• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 408
  • 116
  • 51
  • 45
  • 22
  • 17
  • 15
  • 12
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 837
  • 174
  • 156
  • 141
  • 141
  • 139
  • 122
  • 107
  • 106
  • 102
  • 100
  • 91
  • 80
  • 79
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Interactions du complexe multiprotéique NuA4 dans la dynamique chromatinienne

Lacoste, Nicolas 12 April 2018 (has links)
Les nucléosomes, composés d’histones et d’ADN, constituent l’unité de base de la chromatine. Toutes les actions portant sur l’ADN ou nécessitant cette molécule doivent d’abord éliminer la répression physique réalisée par la structure du nucléosome. Il existe pour cela trois mécanismes principaux permettant de rendre plus fluide et plus dynamique cette structure. Les différents éléments mis en jeu dans ces mécanismes sont les chaperons d’histones, les facteurs de remodelage de la chromatine et enfin les facteurs modifiant les extrémités des histones. NuA4, un complexe de 12 sous-unités de la levure Saccharomyces cerevisiae faisant partie de la dernière famille de facteurs pouvant influencer la structure de la chromatine, est capable d’acétyler les histones H4 et H2A sur leur extrémité N-terminale. Sa sous-unité catalytique, Esa1, est la seule histone acétyltransférase essentielle pour la levure. Plusieurs sous-unités du complexe possèdent des domaines particuliers présents dans des protéines ayant un rôle dans la structure de la chromatine. C’est le cas notamment de Esa1 et de Eaf3 qui possèdent un chromodomaine, domaine selon la protéine a été caractérisé comme un module de reconnaissance soit d’ARN soit de lysine méthylées des histones. Le but de mon projet doctoral était de caractériser la régulation de NuA4 et plus particulièrement de comprendre le rôle de ses deux protéines à chromodomaine Esa1 et Eaf3. Dans un premier temps, nous avons cherché à identifier certaines modifications sur les histones capables de moduler l’activité de NuA4. Ce travail nous a permis d’identifier et de caractériser deux nouvelles enzymes, Rmt1 et Dot1, responsables respectivement de la méthylation de l’arginine 3 de H4 et de la lysine 79 sur l’histone H3. Seule la première de ces deux modifications s’est révélée avoir une influence sur l’activité de NuA4 et ce en combinaison avec la phosphorylation de la sérine 1 de l’histone H4. Dans un deuxième temps nous avons essayé de comprendre la fonction de Eaf3, en particulier son rôle potentiel dans la reconnaissance des lysines méthylées. Grâce à des études génétiques et biochimiques nous avons pu établir un lien entre Eaf3 et la lysine 36 méthylée de H3. / Nucleosomes, composed of DNA and histones, are the basal unit of chromatin. All cellular mechanisms involving DNA have to deal with the repressive structure formed by nucleosomes. Histone chaperons, chromatin remodelling enzymes and complexes able to modify the N terminus of histones are major molecular compounds able to affect chromatin structure. NuA4 is a 12-subunit-histone-acetyltransferase-complex from Saccharomyces cerevisiae able to influence chromatin by acetylating N terminus of H4 and H2A. Esa1, its catalytic subunit, is the only essential histone acetyltransferase in yeast. Other subunits of the complex possess domains find in proteins playing a role in chromatin dynamic structure. This is the case for Esa1 and Eaf3, each one has a chromodomaine which is found to be, depending on the protein, a non-coding RNA binding module or a histone methyl lysine binding module. The main aim of this project was to find how NuA4 was regulated and more precisely to understand functions of its 2 chromodomain-containing proteins, Esa1 and Eaf3. First, we looked for histone modifications able to influence NuA4 activity which leads us to characterize two new enzymes, Rmt1 and Dot1, responsible respectively for the methylation of H4 arginine 3 and H3 lysine 79. Of these 2 modifications only the first one was able to influence NuA4 activity in combination with H4 serine 1 phosphorylation. Second, we tried to understand Eaf3’s function and particularly its potential role in histone methyl lysine binding. With genetic and biochemical studies we demonstrated a link between Eaf3 and méthylation of lysine 36 on histone H3.
282

Étude des déterminants moléculaires contrôlant l'association du complexe histone acétyltransférase NuA4 avec la chromatine durant la transcription

Cramet, Myriam 16 April 2018 (has links)
La transcription est le processus biologique qui permet l'expression des gènes et donc est essentielle à la vie cellulaire. Ce phénomène nécessite une régulation très fine via de nombreux signaux cellulaires menant à un contrôle de la dynamique chromatinienne. Chez Saccharomyces cerevisiae, le complexe histone acétyltransférase NuA4 participe à cette régulation en acétylant les queues N-terminales des histones H4 et H2A. La chromatine est alors plus relâchée, ce qui facilite l'accès de toute la machinerie transcriptionnelle. Lors de cette étude, nous avons abordé deux aspects distincts de la fonction de NuA4. D'une part, la sous-unité Yng2, homologue de suppresseur de tumeur humain impliqué entre autres dans la régulation de p53, est connue pour interférer dans plusieurs processus cellulaires. In vivo, le mutant Ayng2 entraîne une diminution de l'acétylation de H4 et de la transcription dépendante de NuA4. La création de mutations ponctuelles dans le domaine ± Plant HomeoDomain ¿ (PHD) et la région polybasique de la protéine provoque la perte d'interactions spécifiques avec la modification post-traductionnelle H3K4me3 et les phosphatidylinositol phosphates. L'étude fonctionnelle de ces mutants révèle une répercussion sur l'activité de NuA4 et la transcription. D'autre part, les sous-unités EaO, 5 et 7 existent majoritairement hors de NuA4 sous la forme d'un trimère. Des tests de sensibilité mettent en évidence une corrélation entre ce trimère et la transcription. De plus, le trimère serait présent à la région codante de gènes transcrits suggérant un rôle dans l'élongation transcriptionnelle.
283

Structure tridimensionnelle du complexe histone acétyltransférase NuA4 (S. cerevisiae)

Monnet, Julie Saksouk 17 April 2018 (has links)
Chez S.cerevisiae, NuA4 est un complexe Histone acetyltransferase (HAT) de 1,3 MDa contenant 13 sous unités. Esal, seule HAT essentielle chez la levure, est la sous-unité catalytique qui acétyle les histones H4 et H2A et une des six protéines essentielles du complexe. De plus, six protéines sont présentes dans d'autres complexes de modification (SAGA, Sin3/Rpd3) et de remodelage ATP- dépendant de la chromatine (Ino80 et Swrl) et deux sous-groupes ont été identifiés comme ayant une activité cellulaire indépendante et distincte de NuA4 (PiccoloNuA4 et le trimère Eaf5/7/3). Cette organisation modulaire de NuA4 correspond aux multiples besoins de recrutements et de régulation d'Esal par la cellule lors des événements de réparation, de transcription et de replication de la chromatine. Chez l'humain, le complexe Tip60 est l'orthologue de NuA4 et regroupe les activités de modification de la chromatine de NuA4 et de Swrl. L'organisation spatiale de NuA4 présente donc beaucoup d'intérêt. Au sein du laboratoire du professeur Jacques Côté, je concentre mon travail sur la production et la purification du complexe NuA4. Avec nos échantillons hautement purifiés, les techniques d'analyse par microscopie électronique (EM) et de reconstitution informatique, réalisées par nos collaborateurs Johnathan Chittuluru et Francisco Asturias, permettent, avec une forte résolution, de visualiser le complexe en 3D. Les atouts majeurs associés à cette technique sont aussi de visualiser les interactions du complexe avec un nucléosome et de localiser les sous-unités dans le complexe (par deletion ou étiquetage). Dès lors, ces résultats apportent des indications pertinentes sur NuA4 et ces différents modules qui par recrutement ou interaction directe avec les histones participent à la régulation dynamique de la chromatine.
284

Implication of NuA4 histone acetyltransferase complex in transcription regulation and genome stability

Cheng, Xue 23 April 2018 (has links)
Le génome est organisé sous forme de chromatine afin de contourner la problématique d’espace limité dans le noyau. De plus, cette structure hautement condensé est une barrière physique aux processus cellulaires qui nécessite l’accès à l’information génétique. Les dernières années d'études ont dévoilé des complexes modificateurs de la chromatine comme des acteurs clés dans plusieurs mécanismes de modulation de la chromatine. L'un de ces modificateurs est NuA4, un complexe conservé au cours de l’évolution qui acétyle les histones H2A, H2A.Z et H4. Dans cette thèse, en utilisant Saccharomyces cerevisiae comme organisme modèle, nous avons identifié l'implication de NuA4 dans l'incorporation de H2A.Z et la biosynthèse des voies purines. Dans une seconde partie, nous étudions la participation de NuA4 dans la réponse aux dommages de l'ADN. Plus précisément, nous avons caractérisé la phosphorylation des sous-unités NuA4 dépendante de Mec1/Tel1. L’ensemble de ces travaux, comment NuA4 coordonne différentes activités cellulaires. / Cell genome is packaged into chromatin in order to compensate the limited space within the nucleus. However, this highly condensed structure also presents strong physical barriers for cellular processes using DNA as templates. Recent years of studies have unveiled chromatin modifying complexes as key players in several mechanisms of chromatin modulation. One of these modifiers is NuA4, an evolutionary conserved large multi-subunit histone acetyltransferase complex that acetylates histone H2A, H2A.Z and H4. In this thesis, using Saccharomyces cerevisiae as model system, we identified the implication of NuA4 in global histone variant H2A.Z incorporation and purine biosynthesis pathways. Moreover, we also show previously uncharacterized involvement of NuA4 in DNA damage response pathways through Mec1/ Tel1-dependent phosphorylation events on NuA4 subunits. Further analysis will shed light on detailed mechanisms about how NuA4, as a multifunctional complex, coordinates various cellular activities.
285

Recrutement de l'hélicase Pif1 par la protéine de réplication RPA durant la réplication et aux cassures double-brin de l'ADN : Etude fonctionnelle de l'Histone méthyltransférase Set1 dans la régulation de la taille des télomères chez Saccharomyces cerevisiae

Maestroni, Laetitia 14 December 2011 (has links)
Différents rôles de l'hélicase Pif1 ont été décrit dont le plus documenté est de décrocher la télomérase des télomères en déroulant les hybrides ARN/ADN formés entre l'ARN de la télomérase et l'ADN télomérique. Plus récemment, une nouvelle voie de signalisation des dommages à l'ADN a été mise en évidence, qui inhibe l'action de la télomérase au niveau d'une cassure de l'ADN via la phosphorylation de l'hélicase Pif1. Cette phosphorylation, dépendante de la kinase ATR (Mec1), inhibe la réparation aberrante de la cassure d'ADN par la télomérase. Nous étudions au sein de l’équipe la protéine RPA (Replication Protein A), affine de l'ADN simple-brin, qui recrute à la fois la protéine de recombinaison homologue Rad52 et la protéine Mec1 impliquée dans la cascade de signalisation des dommages de l'ADN. Lors de l'étude de différentes fonctions de l'hélicase Pif1, j'ai mis en évidence une interaction robuste entre Pif1 et RPA. J'ai identifié un allèle de RFA1, rfa1-D228Y, affectant l'interaction Pif1/RPA et montré, grâce à cet allèle, que cette interaction est impliquée dans le recrutement de Pif1 au niveau d'une cassure double-brins (CDB) induite de l'ADN. Enfin, il a été récemment mis en évidence un nouveau rôle de Pif1 dans la stabilité des G-Quadruplexes durant la réplication du brin avancé. En effet, les cellules pif1 présentent un taux d'instabilité du minisatellite CEB1 inséré sur le brin avancé d'environ 56%, correspondant à des réarrangements de l'ADN de type contractions ou expansions. Lors de l'étude de l'interaction Pif1/RPA, j'ai montré que la mutation rfa1-D228Y entraîne une instabilité du minisatellite CEB1 présent sur le brin avancé, similaire à celle observée avec la délétion pif1∆. Nous suggérons un modèle selon lequel RPA recruterait Pif1 au cours de différents processus cellulaires tels que la réponse des dommages à l'ADN ou la réplication des structures particulières de l'ADN telles que les G-Quadruplexes.En parallèle de cette étude, j’ai étudié le rôle de l'histone méthyltransférase Set1 spécifique de la lysine 4 de l'histone H3 dans la régulation de la taille des télomères. J’ai mis en évidence que le raccourcissement des télomères observé dans un mutant set1 est lié à l'absence de di- et tri-méthylation de H3K4 alors que la perte de monométhylation n'a aucun effet. Cependant, le défaut de la taille des télomères dans les cellules set1∆ n'est pas uniquement lié au défaut de méthylation de H3K4 mais semble impliquer une autre activité de Set1 qu’il reste à déterminer. Etonnamment, nous avons observé que la délétion de SET1 aggrave le raccourcissement des télomères des mutants dont les gènes sont impliqués dans la régulation positive de la taille des télomères et inversement, aggrave le rallongement des télomères de mutants dont les gènes sont impliqués dans la régulation négative des télomères. Nous postulons que l’inactivation de Set1 pourrait à la fois inhiber l’activation précoce des origines de réplication des régions subtélomériques et conduire à un sur-raccourcissement de la taille des télomères, à la fois affecter la synthèse du brin complémentaire dans un contexte où celle-ci est affectée (mutant rif1) et conduire à un sur-allongement des télomères. Une seconde hypothèse propose que Set1 régulerait la transcription deTERRA dans des cellules ayant les télomères déprotégés (mutant rif) entraînant le sur-allongement des télomères. / Different roles of Pif1 helicase have been described, the best documented being to remove telomerase from telomeres by unwinding the RNA/DNA hybrid between telomerase RNA and telomeric DNA. Recently, it was shown that the DNA damage signaling down-regulates telomerase action at a DNA break via Pif1 phosphorylation. Pif1 phosphorylation is dependent of the checkpoint kinase ATR (Mec1) and prevents the aberrant healing of broken DNA ends by telomerase. In our laboratory, we study RPA (Replication Protein A), a single-strand DNA binding protein which recruits the proteins involved in the DNA damage response and checkpoint regulation, such as the homologous recombination protein Rad52 and Mec1 involved in the DNA damage response. I have identified an allele of RFA1, rfa1-D228Y, that affects the Pif1/RPA interaction and showed using this allele that this interaction is implicated in the Pif1 recruitment at an induced double-strand break. Recently, a new role of Pif1 in the stability of G-quadruplex DNA during the leading strand replication has been described. pif1 cells show an instability about 56% of the human minisatellite CEB1 inserted on the leading strand. During my study of the Pif1/RPA interaction, I showed that the rfa1-D228Y mutant induced a similar instability of CEB1 minisatellite on the leading strand. We suggested that RPA would recruit Pif1 for many cellular processes such as DNA damage response or replication of secondary DNA structures such as G-Quadruplexes.In parallel, I have studied the role of the Set1 Histone methyltransferase which catalyse the methylation of the lysine 4 of histone H3, in the regulation of telomere length. I showed that the telomere shortening observed in set1 mutant is due to the loss of di- and tri-methylation of H3K4 while the loss of monomethylation has no effect. However, the short telomeres in set1∆ cells is not only due to the methylation defect shedding light on a new Set1 activity that remains to be fully characterized.. The SET1 deletion aggravates the telomere shortening of mutants which genes are involved in positive regulation of telomere length and conversely, aggravates the lengthening of mutants which genes are involved in negative regulation of telomere length. We postulated that inactivation of Set1 could affect at once activation of early-replication origins and leads to a telomere shortening, and affect synthesis of complementary strand in a context where this one is affected (mutant rif1) and leads to a telomere lengthening. A second hypothesis propose that Set1 would regulate TERRA transcription in cells with deprotected-telomere (rif mutant) leading to the lengthening of telomeres.
286

Régulation réciproque et coopération transcriptionnelle du complexe ERRalpha-LSD1 / An interactive network between ERRα-LSD1 promotes gene transcription via H3K9 demethylation

Carnesecchi, Julie 07 October 2014 (has links)
Les récepteurs nucléaires sont des facteurs de transcription qui exercent leur fonction via le contrôle de la transcription de leurs gènes cibles, une régulation qui est dépendante de cofacteurs associés. Les complexes transcriptionnels ainsi formés dialogueront avec l’environnement chromatinien (méthylation de l’ADN, remodelage des nucléosomes, modifications post-traductionnelles des histones) afin de promouvoir la répression ou l’activation transcriptionnelle des cibles géniques de ces récepteurs. Ce projet a identifié une interaction entre la lysine déméthylase LSD1 et le récepteur nucléaire orphelin ERRα dans des cellules humaines de cancers du sein. LSD1 protège ERRα d’une dégradation protéasomale de manière indépendante de son activité catalytique. Par ailleurs, LSD1 déméthyle H3K9 et H3K4 in vivo, mais est incapable in vitro de déméthyler H3K9. La présence de ERRα révèle cette activité de LSD1 sur H3K9, suggérant que le complexe ERRα -LSD1 agit comme un régulateur positif de la transcription. En ce sens, ERRα et LSD1 régulent un nombre important de gènes communs identifiés par RNAseq. Ainsi, 10 gènes activés ont été sélectionnés et le recrutement de ERRα et LSD1 a été examiné sur ces cibles géniques. En association avec les résultats obtenus in vitro, nous avons observé in vivo qu’en absence de ERRα ou LSD1, les gènes activés par ces deux partenaires présentent une augmentation de la marque répressive H3K9me2 sans affecter H3K4me2 au niveau du site d’initiation de la transcription. En conclusion, LSD1 interagit avec ERRα et inhibe sa dégradation, conduisant à une coopération transcriptionnelle de ces protéines. Pour la première fois, un rôle direct de ERRα sur l’environnement chromatinien a été identifié via l’activité de LSD1 sur des marques répressives d’histones. / Nuclear receptors are transcription factors that cooperate with chromatin associated factors to promote their activities. These transcriptional complexes are able to modulate the chromatin landscape to repress or promote transcription. Interestingly, there is an intricate cross-talk between these complexes and the chromatin environment that can influence each other to coordinate gene expression led by nuclear receptors. Post-translational modifications of histones regulate in part, DNA accessibility and the activities of nuclear receptors. One of these histone modifiers is LSD1, which is known to demethylate lysines 4 (H3K4) and 9 (H3K9) on histone 3. This manuscript focuses on the discovered LSD1-ERRα complex in human cancer cell lines. LSD1 interacts with ERRα, hence, modulates ERRα protein stability via a demethylation independent manner. Moreover, LSD1 is able to demethylate H3K4me2 in vitro but not H3K9me2. Interestingly, we observed that ERRα is able to switch LSD1 activity toward H3K9me2 to promote gene transcription without any additional cofactor in vitro. To confirm this effect in vivo, a transcriptomic analysis on mammary cancer cells was performed and highlights common target genes between ERRα and LSD1. We selected 10 genes activated by both and verified ERRα and LSD1 recruitment on these targets. Moreover, upon knock-down of ERRα or LSD1, the transcriptional start sites of activated genes -bound and regulated by both proteins- are enriched in the repressive mark H3K9me2. Altogether, these results describe a positive regulation of ERRα by LSD1 which in turn, drives the demethylase activity on H3K9me2 to promote transcription. Finally, these data highlight a direct function of ERRα on chromatin landscape.
287

Caractérisation d'un facteur épigénétique impliqué dans la régulation des cellules souches embryonnaires murines / Characterization of a novel candidate epigenetic regulator of pluripotency

Benaissa, Marine 18 December 2018 (has links)
Les cellules souches embryonnaires (CSE) sont un outil essentiel pour la recherche biomédicale. Elles ont à la fois la particularité de se multiplier de manière indéfinie tout en gardant leurs propriétés souches et l’incroyable capacité de donner naissance à tous les types cellulaires de l’organisme. Ces caractéristiques ouvrent de nouvelles perspectives pour la médecine régénérative mais également pour la mise au point de nouveaux essais thérapeutiques. Une des révolutions majeures reposant sur la reprogrammation cellulaire des cellules somatiques adultes en cellules souches, permet notamment d’entrevoir de nouvelles applications thérapeutiques. Les mécanismes moléculaires, tels que la méthylation de l’ADN, les modifications d’histones, et l’intervention de facteurs épigénétiques dans le remodelage de la chromatine, jouent un rôle essentiel dans la reprogrammation cellulaire et le contrôle de la pluripotence des cellules souches. L’épigénome des CSE doit non seulement maintenir l’expression des gènes associés à la pluripotence, mais également permettre une activation rapide et spécifique des gènes impliqués dans les étapes de différenciation cellulaire. Une des modifications ayant un rôle important dans l’homéostasie des CSE correspond aux méthylations d’histones H3K9 et H3K27 essentiellement associées à une répression transcriptionnelle. Ces modifications sont effectuées par des lysines méthyltransferases (HKM) dont G9a, ou bien EZH2 appartenant au complexe Polycomb PRC2. Elles recrutent également ces complexes protéiques permettant le maintien et la propagation de la modification le long du génome. Ainsi, dans ce contexte, mes travaux de thèse ont eu pour objectif de caractériser deux facteurs épigénétiques potentiels reconnaissant les histones H3K9me et H3K27me et interagissant avec le complexe PRC2. Ces études ont permis de mieux comprendre le rôle de ces protéines dans la régulation des cellules souches embryonnaires murines. Nos premières données ont montré que nos gènes candidats sont fortement exprimés dans les cellules souches embryonnaires murines (mESC) contrairement aux cellules différenciées. Par la suite, l’expression forcée d’un de ces facteurs altère la différenciation des CSE induite par le retrait de la cytokine LIF. Pour mieux comprendre comment le maintien de l’expression de notre facteur empêche la différenciation des cellules souches embryonnaires, nous avons analysé l’expression des facteurs de pluripotence Oct4, Nanog, Sox2 et Klf4. Nous avons noté un maintien de l’expression de ces facteurs ainsi que le maintien de la régulation des signaux intracellulaires intervenant en amont tels que: l’activation de la voie JAK-STAT3 pour le maintien à l’état pluripotent des ESC, et la diminution de la voie MAPK-ERK impliquée dans les processus de différenciation / Embryonic stem cells (ES cells) are an essential tool for biomedical research. They have the particularity to multiply indefinitely while keeping their stemness properties, and the incredible ability to generate all cell types of the body. These characteristics open up new perspectives for regenerative medicine but also for the development of new therapeutic trials. One of the major revolutions based on the cellular reprogramming of adult somatic cells into stem cells makes it possible to glimpse new therapeutic applications. Molecular mechanisms, such as DNA methylation, histone modifications, and the intervention of epigenetic factors in chromatin remodeling, play a critical role in cell reprogramming and pluripotency. The CSE epigenome must maintain not only the expression of genes associated with pluripotency but also allow rapid and specific activation of genes involved in cell differentiation. One of the modifications having an important role in the homeostasis of the CSE corresponds to histone methylations H3K9 and H3K27 essentially associated with transcriptional repression. These modifications are carried out by lysine methyltransferases (HKM) including G9a, or EZH2 belonging to the Polycomb PRC2 complex. They also recruit these protein complexes to maintain and propagate the change along the genome. Thus, in this context, my thesis work aimed to characterize two potential epigenetic factors recognizing histones H3K9me and H3K27me and interacting with the PRC2 complex. These studies have provided a better understanding of the role of these proteins in the regulation of murine embryonic stem cells. Our first data showed that our candidate genes are strongly expressed in murine embryonic stem cells CGR8 (mESC), unlike differentiated cells. Subsequently, the forced expression of one of these factors alters the CSE differentiation (CGR8) induced by LIF cytokine withdrawal. To better understand how maintaining the expression of our factor prevents the differentiation of embryonic stem cells, we analyzed the expression of pluripotency factors Oct4, Nanog, Sox2 and Klf4. We noted maintenance of the expression of these factors as well as the maintenance of the regulation of signals intervening upstream: including the maintenance of the activation of the JAK-STAT3 pathway for the maintenance of the pluripotent state, and the decrease of the MAPK-ERK pathway involved in differentiation processes
288

Study of a novel evolutionarily conserved pattern of histone acetylation

Rajan, Roshan Elizabeth 12 1900 (has links)
No description available.
289

Etude des mécanismes épigénétiques impliqués dans la kystogénèse chez le pathogène humain Toxoplasma gondii

Saksouk, Nehmé 02 December 2005 (has links) (PDF)
Le parasite intracellulaire Toxoplasma gondii est l'agent pathogène de la toxoplasmose. Cette maladie est gravissime pour le fœtus et pour l'individu immunodéprimé. L'interconversion du parasite de la forme tachyzoïte virulente à la forme bradyzoïte quiescente est au centre de la pathogénèse de cette infection. Ce processus engage une régulation coordonnée des gènes du parasite qui se traduit par une cascade d'évènements moléculaires au niveau de l'ADN. Des études suggèrent un contrôle transcriptionnel de l'interconversion avec l'expression exclusive de certains gènes dans une forme donnée. Cependant, ce parasite et son phyllum se distinguent des autres eucaryotes par une quasi-pénurie des facteurs spécifiques de transcription. Nous avons émis l'hypothèse que le niveau d'expression des gènes du Toxoplasme est étroitement régulé par la structure physique et la nature chimique de la chromatine. Ce manuscrit illustre l'influence majeure du « code histone » sur la différenciation parasitaire. Nous avons identifié plusieurs enzymes en charge de l'écriture de ce code. L'exemple le plus frappant est la découverte d'une methyltransférase TgCARM1 qui méthyle l'arginine 17 de l'histone H3, une marque activatrice de la transcription. Nous avons également identifié le premier complexe co-repressor du Toxoplasme (TgCRC). TgCRC en opposition avec l'acétylase TgGCN5 régule en partie la balance acétylation/déacétylation, qui en retour influe sur la différenciation parasitaire. L'ensemble de nos résultats converge vers l'idée de l'existence d'un « code histone parasitaire » hautement sophistiqué, qui a co-évolué avec celui de la cellule hôte parasitée.
290

Early Epigenetic Regulation of the Adaptive Immune Response Gene CIITA

Mehta, Ninad T 01 December 2010 (has links)
The precise regulation of Major Histocompatibility class II (MHC-II) genes plays an important role in the control of the adaptive immune response. MHC-II genes are expressed constitutively in only a few cell types, but their expression can be induced by the inflammatory response cytokine interferon gamma (INF-γ). The regulation of MHC-II is controlled by a Master Regulator, the class II transactivator (CIITA). Multiple studies have shown that CIITA regulated expression of MHC-II is controlled and induced by INF-γ. It has been also shown that a functional CIITA gene is necessary for the expression of MHC-II genes. CIITA is thus a general regulator of both constitutive and inducible MHC-II expression. Although much is known about the transcription factors necessary for CIITA expression, there is little information as to the epigenetic modifications and the requisite enzymes needed to provide these transcription factors access to DNA. Previous studies in the Greer lab have shown that increased levels of acetylation of histones H3 upon INF-γ stimulation, as does tri-methylation of H3K4 upon prolonged cytokine stimulation. Similar observations were made at early time points post IFN-γ stimulation, where there is an instantaneous increase in the levels of H3K18ac and H3K4me3. In contrast to this, the levels of silencing modifications begin to drop with in the first 20 minutes of IFN-γ stimulation. The binding of STAT1 reaches its peak at about 60 minutes and the first transcripts for the protein start to appear as early as 40 minutes post the cytokines stimulation. Our study is the first to link the rapidly occurring epigenetic changes at the CIITA promoter pIV to EZH2

Page generated in 0.0581 seconds