• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • Tagged with
  • 29
  • 29
  • 29
  • 16
  • 16
  • 15
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Slurry coatings from aluminium microparticles on Ni-based superalloys for high temperature oxidation protection / Revêtements élaborés à partir d'une barbotine à base de microparticules d'aluminium destinées à la protection des superalliages base Ni contre l'oxydation à haute température

Rannou, Benoît 20 November 2012 (has links)
En raison de leur bonne résistance mécanique à haute température, les superalliages base nickel sont employés dans les turbines aéronautiques et de production d’énergie. Ils doivent alors être capables de résister aux phénomènes d’oxydation « sèche » intervenant entre 900 et 1500°C. Ces matériaux sont donc protégés par des revêtements à base d’aluminure de nickel (β-NiAl). De plus, dans les sections les plus chaudes des turbines (T>1050°C), une barrière thermique (BT) est ajoutée afin de diminuer l’impact de la température sur le substrat. Dans le cadre du projet de recherche Européen « PARTICOAT », le travail décrit dans cette thèse a porté sur l’élaboration d’un système complet de revêtements protecteurs (BC+BT) à l’aide d’un procédé en une seule étape, à partir d’une barbotine obtenue par dispersion de microparticules d’Al dans une base aqueuse, milieu susceptible de satisfaire aux directives environnementales européennes. Des caractérisations rhéologique et physico-chimique ont montré la stabilité de la barbotine jusqu’à sept jours. Après dépôt de cette dernière par pulvérisation, un traitement thermique adapté a conduit, via la formation intermédiaire d’Al liquide, à l’obtention d’un revêtement d’aluminure de nickel (β-NiAl) comparable à ceux obtenus par les procédés industriels actuels. L’oxydation des particules d’Al permet la formation simultanée d’une « mousse » d’alumine (concept PARTICOAT) superficielle. Après validation des mécanismes réactionnels mis en jeu sur un substrat modèle de nickel pur, l’extrapolation du procédé à différents superalliages base nickel (René N5 (SX), CM-247 (DS), PWA-1483 (SX) et IN-738LC (EQ)) a donné des revêtements présentant différentes compositions et microstructures. Un intérêt particulier a alors été porté sur l’étude de l’influence des éléments d’alliage (Cr, Ta, Ti) et de leur ségrégation au sein du revêtement. Le comportement à haute température des échantillons revêtus a pu être évalué à l’aide de tests d’oxydation isotherme (1000h sous air entre 900 et 1100°C). Il a ainsi été montré que les phénomènes d’oxydation et d’interdiffusion régissent les mécanismes de dégradation. Par ailleurs, l’électrodéposition de cérine préalablement à l’application du procédé de revêtement PARTICOAT a permis de limiter fortement les phénomènes d’interdiffusion et de stabiliser la couche d’aluminure de nickel. / Because of their good mechanical resistance at high temperature, Ni-based superalloys are used for aero-engine and land-based turbines but undergo “dry” oxidation between 900 and 1500°C. These materials are thus coated with nickel-aluminide coatings (BC). An additional thermal barrier coating (TBC) is generally applied in the hottest sections of the turbines (T>1050°C) to lower the impact of the temperature on the substrate. In the framework of the European research programme “PARTICOAT”, this PhD work was focused on the growth mechanisms of a full protective coating system (BC+TBC) in a single step process, using a water-based slurry containing a dispersion of Al micro-particles to satisfy the European environmental directives. The rheological and physico-chemical characterizations showed the slurry stability up to seven days. After depositing the latter by air spraying, a tailored thermal treatment resulted in a nickel-aluminide coating (β-NiAl) similar to the conventional industrial ones but through an intermediate Al liquid phase stage. Simultaneously, the oxidation of the Al micro-particles brought aboutthe formation of a top alumina “foam” (PARTICOAT concept). After a validation step of the mechanisms involved in pure Ni substrate, the extrapolation of the process to several Ni-based superalloys (René N5 (SX), CM-247 (DS), PWA- 1483 (SX) and IN-738LC (EQ)) revealed different coating compositions and microstructures. A particular attention was therefore paid onto the effect of alloying elements (Cr, Ta, Ti) as well as their segregation in the coating. The high temperature behaviour of the coated samples has been studied through isothermal oxidation (1000h in air between 900 and 1100°C) and showed that the oxidation and interdiffusion phenomena ruled the degradation mechanisms. Besides, the electrodeposition of ceria before the application of the PARTICOAT coating allowed to strongly limit interdiffusion phenomena and stabilized the nickel aluminide coating.
12

Oxydation thermique du chrome pur en atmosphère contrôlée : propriétés semiconductrices et structurales de la chromine / Pure chromium thermal oxidation in controlled atmosphere : chromia semiconducting and structural properties

Parsa, Yohan 08 November 2018 (has links)
La durabilité chimique des alliages métalliques résulte notamment de la nature des défauts ponctuels assurant le transport au travers du film d’oxydation formé en surface. L'élaboration de couches d'oxyde modèles par oxydation thermique en pression contrôlée et ALD (Atomic Layer Deposition) et l'étude de leurs propriétés semi conductrices (conditionnées par la nature des défauts ponctuels) devrait permettre une meilleure compréhension des mécanismes de formation de ces couches d'oxyde. / The chemical durability of the metal alloy results in particular from the nature of point defects providing transport through the oxidation film formed on the surface. Models oxide layers, grown by thermal oxidation and Alomic Layer Deposition, will be studied by photoelectrochemistry. This will provide us information about the semiconductive properties of the oxide, determined by the point defect in the oxide layer, and should allow us a better understanding of the formation mechanism of these oxide.
13

Etude de l'influence du platine sur le comportement en oxydation d'un système barrière thermique comprenant une sous-couche NiCoCrAlYTa / Study of platinum effect on the oxidation behaviour of a thermal barrier coating system based on a NiCoCrAlYTa bond coating

Vande Put, Aurélie 04 December 2009 (has links)
La résistance à l'écaillage d'un système barrière thermique est fonction de la composition et microstructure des matériaux constituant le système, ainsi que des procédés utilisés pour son élaboration. Cette thèse s'intéresse à l'influence d'une couche de platine déposée à la surface du dépôt NiCoCrAlYTa (sous-couche) sur le comportement en oxydation du système barrière thermique. Une étude approfondie est d'abord menée afin d'identifier les atouts et points faibles en oxydation cyclique d'un système comprenant un revêtement NiCoCrAlYTa. La formation d'une couche d'oxyde composée non exclusivement d'alumine et l'importante rugosité de la sous-couche, favorisant les défauts au sein de la barrière thermique, accélèrent l'écaillage de la barrière thermique. Parallèlement, la présence de carbures de tantale au sein du dépôt ne suffit pas à stopper le titane qui diffuse depuis le superalliage jusqu'à la couche d'oxyde et dégrade le système. Le platine ayant déjà démontré son effet très bénéfique sur les dépôts aluminures de nickel, il apparaît comme prometteur pour améliorer le comportement en oxydation du revêtement NiCoCrAlYTa. L'étude de son influence débute par une analyse fine de deux sous-couches NiCoCrAlYTa modifié platine : la première comprend un revêtement NiCoCrAlYTa obtenu par co-dépôt électrolytique, la seconde un dépôt NiCoCrAlYTa élaboré par projection plasma sous vide. Cette caractérisation, par diffraction des rayons X et microscopie électronique à balayage et en transmission, met en évidence la présence de martensite en surface du revêtement, conséquence de la diminution de l'activité de l'aluminium par le platine. Elle révèle également la forte influence du procédé utilisé pour l'élaboration du dépôt NiCoCrAlYTa sur la microstructure obtenue après le traitement thermique de diffusion. Des essais d'oxydation isotherme et de préoxydation sont ensuite réalisés sur la sous-couche dont le revêtement NiCoCrAlYTa est élaboré par co-dépôt électrolytique. Les couches d'oxydes formées sont analysées par diffraction des rayons X, spectroscopie Raman et fluorescence. Grâce à l'ajout de platine, qui entraîne l'augmentation de la teneur en aluminium dans la zone externe du revêtement, l'oxydation sélective de l'aluminium est favorisée. Cela se traduit par une diminution de la cinétique d'oxydation et une augmentation de la résistance à l'écaillage de la couche d'oxyde. Cependant, les carbures de tantale se décomposent lors du traitement thermique de diffusion puis lors de l'oxydation, laissant le titane libre de diffuser depuis le superalliage jusqu'à l'oxyde. De l'oxyde de titane est en effet détecté par spectroscopie Raman en petite quantité dans de la couche d'oxyde (avec l'AM3 comme substrat). Un autre point important sur la composition du superalliage est la présence d'élément réactif qui permet de diminuer la croissance de la couche d'oxyde. Concernant les essais de préoxydation, les résultats obtenus indiquent la nécessité d'une faible pression partielle d'oxygène afin de promouvoir la formation d'alumine-a. Le platine, quant à lui, ne favorise pas la formation d'alumine de transition. Des essais d'oxydation cyclique sur des systèmes barrière thermique sont ensuite menés. L'effet bénéfique du platine sur l'oxydation sélective de l'aluminium est confirmé, ce qui entraîne une augmentation de la durée de vie en cyclage. Cependant, la décomposition des carbures de tantale est de nouveau observée. Une diffusion très importante de titane depuis le superalliage jusqu'à l'oxyde est ainsi notée pour les systèmes barrière thermique comprenant une sous-couche modifiée platine avec un dépôt NiCoCrAlYTa obtenu par projection plasma sous vide. Dans le cas de système avec une sous-couche modifiée platine comprenant un dépôt NiCoCrAlYTa élaboré par co-dépôt électrolytique, le problème majeur est la présence de pores en surface et d'une certaine porosité à l'intérieur du revêtement. L'oxydation des pores en surface ainsi que le cyclage thermique provoque la pénétration de l'oxyde puis sa propagation catastrophique dans le revêtement. Les résultats obtenus permettent de dégager les points importants de l'élaboration d'un système barrière thermique. Il est alors recommandé que le superalliage contienne un élément réactif mais peu de titane. Le dépôt NiCoCrAlYTa nécessaire à la fabrication de la sous-couche doit être dense et la préparation de surface, avant et après le dépôt de platine, doit permettre d'obtenir une faible rugosité de surface avant le dépôt de la barrière thermique. Enfin, les paramètres (température, pression partielle d'oxygène, sablage) lors de la première oxydation du système doivent être contrôlés de manière à favoriser la formation d'alumine-a. / The resistance to spallation of a thermal barrier coating system depends on the composition and the microstructure of the materials constituting the system, as well as on the processes used for its manufacturing. This PhD is interested in the influence of a Pt layer deposited on the surface of the NiCoCrAlYTa coating (bond coating) on the oxidation behavior of the thermal barrier coating system. A thorough study is first carried out in order to define the assets and the weak points under cyclic oxidizing conditions of a system composed of a NiCoCrAlYTa coating. The formation of an oxide layer not only composed of alumina and the great roughness of the bond coating, favoring defects within the thermal barrier, speed up the thermal barrier spallation. At the same time, the presence of tantalum carbides within the coating is not sufficient to prevent titanium from diffusing from the bond coating toward the oxide layer and from degrading the system. Platinum having already demonstrated its beneficial effect on nickel aluminide coatings, it seems promising in order to improve the oxidation resistance of the NiCoCrAlYTa coating. The study of its influence starts by a thorough analyses of two Pt-modified NiCoCrAlYTa bond coatings: the first one is composed of a NiCoCrAlYTa coating made by composite electroplating, the second one is composed of a NiCoCrAlYTa coating manufactured by vacuum plasma spray. This characterization, done using X-ray diffraction and secondary and transmission electron microscopy, highlights the presence of martensite at the coating surface, consequence of the decrease in the aluminium activity by platinum. It also reveals the strong influence of the process used to manufacture the NiCoCrAlYTa coating on the microstructure obtained after diffusion heat treatment. Preoxidation and isothermal oxidation tests are then carried out on the systems for which the NiCoCrAlYTa coating is made by composite electroplating. The oxide layers that formed are analyzed by X-ray diffraction, Raman spectroscopy and fluorescence. With Pt addition, that leads to an increase in the aluminium concentration in the external part of the coating, the selective oxidation of aluminium is favored. This results in a decrease in the oxidation kinetics and an increase in the resistance to spallation of the oxide layer. However, tantalum carbides decompose during the diffusion heat treatment and then during the oxidation, making the titanium free to diffuse from the superalloy toward the oxide. Indeed, titanium oxide is identified in small quantity in the oxide layer by Raman spectroscopy (with AM3 as substrate). Another relevant point on the superalloy composition is the presence of reactive elements that leads to a decrease in the oxide layer growth. Concerning the preoxidation tests, the obtained results indicate the necessity of a low oxygen partial pressure so as to promote the a-alumina formation. As for platinum, it does not favor the formation of transient alumina. Cyclic oxidation tests on thermal barrier coating systems are then carried out. The beneficial effect of platinum on the selective oxidation of aluminum is confirmed, that leads to longer lifetimes under thermal cycling. However, the tantalum carbides decomposition is observed once again. A great titanium diffusion from the superalloy toward the oxide is noticed for the thermal barrier coating systems composed of a platinum modified bond coating with a NiCoCrAlYTa deposit made by vacuum plasma spraying. In the case of systems composed of a Pt modified bond coating with a NiCoCrAlYTa deposit manufactured by composite electroplating, the main issue is the presence of pores at the surface and of a porosity within the coating. The pores oxidation at the surface as well as the thermal cycling result in the oxide penetration and then its disastrous propagation within the coating. The obtained results reveal the relevant points concerning the manufacturing of thermal barrier coating systems. It is recommended to use a reactive element containing superalloy that has very little titanium. The NiCoCrAlYTa coating required for the bond coating manufacturing has to be dense and the surface preparation, before and after the Pt deposit, has to lead to a surface with a low roughness before the deposition of the thermal barrier coating. Finally, the parameters during the first oxidation of the system (temperature, oxygen partial pressure, grit blasting), has to be done in order to favor a-alumina formation.
14

Etude et développement de barrière de diffusion pour les sous-couches de système barrière thermique / Study and development of new coatings including a diffusion barrier for application on nickel based superalloys gas turbine blades

Cavaletti, Eric 24 November 2009 (has links)
A haute température, l’interdiffusion entre un superalliage et son revêtement protecteur (ß-NiAl ou ß- NiPtAl) dégrade à la fois la protection contre l’oxydation, par modification de la composition chimique du revêtement, et la microstructure du superalliage (3ième et 4ième générations) par formation de Zones de Réaction Secondaires (SRZ). Le but de cette étude a donc été (1) de développer des barrières de diffusion (BD) constituées d’une dense précipitation de phases a-W après traitement sous vide (BD simple) ou chromisation en phase vapeur (BD enrichie en chrome) (2) de mettre au point une méthode pour en étudier l’efficacité. Des mesures de concentration chimique (à partir de cartographies spectrales EDS), couplées à des ajustements des comportements en oxydation cyclique en utilisant le modèle « p-kp », et le développement d’un modèle « p-kp-ß » ont permis de montrer l’efficacité de la BD selon sa composition et la durée de vieillissement. Pour des longues durées de vieillissement, l’efficacité de la BD se réduit par la dissolution des précipités d’a-W dans les phases y’ et y formées à cause de la dégradation des propriétés protectrices du revêtement ß NiPtAl (augmentation de l’écaillage de l’oxyde formé et de la cinétique d’oxydation). Plusieurs causes probables de cette dégradation ont pu être déterminées, soit dues aux procédés (pollution au soufre) soit liées à la mise en place de la BD : augmentation de la transformation martensitique, enrichissement en tungstène et présence de précipités d’alpha chrome. Enfin, il a été montré que si l’initiation des SRZ est modifiée par l’ajout de la BD, leur cinétique de propagation ne l’est pas et est essentiellement dépendante de la composition de l’alliage. Un modèle de propagation des SRZ décrivant les évolutions chimiques locales de part et d’autres de l’interface « SRZ / superalliage » a été proposé. L’ajout de chrome à la BD permet d’inhiber la formation des SRZ, une couche riche en phases TCP remplace alors la SRZ. / At high temperature, interdiffusion between a superalloy and its protective coating (ß-NiAl or ß- NiPtAl) degrades the oxidation protection by modifying the chemical composition of the coating. It also degrades the 3rd et 4th generation superalloy microstructure due to the formation of Secondary Reaction Zones (SRZ). As a consequence, the aim of this study was (1) to develop diffusion barriers (DB) composed of a dense precipitation of a-W phases after a thermal treatment under vacuum (simple DB) or a vapour phase chromisation (Cr enriched DB), (2) to develop a method for quantifying the DB efficiency. Chemical concentration measurements (with EDS spectral maps) coupled with the « p-kp » modelling of the cyclic oxidation kinetics, and the development of the model « p-kp-ß » have permitted to study DB efficiency as a function of its composition and its high temperature ageing. For long ageing duration, the efficiency of the DB is reduced. Indeed, it is shown that the DB degrades the protection character of the ß-NiPtAl by increasing the oxide scale spallation and of its growth kinetic. This, in turns, accelerates the ß to y’ and y phases transformation and then increases the a-W precipitates dissolution. Some likely causes of this degradation have been determined, either due to the process (sulphur pollution) or intrinsic of the DB addition (increase of the martensitic transformation, enrichment in tungsten and a-Cr formation in the coating). Finally, it has been proved that DB addition modifies the SRZ initiation but not their propagation kinetic, which only depends on the superalloy local composition. A SRZ propagation model which describes local chemical evolutions on both sides of the « SRZ / superalloy » interface was proposed. The addition of chromium to the DB permits to inhibit the SRZ formation. In this case, a layer rich in TCP platelets replaces the SRZ.
15

Corrosion behaviour of aluminised steel and conventional alloys in simulated aluminium smelting cell environments

Xu, Nan, Materials Science & Engineering, Faculty of Science, UNSW January 2002 (has links)
Aluminium smelting is a high temperature electrometallurgical process, which suffers considerable inefficiencies in power utilization and equipment maintenance. Aluminium smelting cell works in the extreme environments that contain extraordinarily aggressive gases, such as HF, CO and SO2. Mild steel used as a structural material in the aluminium industry, can be catastrophically corroded or oxidized in these conditions. This project was mainly concerned with extending the lifetime of metal structures installed immediately above the aluminium smelting cells. An aluminium-rich coating was developed on low carbon steel A06 using pack cementation technique. Yttria (Y2O3) was also used to improve the corrosion resistance of coating. Kinetics of the coating formation were studied. XRD, FESEM and FIB were employed to investigate the phase constitution and the surface morphology. Together with other potentially competitive materials, aluminium-rich coating was evaluated in simulated plant environments. Results from the long time (up to 2500h) isothermal oxidation of materials at high temperature (800??C) in air showed that the oxidation resistance of coated A06 is close to that of stainless steel 304 and even better than SS304 in cyclic oxidation tests. Coated A06 was also found to have the best sulfidation resistance among the materials tested in the gas mixture contains SO2 at 800??C. Related kinetics and mechanisms were also studied. The superior corrosion resistance of the coated A06 is attributed to the slow growing alpha-Al2O3 formed. Low temperature corrosion tests were undertaken in the gas mixtures containing air, H2O, HCl and SO2 at 400??C. Together with SS304 and 253MA, coated A06 showed excellent corrosion resistance in all the conditions. The ranking of the top three materials for corrosion resistance is: 253MA, coated A06 and SS304. It is believed that aluminised A06 is an ideal and economical replacement material in the severe corrosive aluminium smelting cell environment.
16

Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC

Kupkovits, Robert Anthony 08 April 2009 (has links)
Due to the extreme operating conditions present in the combustion sections of gas turbines, designers have relied heavily on specialized engineering materials. For blades, which must retain substantial strength and resistance to fatigue, creep, and corrosion at high temperatures, directionally-solidified (DS) nickel-base superalloys have been used extensively. Complex thermomechanical loading histories makes life prediction for such components difficult and subjective. Costly product inspection and refurbishment, as well as capital expense required in turbine forced outage situations, are significant drains on the resources of turbine producers. This places a premium on accurate endurance prediction as the foundation of viable long-term service contracts with customers. In working towards that end, this work characterizes the behavior of the blade material CM247LC DS subjected to a variety of in-phase (IP) and out-of phase (OP) loading cycles in the presence of notch stress concentrations. The material response to multiaxial notch effects, highly anisotropic material behavior, time-dependent deformation, and waveform and temperature cycle characteristics is presented. The active damage mechanisms influencing crack initiation are identified through extensive microscopy as a function of these parameters. This study consisted of an experimental phase as well as a numerical modeling phase. The first involved conducting high temperature thermomechanical fatigue (TMF) tests on both smooth and notched round-bar specimens to compile experimental results. Tests were conducted on longitudinal and transverse material grain orientations. Damage is characterized and conclusions drawn in light of fractography and microscopy. The influences of microstructure morphology and environmental effects on crack initiation are discussed. The modeling phase utilized various finite element (FE) simulations. These included an anisotropic-elastic model to capture the purely elastic notch response, and a continuum-based crystal visco-plastic model developed specifically to compute the material response of a DS Ni-base superalloy based on microstructure and orientation dependencies. These FE simulations were performed to predict and validate experimental results, as well as identify the manifestation of damage mechanisms resulting from thermomechanical fatigue. Finally, life predictions using simple and complex analytical modeling methods are discussed for predicting component life at various stages of the design process.
17

Corrosion behaviour of aluminised steel and conventional alloys in simulated aluminium smelting cell environments

Xu, Nan, Materials Science & Engineering, Faculty of Science, UNSW January 2002 (has links)
Aluminium smelting is a high temperature electrometallurgical process, which suffers considerable inefficiencies in power utilization and equipment maintenance. Aluminium smelting cell works in the extreme environments that contain extraordinarily aggressive gases, such as HF, CO and SO2. Mild steel used as a structural material in the aluminium industry, can be catastrophically corroded or oxidized in these conditions. This project was mainly concerned with extending the lifetime of metal structures installed immediately above the aluminium smelting cells. An aluminium-rich coating was developed on low carbon steel A06 using pack cementation technique. Yttria (Y2O3) was also used to improve the corrosion resistance of coating. Kinetics of the coating formation were studied. XRD, FESEM and FIB were employed to investigate the phase constitution and the surface morphology. Together with other potentially competitive materials, aluminium-rich coating was evaluated in simulated plant environments. Results from the long time (up to 2500h) isothermal oxidation of materials at high temperature (800??C) in air showed that the oxidation resistance of coated A06 is close to that of stainless steel 304 and even better than SS304 in cyclic oxidation tests. Coated A06 was also found to have the best sulfidation resistance among the materials tested in the gas mixture contains SO2 at 800??C. Related kinetics and mechanisms were also studied. The superior corrosion resistance of the coated A06 is attributed to the slow growing alpha-Al2O3 formed. Low temperature corrosion tests were undertaken in the gas mixtures containing air, H2O, HCl and SO2 at 400??C. Together with SS304 and 253MA, coated A06 showed excellent corrosion resistance in all the conditions. The ranking of the top three materials for corrosion resistance is: 253MA, coated A06 and SS304. It is believed that aluminised A06 is an ideal and economical replacement material in the severe corrosive aluminium smelting cell environment.
18

Étude de l'oxydation catastrophique de l'acier 304L : mécanismes et effet d'une prédéformation / Study of breakaway oxidation of 304 L steel : mechanisms and the effect of cold work

Col, Audrey 14 November 2016 (has links)
Pour assurer une bonne résistance à l’oxydation à haute température, les couches d’oxydes thermiques formée sur les aciers inoxydables, doivent rester fines, riches en chrome et adhérentes à leur substrat métallique. Lorsque les aciers inoxydables sont soumis à des conditions sévères de températures ou d’atmosphères, l’oxydation catastrophique entraîne la croissance rapide de nodules d’oxydes de fer non protecteurs au détriment de la couche d’oxyde riche en Cr. Cette étude s’est intéressée aux différents mécanismes mis en jeu dans la perte du caractère protecteur des couches d’oxydes, dans le développement des nodules d’oxydes de fer, ainsi que dans la formation de zones d’oxydation interne. L’étude de la morphologie et de la composition des oxydes formés à l’aide de cartographie spectrale Raman ainsi que de cartographies MET et EBSD ont permis de proposer un mécanisme de formation de la zone d’oxydation interne, qui repose en partie sur l’évolution de la composition d’une couche d’oxyde « bordure » qui se forme le long des joints de grains du métal sous-jacent lors de l’oxydation. Cette étude a également démontré qu’une prédéformation avant oxydation améliore la durabilité des aciers en favorisant la formation d’une couche protectrice dès les premiers instants de l’oxydation. Lorsqu’elle survient, l’oxydation catastrophique reste localisée alors que sans prédéformation un régime protecteur n’est jamais atteint à 850 °C pour l’acier austénitique 304L. / To provide good resistance to oxidation at high temperature, the oxide layers formed on stainless steels must stay thin, rich in chromium and adhere to their metallic substrate. When the stainless steels operate at atmospheres or temperatures that are too severe, breakaway oxidation triggers the quick growth of Fe-rich oxide nodules, which are non-protective, instead of the Cr-rich layer. This study focuses on the different mechanisms that lead to the loss of the protective characteristic of the oxide layer, to the growth of the iron oxides, and in the formation of internal oxidation zones. The study of the morphology and composition of the oxides formed, along with Raman spectroscopy and TEM and EBSD mappings, allowed to propose a mechanism for the formation of the internal oxidation zone. This mechanism relies in part on the formation of a "boundary" oxide layer, that forms along the grain boundaries of the underlying metal during oxidation. This study also showed that a deformation prior to oxidation improves the durability of the steels by encouraging the formation of a protective layer during the first stages of the oxidation. When it starts, breakaway oxidation stays localized while with no deformation, a protective regime is never reached at 850 °C for austenitic stainless steel 304L.
19

Étude de la sublimation du chrome lors de l’oxydation haute température de l’alliage AISI 441 et recherche de solutions de protection / High temperature oxidation and volatilisation of chromium from AISI 441 ferritic steel in humidified atmosphere and its protection

Wongpromrat, Wichitra 08 October 2015 (has links)
Les aciers inoxydables ferritiques sont actuellement les meilleurs candidats pour répondre au cahier des charges des matériaux destinés aux interconnexions de piles à combustibles à oxyde solide (SOFC acronyme anglo-saxon pour Solid Oxide Fuel Cell). Cependant, du coté du compartiment cathodique de ces piles, le phénomène de sublimation du chrome à haute température conduit à des dégradations importantes, réduisant ainsi la durée de vie en service des SOFC. Les objectifs de ce travail de thèse sont (i) d'étudier le phénomène de sublimation du chrome sur l'acier inoxydable ferritique AISI 441 et (ii) de rechercher le ou les moyen(s) d'atténuer cette même sublimation. Sur le deuxième point, des méthodes de protection ont été mises en œuvre, en particulier avec le dépôt de films minces de spinelle Mn-Co obtenues via un procédé de galvanoplastie ou bien encore en procédant à des pré-oxydations des alliages dans des atmosphères contrôlées de type argon impur ou mélanges gazeux équimolaires CO / CO2 (250 ° C et 850 ° C, pour une durée totale de 3 h).Concernant l'étude de la sublimation du chrome, des essais d'oxydation simulant les conditions de service ont été conduites dans des mélanges gazeux : 5% de O2 dans H2O à 800 °C pendant 96 h. A vitesse de gaz oxydants faible, de 1 à 3 cm / s, la sublimation du chrome est limitée par un phénomène de diffusion dans la phase gazeuse de l'espèce volatile oxo-hydroxyde de chrome. A vitesse plus élevée, de 3 à 10 cm / s, la sublimation du chrome semble limitée par un phénomène interfacial. La vitesse de sublimation apparait indépendante de la rugosité de surface des échantillons, elle même variant selon la préparation des échantillons. Du point de vue de la caractérisation morphologique des couches d'oxydation thermiques obtenues, sur les surfaces de plus forte rugosité (surface industrielle), nous avons noté le développement de nodules riches en titane et en niobium avec une partie externe et une autre interne. Dans le substrat, des phases de lave de type Fe2Nb ont été observées le long des joints de grain métalliques.Dans une deuxième partie, la sublimation du chrome a été étudiée sur échantillons revêtus ou pré-oxydés. Les films minces de spinelle Mn-Co ne conduisent pas à l'abaissement de la vitesse de sublimation du chrome et sont donc pas protecteurs. L'adhérence de ces revêtements est de mauvaise qualité. Les couches présentent de nombreuses fissures. La pré-oxydation conduit quant à elle à une réduction considérable (jusqu'à un facteur 10) de la vitesse de sublimation du chrome (sauf dans le cas de la pré-oxydation dans l'argon à 850 °C). La formation d'un film riche en fer obtenu à basse température (250 °C) peut expliquer cette réduction par l'établissement d'une barrière de diffusion. Cette même réduction est cependant surprenante sur les films riches en chrome obtenus par pré-oxydation à 850 °C dans CO / CO2. Nous proposons dans ce travail une interprétation originale basée sur les différences de nature semi-conductrice des films de chromine formées à haute pression d'oxygène (proche de l'atmosphère) et identifiés comme étant de type p par rapport à ceux obtenus à basse pression (dans CO/CO2) qui sont connu pour être de type n. Après l'oxydation à haute température de 96 heures, tous les échantillons préalablement pré-oxydés ont été observés comme étant composés d'oxyde de chrome et d'un spinelle Mn-Cr.Au terme de ce travail de thèse, il peut être conclu que la pré-oxydation de l'alliage 441 à basse température (250 °C) dans l'argon ou le mélange CO/CO2 ou encore à plus haute température (850 °C) dans le mélange CO/CO2 sont des traitements qui conduisent à l'abaissement de la vitesse de sublimation du chrome et par voie de conséquence à l'amélioration de la tenue de cet alliage en condition d'oxydation dans le compartiment cathodique des SOFC. / Ferritic stainless steels are the most attractive materials that are able to fulfil SOFC(Solid Oxide Fuel Cell) interconnect properties. However, in cathodic SOFC condition, Crvolatilisation from ferritic steels leads to degradations of interconnect and cathode materialsand shorter service lifetime of SOFC. The objectives of this work are (i) to study Crvolatilisation from AISI 441 ferritic stainless steel and (ii) to find the way out to suppress Crvolatilisation. The Cr volatilisation protective methods used in this work were coating withMn-Co spinel by an electroplating method and preoxidation in the condition of Ar or CO/CO2at either 250°C or 850°C, for 3 h. Cr volatilisation experiments were performed in 5%H2O inO2 at 800°C for 96 h. According to the results, it can be concluded that the preoxidation ofthe AISI 441 in Ar or CO/CO2 at low temperature (250°C) or in the CO/CO2 at a highertemperature (850°C) are treatments that lead to lowering the sublimation rate of the Cr andimprovement in the oxidation resistance of this alloy in the cathodic compartment of theSOFC.
20

Elaboration par Spark Plasma Sintering et caractérisation de composites et multi-couches zircone yttrié/MoSi2(B) pour application barrière thermique auto-cicatrisante / Elaboration by Spark Plasma Sintering and characterization of yttria partially stabilized zirconia/MoSi2(B) composites and multi-layer systems for self-healing thermal barrier coatings

Nozahic, Franck 28 November 2016 (has links)
La réparation des revêtements barrières thermiques endommagés par fissuration entraine des coûts de maintenance très élevés. Dans cette étude, qui s’inscrit dans le cadre du projet Européen FP7-SAMBA, il a été proposé d’utiliser des particules de MoSi2(B), revêtues d’une couche d’alumine, comme agent cicatrisant. L’oxydation de celles-ci doit entrainer la formation de silice amorphe qui s’écoule dans la fissure puis réagit avec la barrière thermique en zircone yttriée pour former du zircon. Cette étude traite dans un premier temps de l’élaboration par Spark Plasma Sintering (SPS) de composites modèles composés de zircone yttriée et de particules de MoSi2(B) non revêtues. Les propriétés mécaniques (ténacité, dureté, module d’Young) et thermiques (conductivité thermique, coefficient de dilatation) de ces composites ont été déterminées. Les travaux se sont ensuite orientés vers l’étude du comportement en oxydation cyclique à 1100 °C sous air de ces composites par thermogravimétrie cyclique. La modélisation de l’oxydation de ces composites mais aussi de systèmes multi-couches MoSi2(B)/YPSZ modèles a permis de déterminer les mécanismes et les cinétiques de formation de la silice et du zircon. Une augmentation significative des cinétiques de formation de ces oxydes a été observée lorsque le bore est ajouté dans le MoSi2 ce qui peut être potentiellement très bénéfique pour la cicatrisation des fissures. L'utilisation du procédé SPS a permis de réaliser des systèmes barrières thermiques auto-cicatrisants sur substrats en superalliages à base de nickel revêtus à partir de zircone yttriée et de particules de MoSi2(B) elles-mêmes revêtues d’une couche d’alumine. La pré-oxydation des substrats revêtus favorise la croissance d’une couche d’alumine qui empêche la formation de siliciures par réaction entre les particules et la sous-couche. Ces revêtements présentent une bonne résistance à l’endommagement en cyclage thermique. Les observations post-mortem de ces systèmes mettent en évidence la cicatrisation locale de fissures par formation de silice et de zircon. Bien qu’il ne soit pas possible aujourd’hui de dire si la présence de ces particules augmente ou non la durée de vie de la barrière thermique, par manque de systèmes de référence, ces observations très encourageantes démontrent expérimentalement la validité du concept d’auto-cicatrisation des barrières thermiques proposé dans le cadre de ce projet. / Repair of thermal barrier coatings (TBC) systems damaged by cracking leads to significant maintenance costs. In this project (FP7-SAMBA), it was proposed to use MoSi2(B) particles, coated with an alumina shell, as healing agent for TBCs. Healing particles intercepted by cracks will oxidize preferentially, leading to the formation of amorphous SiO2, which flows into cracks and subsequently reacts with the TBC leading to the formation of a load bearing ZrSiO4 phase. In this study model composite materials were prepared from mixtures of yttria partially stabilized zirconia (YPSZ) and uncoated MoSi2(B) particles by using Spark Plasma Sintering (SPS) technique. Mechanical (toughness, hardness, Young modulus) and thermal (conductivity, coefficient of thermal expansion) properties of these materials were determined. Then, cyclic thermogravimetry analysis (CTGA) was used to study the oxidation behavior of these materials at 1100 °C in air. Kinetics of silica and zircon formations were determined through modelling of the oxidation of composite materials but also the oxidation of multi-layer YPSZ/MoSi2(B) materials. Boron addition was shown to significantly increase silica and zircon formation rates which could be very beneficial for the healing of the cracks. Then, SPS technique was used to sinter self-healing thermal barrier coatings on bond coated Ni-based superalloys from mixtures of YPSZ and Al2O3-coated MoSi2(B) particles. The pre-oxidation of coated substrates was shown to prevent the detrimental formation of silicides by the reaction of MoSi2(B) particles and the bond coat. Good results were obtained upon thermal cycling and post-mortem observations highlight local healing of cracks. At this time, it is too early to quantify the potential effect of the particles on the TBC lifetime due to a lack of reference systems and statistics. However, these observations demonstrate, experimentally, the validity of the self-healing mechanism proposed in the framework of this project.

Page generated in 0.1697 seconds