• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 281
  • 116
  • 69
  • 46
  • 19
  • 12
  • 10
  • 8
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 652
  • 149
  • 119
  • 98
  • 83
  • 77
  • 66
  • 53
  • 51
  • 42
  • 40
  • 38
  • 38
  • 37
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Points algébriques de hauteur bornée / Algebraic points of bounded height

Le Rudulier, Cécile 31 October 2014 (has links)
L'étude de la répartition des points rationnels ou algébriques d'une variété algébrique selon leur hauteur est un problème classique de géométrie diophantienne. Dans cette thèse, nous nous intéresserons au cardinal asymptotique de l'ensemble des points algébriques de degré fixé et de hauteur bornée d'une variété lisse de Fano définie sur un corps de nombres, lorsque la borne sur la hauteur tend vers l'infini. En particulier nous montrerons que cette question peut-être reliée à la conjecture de Batyrev-Manin-Peyre, c'est-à-dire le cas des points rationnels, sur un schéma de Hilbert ponctuel. Nous en déduisons ainsi la distribution des points algébriques de degré fixé d'une courbe rationnelle. Lorsque la variété de départ est une surface lisse de Fano, notre étude montre que les schémas de Hilbert associés fournissent, sous certaines conditions, de nouveaux contre-exemples à la conjecture de Batyrev-Manin-Peyre. Néanmoins, pour deux surfaces que nous étudions en détail, les schémas de Hilbert associés vérifient une version légèrement affaiblie de la conjecture de Batyrev-Manin-Peyre. / The study of the distribution of rational or algebraic points of an algebraic variety according to their height is a classic problem in Diophantine geometry. In this thesis, we will be interested in the asymptotic cardinality of the set of algebraic points of fixed degree and bounded height of a smooth Fano variety defined over a number field, when the bound on the height tends to infinity. In particular, we show that this can be connected to the Batyrev-Manin-Peyre conjecture, i.e. the case of rational points, on some ponctual Hilbert scheme. We thus deduce the distribution of algebraic points of fixed degree on a rational curve. When the variety is a smooth Fano surface, our study shows that the associated Hilbert schemes provide, under certain conditions, new counterexamples to the Batyrev-Manin-Peyre conjecture. However, in two cases detailed in this thesis, the associated Hilbert schemes satisfie a slightly weaker version of the Batyrev-Manin-Peyre conjecture.
262

Modèle local des schémas de Hilbert-Siegel de niveau Г₁(p) / Local model of Hilbert-Siegel moduli schemes in Г₁(p)-level

Liu, Shinan 28 September 2018 (has links)
Dans cette thèse, nous étudions la mauvaise réduction de variétés de Shimura. Plus précisément, nous construisons un modèle local des schémas de Hilbert-Siegel de niveau Г₁(p) sur Spec Zq lorsque p est non-ramifié dans le corps totalement réel, où q est le cardinal résiduel au-dessus de p. Notre outil principal est une variante sur le petit topos de Zariski du complexe de Lie anneau-équivariant Aℓv_G défini par Illusie dans sa thèse, où A est un anneau commutatif et G est un schéma en A-modules.Nous montrons aussi une compatibilité entre le complexe de Lie de G équivariant par l’anneau A, et celui équivariant par le monoïde multiplicatif sous-jacent de A.Ce complexe nous permet de calculer le complexe de Lie Fq-équivariant d’un schéma en groupes de Raynaud, donc de relier le modèle entier et le modèle local. / In this thesis, we study the bad reduction of Shimura varieties. More precisely, we construct a local model of Hilbert-Siegel moduli schemes in level Г₁(p) over Spec Zq when p is unramified in the totally real field, where q is the residue cardinality over p. Our main tool is a variant over the small Zariski topos of the ring-equivariant Lie complex Aℓv_G defined by Illusie in his thesis, where A is a commutative ringand G is a scheme of A-modules. We also prove a compatibility result between thering-equivariant Lie complex and the Lie complex equivariant by the multiplicative monoid underlying this ring. With this complex, we calculate the Fq-equivariant Lie complex of a Raynaud group scheme, then relate the integral model and the local model.
263

Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice

Liechty, Karl Edmund 09 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this dissertation the partition function, $Z_n$, for the six-vertex model with domain wall boundary conditions is solved in the thermodynamic limit in various regions of the phase diagram. In the ferroelectric phase region, we show that $Z_n=CG^nF^{n^2}(1+O(e^{-n^{1-\ep}}))$ for any $\ep>0$, and we give explicit formulae for the numbers $C, G$, and $F$. On the critical line separating the ferroelectric and disordered phase regions, we show that $Z_n=Cn^{1/4}G^{\sqrt{n}}F^{n^2}(1+O(n^{-1/2}))$, and we give explicit formulae for the numbers $G$ and $F$. In this phase region, the value of the constant $C$ is unknown. In the antiferroelectric phase region, we show that $Z_n=C\th_4(n\om)F^{n^2}(1+O(n^{-1}))$, where $\th_4$ is Jacobi's theta function, and explicit formulae are given for the numbers $\om$ and $F$. The value of the constant $C$ is unknown in this phase region. In each case, the proof is based on reformulating $Z_n$ as the eigenvalue partition function for a random matrix ensemble (as observed by Paul Zinn-Justin), and evaluation of large $n$ asymptotics for a corresponding system of orthogonal polynomials. To deal with this problem in the antiferroelectric phase region, we consequently develop an asymptotic analysis, based on a Riemann-Hilbert approach, for orthogonal polynomials on an infinite regular lattice with respect to varying exponential weights. The general method and results of this analysis are given in Chapter 5 of this dissertation.
264

Generic Distractions and Strata of Hilbert Schemes Defined by the Castelnuovo-Mumford Regularity

Anna-Rose G Wolff (13166886) 28 July 2022 (has links)
<p>Consider the standard graded polynomial ring in $n$ variables over a field $k$ and fix the Hilbert function of a homogeneous ideal. In the nineties Bigatti, Hulett, and Pardue showed that the Hilbert scheme consisting of all the homogeneous ideals with such a Hilbert function contains an extremal point which simultaneously maximizes all the graded Betti numbers. Such a point is the unique lexsegment ideal associated to the fixed Hilbert function.</p> <p> For such a scheme, we consider the individual strata defined by all ideals with Castelnuovo-Mumford regularity bounded above by <em>m</em>. In 1997 Mall showed that when <em>k </em>is of characteristic 0 there exists an ideal in each nonempty strata with maximal possible Betti numbers among the ideals of the strata. In chapter 4 of this thesis we provide a new construction of Mall's ideal, extend the result to fields of any characteristic, and show that these ideals have other extremal properties. For example, Mall's ideals satisfy an equation similar to Green's hyperplane section theorem.</p> <p> The key technical component needed to extend the results of Mall is discussed in Chapter 3. This component is the construction of a new invariant called the distraction-generic initial ideal. Given a homogeneous ideal <em>I C S</em> we construct the associated distraction-generic initial ideal, D-gin<sub><</sub> (<em>I</em>), by iteratively computing initial ideals and general distractions. The result is a monomial ideal that is strongly stable in any characteristic and which has many properties analogous to the generic initial ideal of <em>I</em>.</p>
265

Nichtkommutative Blochtheorie

Gruber, Michael 01 October 1998 (has links)
In der vorliegenden Arbeit "Nichtkommutative Blochtheorie" beschäftigen wir uns mit der Spektraltheorie bestimmter Klassen von Hilbertraumoperatoren, den elliptischen Operatoren auf Darstellungsräumen von Hilbert-C*-Moduln. Die auftretenden C*-Algebren kodieren dabei Symmetrieeigenschaften der entsprechenden Operatoren.Für kommutative Symmetrien ist die Blochtheorie ein geeignetes Hilfsmittel. Wir schildern diese Methode zunächst in einem geometrischen Kontext, der allgemein genug ist, um die bekannten Ergebnisse über die Abwesenheit singulärstetigen Spektrums im Hinblick auf physikalische Anwendungen zu erweitern. Wir lassen uns dann durch eine Neuinterpretation der Blochtheorie aus einem nichtkommutativen Blickwinkel inspirieren zur Entwicklung einer nichtkommutativen Blochtheorie. Dabei werden bestimmte Eigenschaften von C*-Algebren verknüpft mit Eigenschaften des Spektrums elliptischer Operatoren. Diese Blochtheorie für Hilbert-C*-Moduln erlaubt es, verschiedene bekannte Resultate aus dem Bereich kommutativer (diskreter und kontinuierlicher) Geometrien mit nichtkommutativen Symmetrien in einem neuen gemeinsamen Rahmen zusammenzufassen, der Raum läßt für Modelle nichtkommutativer Geometrien mit nichtkommutativen Symmetrien. Wichtigstes Beispiel für die behandelte Klasse von Operatoren in der mathematischen Physik sind die Schrödingeroperatoren mit periodischem Magnetfeld und Potential. Wir ordnen sie in den Rahmen kommutativer und nichtkommutativer Blochtheorie ein und wenden die zuvor bereitgestellten Methoden an. / In this doctoral thesis "Nichtkommutative Blochtheorie'' (non-commutative Bloch theory) we investigate the spectral theory of a certain class of operators on Hilbert space: the elliptic operators associated with representations of Hilbert C*-modules. The C*-algebras that arise encode symmetry properties of the corresponding operators. For commutative symmetries Bloch theory is a proper tool. We describe this method in a geometric context which is general enough to extend known results about absence of singular continuous spectrum in view of physical applications. Then --- inspired by a new interpretation of Bloch theory from a non-commutative point of view --- we develop a non-commutative Bloch theory. Here certain properties of C*-algebras get linked to spectral properties of elliptic operators. This Bloch theory for Hilbert \CS-modules allows to unite, in a new common framework, several known results from the field of commutative (discrete and continuous) geometries having non-commutative symmetries; this leaves ample room for models of non-commutative geometries having non-commutative symmetries. In mathematical physics, the most important example for the class of operators considered is given by the Schrödinger operators with periodic magnetic field and potential. We place them into the framework of commutative and non-commutative Bloch theory and apply the methods developed before.
266

Nonlinear System Identification with Kernels : Applications of Derivatives in Reproducing Kernel Hilbert Spaces / Contribution à l'identification des systèmes non-linéaires par des méthodes à noyaux

Bhujwalla, Yusuf 05 December 2017 (has links)
Cette thèse se concentrera exclusivement sur l’application de méthodes non paramétriques basées sur le noyau à des problèmes d’identification non-linéaires. Comme pour les autres méthodes non-linéaires, deux questions clés dans l’identification basée sur le noyau sont les questions de comment définir un modèle non-linéaire (sélection du noyau) et comment ajuster la complexité du modèle (régularisation). La contribution principale de cette thèse est la présentation et l’étude de deux critères d’optimisation (un existant dans la littérature et une nouvelle proposition) pour l’approximation structurale et l’accord de complexité dans l’identification de systèmes non-linéaires basés sur le noyau. Les deux méthodes sont basées sur l’idée d’intégrer des contraintes de complexité basées sur des caractéristiques dans le critère d’optimisation, en pénalisant les dérivées de fonctions. Essentiellement, de telles méthodes offrent à l’utilisateur une certaine souplesse dans la définition d’une fonction noyau et dans le choix du terme de régularisation, ce qui ouvre de nouvelles possibilités quant à la facon dont les modèles non-linéaires peuvent être estimés dans la pratique. Les deux méthodes ont des liens étroits avec d’autres méthodes de la littérature, qui seront examinées en détail dans les chapitres 2 et 3 et formeront la base des développements ultérieurs de la thèse. Alors que l’analogie sera faite avec des cadres parallèles, la discussion sera ancrée dans le cadre de Reproducing Kernel Hilbert Spaces (RKHS). L’utilisation des méthodes RKHS permettra d’analyser les méthodes présentées d’un point de vue à la fois théorique et pratique. De plus, les méthodes développées seront appliquées à plusieurs «études de cas» d’identification, comprenant à la fois des exemples de simulation et de données réelles, notamment : • Détection structurelle dans les systèmes statiques non-linéaires. • Contrôle de la fluidité dans les modèles LPV. • Ajustement de la complexité à l’aide de pénalités structurelles dans les systèmes NARX. • Modelisation de trafic internet par l’utilisation des méthodes à noyau / This thesis will focus exclusively on the application of kernel-based nonparametric methods to nonlinear identification problems. As for other nonlinear methods, two key questions in kernel-based identification are the questions of how to define a nonlinear model (kernel selection) and how to tune the complexity of the model (regularisation). The following chapter will discuss how these questions are usually dealt with in the literature. The principal contribution of this thesis is the presentation and investigation of two optimisation criteria (one existing in the literature and one novel proposition) for structural approximation and complexity tuning in kernel-based nonlinear system identification. Both methods are based on the idea of incorporating feature-based complexity constraints into the optimisation criterion, by penalising derivatives of functions. Essentially, such methods offer the user flexibility in the definition of a kernel function and the choice of regularisation term, which opens new possibilities with respect to how nonlinear models can be estimated in practice. Both methods bear strong links with other methods from the literature, which will be examined in detail in Chapters 2 and 3 and will form the basis of the subsequent developments of the thesis. Whilst analogy will be made with parallel frameworks, the discussion will be rooted in the framework of Reproducing Kernel Hilbert Spaces (RKHS). Using RKHS methods will allow analysis of the methods presented from both a theoretical and a practical point-of-view. Furthermore, the methods developed will be applied to several identification ‘case studies’, comprising of both simulation and real-data examples, notably: • Structural detection in static nonlinear systems. • Controlling smoothness in LPV models. • Complexity tuning using structural penalties in NARX systems. • Internet traffic modelling using kernel methods
267

Využití Hilbert Huangovy transformace pro analýzu nestacionárních signálů z fyzikálních experimentů / Using Hilbert Huang transformation for analysis of non-stationary signals from physical experiments

Tuleja, Peter January 2014 (has links)
This paper discusses the possible use of Hilbert-Huang transform to analyze the data obtained from physical experiments. Specifically for the analysis of acoustic emission in the form of acoustic shock. The introductory section explains the concept of acoustic emission and its detection process. Subsequently are discussed methods for signal analysis in time-frequency domain. Specifically, short-term Fourier transform, Wavelet transform, Hilbert transform and Hilbert-Huang transform. The final part contains the proposed method for measuring the performance and accuracy of different approaches.
268

Analysis of Long-Term Utah Temperature Trends Using Hilbert-Haung Transforms

Hargis, Brent H 01 June 2014 (has links) (PDF)
We analyzed long-term temperature trends in Utah using a relatively new signal processing method called Empirical Mode Decomposition (EMD). We evaluated the available weather records in Utah and selected 52 stations, which had records longer than 60 years, for analysis. We analyzed daily temperature data, both minimum and maximums, using the EMD method that decomposes non-stationary data (data with a trend) into periodic components and the underlying trend. Most decomposition algorithms require stationary data (no trend) with constant periods and temperature data do not meet these constraints. In addition to identifying the long-term trend, we also identified other periodic processes in the data. While the immediate goal of this research is to characterize long-term temperature trends and identify periodic processes and anomalies, these techniques can be applied to any time series data to characterize trends and identify anomalies. For example, this approach could be used to evaluate flow data in a river to separate the effects of dams or other regulatory structures from natural flow or to look at other water quality data over time to characterize the underlying trends and identify anomalies, and also identify periodic fluctuations in the data. If these periodic fluctuations can be associated with physical processes, the causes or drivers might be discovered helping to better understand the system. We used EMD to separate and analyze long-term temperature trends. This provides awareness and support to better evaluate the extremities of climate change. Using these methods we will be able to define many new aspects of nonlinear and nonstationary data. This research was successful and identified several areas in which it could be extended including data reconstruction for time periods missing data. This analysis tool can be applied to various other time series records.
269

Unbounded operators on Hilbert C*-modules: graph regular operators / Unbeschränkte Operatoren auf Hilbert-C*-Moduln: graphreguläre Operatoren

Gebhardt, René 24 November 2016 (has links) (PDF)
Let E and F be Hilbert C*-modules over a C*-algebra A. New classes of (possibly unbounded) operators t: E->F are introduced and investigated - first of all graph regular operators. Instead of the density of the domain D(t) we only assume that t is essentially defined, that is, D(t) has an trivial ortogonal complement. Then t has a well-defined adjoint. We call an essentially defined operator t graph regular if its graph G(t) is orthogonally complemented and orthogonally closed if G(t) coincides with its biorthogonal complement. A theory of these operators and related concepts is developed: polar decomposition, functional calculus. Various characterizations of graph regular operators are given: (a, a_*, b)-transform and bounded transform. A number of examples of graph regular operators are presented (on commutative C*-algebras, a fraction algebra related to the Weyl algebra, Toeplitz algebra, C*-algebra of the Heisenberg group). A new characterization of operators affiliated to a C*-algebra in terms of resolvents is given as well as a Kato-Rellich theorem for affiliated operators. The association relation is introduced and studied as a counter part of graph regularity for concrete C*-algebras.
270

Operadores integrais positivos e espaços de Hilbert de reprodução / Positive integral operators and reproducing kernel Hilbert spaces

Ferreira, José Claudinei 27 July 2010 (has links)
Este trabalho é dedicado ao estudo de propriedades teóricas dos operadores integrais positivos em \'L POT. 2\' (X; u), quando X é um espaço topológico localmente compacto ou primeiro enumerável e u é uma medida estritamente positiva. Damos ênfase à análise de propriedades espectrais relacionadas com extensões do Teorema de Mercer e ao estudo dos espaços de Hilbert de reprodução relacionados. Como aplicação, estudamos o decaimento dos autovalores destes operadores, em um contexto especial. Finalizamos o trabalho com a análise de propriedades de suavidade das funções do espaço de Hilbert de reprodução, quando X é um subconjunto do espaço euclidiano usual e u é a medida de Lebesgue usual de X / In this work we study theoretical properties of positive integral operators on \'L POT. 2\'(X; u), in the case when X is a topological space, either locally compact or first countable, and u is a strictly positive measure. The analysis is directed to spectral properties of the operator which are related to some extensions of Mercer\'s Theorem and to the study of the reproducing kernel Hilbert spaces involved. As applications, we deduce decay rates for the eigenvalues of the operators in a special but relevant case. We also consider smoothness properties for functions in the reproducing kernel Hilbert spaces when X is a subset of the Euclidean space and u is the Lebesgue measure of the space

Page generated in 0.0383 seconds