• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 281
  • 116
  • 69
  • 46
  • 19
  • 12
  • 10
  • 8
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 652
  • 149
  • 119
  • 98
  • 83
  • 77
  • 66
  • 53
  • 51
  • 42
  • 40
  • 38
  • 38
  • 37
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

A NEW INDEPENDENCE MEASURE AND ITS APPLICATIONS IN HIGH DIMENSIONAL DATA ANALYSIS

Ke, Chenlu 01 January 2019 (has links)
This dissertation has three consecutive topics. First, we propose a novel class of independence measures for testing independence between two random vectors based on the discrepancy between the conditional and the marginal characteristic functions. If one of the variables is categorical, our asymmetric index extends the typical ANOVA to a kernel ANOVA that can test a more general hypothesis of equal distributions among groups. The index is also applicable when both variables are continuous. Second, we develop a sufficient variable selection procedure based on the new measure in a large p small n setting. Our approach incorporates marginal information between each predictor and the response as well as joint information among predictors. As a result, our method is more capable of selecting all truly active variables than marginal selection methods. Furthermore, our procedure can handle both continuous and discrete responses with mixed-type predictors. We establish the sure screening property of the proposed approach under mild conditions. Third, we focus on a model-free sufficient dimension reduction approach using the new measure. Our method does not require strong assumptions on predictors and responses. An algorithm is developed to find dimension reduction directions using sequential quadratic programming. We illustrate the advantages of our new measure and its two applications in high dimensional data analysis by numerical studies across a variety of settings.
532

Décompositions Modales Empiriques. Contributions à la théorie, l'algorithmie et l'analyse de performances

Rilling, Gabriel 14 December 2007 (has links) (PDF)
La Décomposition Modale Empirique (EMD pour « Empirical Mode Decomposition ») est un outil récent de traitement du signal dévolu à l'analyse de signaux non stationnaires et/ou non linéaires. L'EMD produit pour tout signal une décomposition multi-échelles pilotée par les données. Les composantes obtenues sont des formes d'onde oscillantes potentiellement non harmoniques dont les caractéristiques, forme, amplitude et fréquence peuvent varier au cours du temps. L'EMD étant une méthode encore jeune, elle n'est définie que par la sortie d'un algorithme inhabituel, comportant de multiples degrés de liberté et sans fondement théorique solide. Nous nous intéressons dans un premier temps à l'algorithme de l'EMD. Nous étudions d'une part les questions soulevées par les choix de ses degrés de liberté afin d'en établir une implantation. Nous proposons d'autre part des variantes modifiant légèrement ses propriétés et une extension permettant de traiter des signaux à deux composantes. Dans un deuxième temps, nous nous penchons sur les performances de l'EMD. L'algorithme étant initialement décrit dans un contexte de temps continu, mais systématiquement appliqué à des signaux échantillonnés, nous étudions la problématique des effets d'échantillonnage sur la décomposition. Ces effets sont modélisés dans le cas simple d'un signal sinusoïdal et une borne de leur influence est obtenue pour des signaux quelconques. Enfin nous étudions le mécanisme de la décomposition à travers deux situations complémentaires, la décomposition d'une somme de sinusoïdes et celle d'un bruit large bande. Le premier cas permet de mettre en évidence un modèle simple expliquant le comportement de l'EMD dans une très grande majorité des cas de sommes de sinusoïdes. Ce modèle reste valide pour des sinusoïdes faiblement modulées en amplitude et en fréquence ainsi que dans certains cas de sommes d'ondes non harmoniques périodiques. La décomposition de bruits large bande met quant à elle en évidence un comportement moyen de l'EMD proche de celui d'un banc de filtres auto-similaire, analogue à ceux correspondant aux transformées en ondelettes discrètes. Les propriétés du banc de filtres équivalent sont étudiées en détail en fonction des paramètres clés de l'algorithme de l'EMD. Le lien est également établi entre ce comportement en banc de filtres et le modèle développé dans le cas des sommes de sinusoïdes.
533

Bases de fonctions sur les variétés

Vallet, Bruno 10 July 2008 (has links) (PDF)
Les bases de fonctions sont des outils indispensables de la géométrie numérique puisqu'ils permettent de représenter des fonctions comme des vecteurs, c'est à dire d'appliquer les outils de l'algèbre linéaire à l'analyse fonctionnelle. Dans cette thèse, nous présentons plusieurs constructions de bases de fonctions sur des surfaces pour la géométrie numérique. Nous commençons par présenter les bases de fonctions usuelles des éléments finis et du calcul extérieur discret, leur théorie et leurs limites. Nous étudions ensuite le Laplacien et sa discrétisation, ce qui nous permettra de construire une base de fonctions particulière: les fonctions propres de l'opérateur de Laplace-Beltrami, ou harmoniques variétés. Celles-ci permettent de généraliser la transformée de Fourier et le filtrage spectral aux fonctions définies sur des surfaces. Nous présentons ensuite des applications de cette base de fonction à la géométrie numérique. En particulier, nous montrons qu'une fois calculée, cette base de fonction permet de filtrer la géométrie en temps interactif. Pour pouvoir définir des bases de fonctions de façon plus indépendante du maillage de la surface, nous nous intéressons ensuite aux paramétrisations globales, et en particulier aux champs de directions à symétries qui permettent de les définir. Ainsi, dans la dernière partie, nous étudions ces champs de directions à symétries, et en particulier leur géométrie et leur topologie. Nous proposons enfin des outils pour les construire, les manipuler et les visualiser.
534

Formes quasi-modulaires sur des groupes modulaires<br />co-compacts et restrictions des formes modulaires <br />de Hilbert aux courbes modulaires.

Ouled Azaiez, Najib 25 November 2005 (has links) (PDF)
On démontre un théorème de structure pour l'anneau des<br />formes quasi-modulaires $\widetilde{M}_*(\Gamma)$ gradué par<br />le poids, sur n'importe quel groupe discret et co-compact<br />$\Gamma \subset \rm{PSL}(2, \mathbb{R})$ : cet anneau s'avère<br />être toujours infiniment engendré. On calcule le nombre<br />de nouveaux générateurs en chaque poids. Le nombre en<br />question est fixe et est égal à $\dim_{\mathbb{C}} I<br />/ (I \cap \widetilde{I}^2)$ où $I$ et $\widetilde{I}$<br />désignent respectivement l'idéal des formes modulaires <br />sur $\Gamma$ (respectivement l'idéal des formes quasi-modulaires<br />sur $\Gamma$) en poids positifs. On construit des <br />anneaux $\widetilde{R}$ finiment engendrés en poids positif<br />et contenant les anneaux de formes quasi-modulaires sur<br />des groupes modulaires co-compacts. On étudie aussi<br />des restrictions des formes modulaires de Hilbert aux<br />courbes modulaires : on montre que l'espace engendré par<br />une suite de restrictions des formes modulaires de Hilbert<br />sur une courbe modulaire <br />est un sous-espace fermé par crochets de Rankin-Cohen de<br />l'espace des formes modulaires sur la courbe. <br />\vskip 2cm
535

Quelques contributions au contrôle et aux équations rétrogrades en finance.

Fabre, Emilie 29 February 2012 (has links) (PDF)
Je me suis intéressée à résoudre certains problèmes financiers par du contrôle stochastique. On a premièrement considéré un problème mixte d'investissement optimal et de vente optimale. On a étudié le comportement d'un investisseur possédant un actif indivisible qu'il cherche à vendre tout en gérant en continu un portefeuille d'actifs risqués. Puis, on s'est intéressé à l'étude des équations stochastiques rétrogrades du premier et du second ordre avec contraintes convexes. Dans chaque cas, on a prouvé l'existence d'une solution minimale ainsi qu'une représentation stochastique pour ce problème. Enfin, on a étudié un modèle à volatilité stochastique où la volatilité instantanée dépend de la courbe de volatilité forward. On propose un développement asymptotique du prix de l'option pour de petites variations de la volatilité.
536

Modèles AM-FM et Approche par Équations aux Dérivées Partielles de la Décomposition Modale Empirique pour l'Analyse des Signaux et des Images

Diop, El Hadji Samba 30 November 2009 (has links) (PDF)
Le travail de thèse traite de l'analyse des signaux et des images par décomposition modale empirique (EMD) et par modèles AM-FM. Dans la première partie de cette thèse, nous apportons des cadres théoriques à l'EMD 1D et 2D. Nous approchons localement les enveloppes supérieures et inférieures, dans le processus de tamisage de l'EMD, par des opérateurs continus. Par suite, nous formulons différemment la moyenne locale et prouvons que les itérations du tamisage 1D et 2D peuvent être approchées par des équations aux dérivées partielles (EDP) bien posées. Nous apportons des justifications théoriques et proposons des caractérisations analytiques des modes empiriques 1D et 2D. Ce travail a permis d'éclaircir de nombreux points et notions relatifs à l'EMD, et définis en 1D comme en 2D, que de manière très intuitive ou sur la base de simulations numériques contrôlées. Nous apportons de la sorte des contributions théoriques à l'EMD 1D et 2D, initialement définie par un algorithme et dont la principale limite est le manque de cadre théorique. Enfin, nous proposons de nouveaux algorithmes EMD 1D et 2D, et résolvons numériquement les EDP proposées en 1D et 2D. Nous illustrons nos approches par EDP sur de nombreux signaux et images. Dans la seconde partie, nous étudions les modèles AM-FM pour l'analyse d'images. Ces modèles se basent sur une décomposition des images en composantes regroupant les niveaux de gris des parties texturées (AM), d'une part, et une partie contenant la géométrie de l'image (FM), d'autre part. Nous proposons d'abord une amélioration de la démodulation d'images large bande. Dans un deuxième temps, nous explorons la démodulation d'images avec les opérateurs de Teager-Kaiser d'ordres supérieurs (HODEO 2D), en proposant de meilleurs algorithmes de démodulation, basés sur les HODEO 2D. Nous proposons ensuite une application à la segmentation d'images sonar et illustrons nos approches sur de nombreuses images. Les résultats sont comparés à ceux obtenus avec l'algorithme DESA (Discrete Energy Separation Algorithm) et l'approche par image analytique.
537

Interpolation of Hilbert spaces

Ameur, Yacin January 2002 (has links)
(i) We prove that intermediate Banach spaces A, B with respect to arbitrary Hilbert couples H, K are exact interpolation iff they are exact K-monotonic, i.e. the condition f0∊A and the inequality K(t,g0;K)≤K(t,f0;H), t&gt;0 imply g0∊B and ||g0||B≤||f0||A (K is Peetre's K-functional). It is well-known that this property is implied by the following: for each ρ&gt;1 there exists an operator T : H→K such that Tf0=g0, and K(t,Tf;K)≤ρK(t,f;H), f∊H0+H1, t&gt;0.Verifying the latter property, it suffices to consider the "diagonal" case where H=K is finite-dimensional. In this case, we construct the relevant operators by a method which allows us to explicitly calculate them. In the strongest form of the theorem, it is shown that the statement remains valid when substituting ρ=1. (ii) A new proof is given to a theorem of W. F. Donoghue which characterizes certain classes of functions whose domain of definition are finite sets, and which are subject to certain matrix inequalities. The result generalizes the classical Löwner theorem on monotone matrix functions, and also yields some information with respect to the finer study of monotone functions of finite order. (iii) It is shown that with respect to a positive concave function ψ there exists a function h, positive and regular on ℝ+ and admitting of analytic continuation to the upper half-plane and having positive imaginary part there, such that h≤ψ≤ 2h. This fact is closely related to a theorem of Foiaş, Ong and Rosenthal, which states that regardless of the choice of a concave function ψ, and a weight λ, the weighted l2-space l2(ψ(λ)) is c-interpolation with respect to the couple (l2,l2(λ)), where we have c≤√2 for the best c. It turns out that c=√2 is best possible in this theorem; a fact which is implicit in the work of G. Sparr. (iv) We give a new proof and new interpretation (based on the work (ii) above) of Donoghue's interpolation theorem; for an intermediate Hilbert space H* to be exact interpolation with respect to a regular Hilbert couple H it is necessary and sufficient that the norm in H* be representable in the form ||f||*= (∫[0,∞] (1+t-1)K2(t,f;H)2dρ(t))1/2 with some positive Radon measure ρ on the compactified half-line [0,∞]. (v) The theorem of W. F. Donoghue (item (ii) above) is extended to interpolation of tensor products. Our result is related to A. Korányi's work on monotone matrix functions of several variables.
538

Families of cycles and the Chow scheme

Rydh, David January 2008 (has links)
The objects studied in this thesis are families of cycles on schemes. A space — the Chow variety — parameterizing effective equidimensional cycles was constructed by Chow and van der Waerden in the first half of the twentieth century. Even though cycles are simple objects, the Chow variety is a rather intractable object. In particular, a good functorial description of this space is missing. Consequently, descriptions of the corresponding families and the infinitesimal structure are incomplete. Moreover, the Chow variety is not intrinsic but has the unpleasant property that it depends on a given projective embedding. A main objective of this thesis is to construct a closely related space which has a good functorial description. This is partly accomplished in the last paper. The first three papers are concerned with families of zero-cycles. In the first paper, a functor parameterizing zero-cycles is defined and it is shown that this functor is represented by a scheme — the scheme of divided powers. This scheme is closely related to the symmetric product. In fact, the scheme of divided powers and the symmetric product coincide in many situations. In the second paper, several aspects of the scheme of divided powers are discussed. In particular, a universal family is constructed. A different description of the families as multi-morphisms is also given. Finally, the set of k-points of the scheme of divided powers is described. Somewhat surprisingly, cycles with certain rational coefficients are included in this description in positive characteristic. The third paper explains the relation between the Hilbert scheme, the Chow scheme, the symmetric product and the scheme of divided powers. It is shown that the last three schemes coincide as topological spaces and that all four schemes are isomorphic outside the degeneracy locus. The last paper gives a definition of families of cycles of arbitrary dimension and a corresponding Chow functor. In characteristic zero, this functor agrees with the functors of Barlet, Guerra, Kollár and Suslin-Voevodsky when these are defined. There is also a monomorphism from Angéniol's functor to the Chow functor which is an isomorphism in many instances. It is also confirmed that the morphism from the Hilbert functor to the Chow functor is an isomorphism over the locus parameterizing normal subschemes and a local immersion over the locus parameterizing reduced subschemes — at least in characteristic zero. / QC 20100908
539

Hardware accelerated Nios II implementation of Hilbert Huang Transform = 基於Nios II 軟核處理器的希爾伯特黃變換硬體加速實現 / 基於Nios II 軟核處理器的希爾伯特黃變換硬體加速實現

Wang, Lei January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Electrical and Electronics Engineering
540

Recherches logiques et philosophiques sur le concept de métalangage

Kennedy, Neil January 2006 (has links) (PDF)
Ce mémoire a pour objectif principal l'analyse du concept de métalangage tel qu'il s'est développé en logique mathématique. L'introduction et la conclusion mises à part, chaque chapitre porte sur un auteur -logicien, mathématicien ou philosophe ayant contribué de manière significative à l'évolution de ce concept. Ces auteurs sont, en ordre de présentation, Gottlob Frege, Bertrand Russell, Ludwig Wittgenstein, David Hilbert, Kurt Godel et Alfed Tarski. Puisque la notion de métalangage s'est développée avec la formalisation progressive de la logique, une attention particulière est accordée à l'émergence des systèmes formels et à leur présentation. Trois périodes se dessinent dans la genèse de cette notion. Une première, que j'appelle « pré-météthéorique », où l'intervention d'une théorie externe au langage formel est rejetée catégoriquement, mais où certaines notions métathéoriques sont implicitement tracées. Une seconde, dite « hilbertienne », qui marque l'entrée en jeu de la métamathématique et qui consacre le métalangage dans l'étude des mathématiques, quoiqu'avec des moyens limités. Et une troisième, dite « tarskienne », où la notion moderne de métalangage est exposée. Par ailleurs, j'effectue une analyse détaillée de la preuve que Godel donne de son second théorème d'incomplétude où je prétends qu'il commet une erreur conceptuelle entre langage et métalangage. Enfin, en conclusion, j'explore une conception fondationnelle de la logique compatible avec l'étude métathéorique. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Métalangage, Logique, Philosophie, Métamathématique, Godel, Tarski.

Page generated in 0.0852 seconds