBm and an optimum IMD3 reduction of 10 dB. Based on the findings and results of the applied APD technique, APD reduced intermodulation distortion (especially the IMD3) and is thus suitable to improve the linearity of PAs at mm-wave frequencies. To the knowledge of this author, no APD technique has been applied for PAs at 60 GHz, therefore the contribution of this research will assist future PA designers to characterise and optimise the reduction of the IMD3 components. This will result in improved linear output power from the PA and the use of complex modulation schemes at 60 GHz. / Thesis (PhD)--University of Pretoria, 2014. / Electrical, Electronic and Computer Engineering / PhD
|
119 |
Integration, Stability, and Doping of Mono-Elemental and Binary Transition Metal Dichalcogenide Van der Waals Solids for Electronics and Sensing DevicesMehta, Ravindra K 05 1900 (has links)
In this work, we have explored 2D semiconducting transition metal dichalcogenides (TMDs), black phosphorus (BP), and graphene for various applications using liquid and mechanical exfoliation routes. The topical areas of interest that motivate our work include considering factors such as device integration, stability, doping, and the effect of gasses to modulate the electronic transport characteristics of the underlying 2D materials. In the first area, we have integrated solution-processed transparent conducting oxides (TCOs), specifically indium-doped tin oxide (ITO) with BP, which is a commonly used TCO for solar cell devices. Here we have found surface treatment of glass substrates with a plasma before spin-coating the solution-processed ITO, to be effective in improving coverage and uniformity of the ITO film by promoting wettability and film adhesion. The maximum transmittance obtained was measured to be ~75% in the visible region, while electrical measurements made on BP/ITO heterostructures showed improved transport characteristics compared to the bare ITO film. Within the integration realm, inkjet-printing of BP and MoS2 p-n hetero-junctions on standard ITO glass substrates in a vertical architecture was also demonstrated. To address the issue of stability which some 2D materials such as BP face, we experimented with ionic liquids (ILs) to passivation the hydrophilic surface of BP to minimize its oxidative degradation. The enhanced stability of BP was inferred through Raman spectroscopy and scanning probe microscopy techniques, where no observable changes in the A1g and A2g Raman vibrational modes were observed for the BP films passivated with ILs over time under ambient conditions. On the other hand, a blue-shift in these Raman modes was evident for unpassivated samples. Atomic force microscopy measurements on the unpassivated samples clearly revealed the difference in surface characteristics through localized regions of degradation that intensified with time which was absent in IL passivated BP samples. The electronic device measurements for IL coated BP devices showed a more stabilized Ids−Vds characteristic in the 5.4 K to 335 K temperature range. Prototypical demonstrations of stabilized ILs/BP devices at ambient printed on flexible polyimide substrates were also successfully made. At the same time, doping is one of the essential steps required for the modulation of carrier density and electronic transport in electronic and optoelectronic devices, which is the third topical area we have addressed in this work with semiconducting TMDs. Of the conventional approaches used to dope 3D semiconductors, ion-implantation is commonly adopted but given the ultra-thin nature of 2D materials, this approach is not feasible as it causes severe damage to the delicate crystalline lattice of ultra-thin 2D membranes. Instead, we have used plasma-based doping routes with UV-ozone treatement and solution processing using 1,2 dichloroethane, to characterize the temperature-dependent two-terminal and three-terminal electronic and optoelectronic transport of mechanically exfoliated 2D MoS2 and WSe2. A significant difference was seen in the optoelectronic properties between the two dopants, owing to differences in their respective doping mechanisms and the intrinsic structural attributes of the exfoliated flakes. A significant reduction in barrier height was evident after doping using both techniques in MoS2, while an increase in barrier height after soaking in 1,2 dichloroethane was seen in WSe2. Lastly, in the fourth topical area for sensing devices, we have studied the effect of gas-flow in inkjet-printed and spin-coated graphene and MoS2 to modulate the electronic transport for the 2D materials since their increased surface area is an ideal platform to observe interactions with external stimuli, in this case, in-coming gas species. Here, the chamber pressure and change in current with flow of gas was measured in the steady-state, as well as time-dependent dynamic transport toward nitrogen and carbon dioxide. We observed significant differences in the electrical response of mono-elemental graphene and binary MoS2, owing to differences in microstructure and joule heating response to the ambient gas. In conclusion, the findings obtained from our work will provide an important framework to help guide strategies in further improving integration schemes, stability, doping and sensing behavior driven by the unique structural attributes inherent to 2D materials for high-performance devices in the future.
|
120 |
III-Nitride Transistors for High Linearity RF ApplicationsSohel, Md Shahadat Hasan January 2020 (has links)
No description available.
|
Page generated in 0.0698 seconds