Spelling suggestions: "subject:"histone déacétylase"" "subject:"histone déacétylases""
1 |
Etude des mécanismes épigénétiques impliqués dans la kystogénèse chez le pathogène humain Toxoplasma gondiiSaksouk, Nehmé 02 December 2005 (has links) (PDF)
Le parasite intracellulaire Toxoplasma gondii est l'agent pathogène de la toxoplasmose. Cette maladie est gravissime pour le fœtus et pour l'individu immunodéprimé. L'interconversion du parasite de la forme tachyzoïte virulente à la forme bradyzoïte quiescente est au centre de la pathogénèse de cette infection. Ce processus engage une régulation coordonnée des gènes du parasite qui se traduit par une cascade d'évènements moléculaires au niveau de l'ADN. Des études suggèrent un contrôle transcriptionnel de l'interconversion avec l'expression exclusive de certains gènes dans une forme donnée. Cependant, ce parasite et son phyllum se distinguent des autres eucaryotes par une quasi-pénurie des facteurs spécifiques de transcription. Nous avons émis l'hypothèse que le niveau d'expression des gènes du Toxoplasme est étroitement régulé par la structure physique et la nature chimique de la chromatine. Ce manuscrit illustre l'influence majeure du « code histone » sur la différenciation parasitaire. Nous avons identifié plusieurs enzymes en charge de l'écriture de ce code. L'exemple le plus frappant est la découverte d'une methyltransférase TgCARM1 qui méthyle l'arginine 17 de l'histone H3, une marque activatrice de la transcription. Nous avons également identifié le premier complexe co-repressor du Toxoplasme (TgCRC). TgCRC en opposition avec l'acétylase TgGCN5 régule en partie la balance acétylation/déacétylation, qui en retour influe sur la différenciation parasitaire. L'ensemble de nos résultats converge vers l'idée de l'existence d'un « code histone parasitaire » hautement sophistiqué, qui a co-évolué avec celui de la cellule hôte parasitée.
|
2 |
Epigenetic regulations by insulin and histone deacetylase inhibitors of the insulin signaling pathway in muscle / Régulation épigénétiques par l’insuline et un inhibiteur des histones déacétylases sur la voie de signalisation de l’insuline dans le muscleChriett, Sabrina 03 October 2016 (has links)
L’émergence et le développement des maladies métaboliques est sous le contrôle de multiples facteurs génétiques et environnementaux. Le diabète et la résistance à l’insuline sont des maladies métaboliques caractérisées par des défauts dans la sécrétion de l’insuline ou son utilisation périphérique, ou les deux. L’insuline est l’hormone clé de l’utilisation du glucose, et régule également transcriptionnellement et épigénétiquement l’expression des gènes.En travaillant sur le muscle, l’implication de l’épigénétique dans la régulation de l’expression des gènes de la voie de l’insuline a été mis en évidence. L’hexokinase 2 (HK2) est régulée par l’insuline et participe au métabolisme glucidique. Le rôle de l’épigénétique y est démontré avec l’augmentation de l’acétylation des histones autour du site d’initiation de la transcription (SIT) de HK2 et l’accumulation d’une isoforme permissive des histones, H2A.Z. Ces deux phénomènes sont le signe d’une transcription permissive.Nous avons ensuite étudié le rôle de l’acétylation des histones dans les régulations amenées par l’insuline dans les myotubes L6. Nous avons utilisé le butyrate, un inhibiteur des histones deacetylase (HDACi), dans un contexte d’insulino-résistance induite par une lipotoxicité. Le butyrate a en partie restauré la sensibilité à l’insuline visible au niveau des phosphorylations de la PKB (protein kinase B) et de la MAPK (Mitogen-activated protein kinase), inhibées par le traitement au palmitate. Le butyrate a augmenté l’expression de l’ARNm et de la protéine d’IRS1. La surexpression génique d’IRS1 est épigénétique-dépendante car liée à une augmentation de l’acétylation des histones au SIT d’IRS1.L’ensemble de ces résultats démontre l’existence d’un lien entre les modifications épigénétique et l’action de l’insuline. Cela suggère qu’une intervention pharmacologique sur la machinerie épigénétique pourrait être un moyen d’améliorer le métabolisme, et l’insulino-résistance / Diabetes and insulin resistance are metabolic diseases characterized by altered glucose homeostasis due to defects in insulin secretion, insulin action in peripheral organs, or both. Insulin is the key hormone for glucose utilization and regulates gene expression via transcriptional and epigenetic regulations.We determined the epigenetic implications in the regulation of expression of insulin signaling pathway genes. Hexokinase 2 (HK2) is known to be upregulated by insulin and directs glucose into the glycolytic pathway. In L6 myotubes, we demonstrated that insulin-induced HK2 gene expression rely on epigenetic changes on the HK2 gene, including an increase in histone acetylation around the transcriptional start site (TSS) of the gene and an increase in the incorporation of the histone H2A.Z isoform – a histone variant of transcriptionally active chromatin. Both are epigenetic modifications compatible with increased gene expression.To elucidate the role of histone acetylation in the regulation of insulin signaling and insulin-dependent transcriptional responses in L6 myotubes, we investigated the effects of butyrate, an histone deacetylase inhibitor (HDACi), in a model of insulin resistance induced by lipotoxicity. Butyrate partly alleviated palmitate-induced insulin resistance by ameliorating insulin-induced PKB (protein kinase B) and MAPK (Mitogen-activated protein kinase) phosphorylations, downregulated with exposure to palmitate. Butyrate induced an upregulation of IRS1 gene and protein expression. The transcriptional upregulation of IRS1 was proven to be epigenetically regulated, with butyrate promoting increased histone acetylation around the TSS of the IRS1 gene.These results support the idea of the existence of a link between epigenetic modifications and insulin action. Pharmacological targeting of the epigenetic machinery might be a new approach to improve metabolism, especially in the insulin resistant condition.Key words: Muscle, insulin resistance, epigenetic, chromatin, histone acetylation, histone deacetylase inhibitor (HDACi), butyrate, palmitate
|
3 |
FONCTIONS UBIQUITINE-DEPENDANTES DE LA DEACETYLASE HDAC6Boyault, Cyril 01 December 2006 (has links) (PDF)
Avant le début de ma thèse, le laboratoire avait découvert et caractérisé HDAC6, une Histone Déacétylase atypique qui possède deux domaines déacétylases et peut interagir directement avec l'ubiquitine, grâce à son domaine ZnF-UBP. De plus, le laboratoire avait montré que HDAC6 interagit avec UFD3/PLAP, un régulateur du recyclage de l'ubiquitine, et p97/VCP, un orthologue murin de la chaperonne de levure Cdc48p. Cependant, aucune fonction biologique dans la voie d'ubiquitination des protéines n'était connue pour HDAC6. Nous avons tout d'abord observé que la surexpression de HDAC6 ralenti la dégradation des protéines poly-ubiquitinées, via son ZnF-UBP, son domaine de liaison à l'ubiquitine. Grâce à une série d'expériences, nous avons pu montrer que les complexes HDAC6-p97/VCP régulent directement la stabilité des protéines poly-ubiquitinées. L'accumulation intracellulaire de protéines poly-ubiquitinées peut être toxique pour les cellules si aucune réponse cellulaire n'est engagée. En réalité, une telle accumulation active le facteur de transcription Heat Shock Factor 1 (HSF1) afin de promouvoir la survie de la cellule. Grâce à ces considérations, nous avons découvert que HDAC6 contrôle la réponse cellulaire à l'accumulation de protéines poly-ubiquitinées et avons disséqué les mécanismes impliqués dans ce contrôle. Nous avons trouvé qu'en l'absence de stress, HDAC6 et HSF1 sont en complexes avec p97/VCP et HSP90. Cependant, lorsque la concentration intracellulaire en protéines poly-ubiquitinées augmente, comme lors d'une inhibition du protéasome, HDAC6 est re-larguée du complexe de manière ubiquitine et ZnF-UBP dépendante. Un tel re-largage permet ensuite à p97/VCP d'activer HSF1 et d'engager la cellule dans la réponse au stress.
|
4 |
Modulation de l'expression de Sirt-1 induite par l'endothéline-1 dans les cellules musculaires lisses vasculairesMir, Ahmed 08 1900 (has links)
Au cours des maladies cardiovasculaires (MCV), il peut se produire divers problèmes de santé, telle que l’insuffisance cardiaque ou encore l’HTA. Ces phénomènes se caractérisent, entre autres, par une augmentation de synthèse d’endotheline-1 (ET-1), un neuropeptide synthétisé par les cellules endothéliales ayant un effet vasoconstricteur sur les cellules musculaires lisses vasculaires (CMLV). Ainsi, la surexpression de ce vasopeptide, mène à terme, au maintien de l’HTA aggravée des sujets, précédée ou concomitante à l’athérosclérose ou à la resténose, cliniquement illustrées par une prolifération et une migration anormale des CMLV de la media vers l’intima des vaisseaux sanguins. Parallèlement, il a été observé que la protéine sirtuine-1 (Sirt-1), membre de la famille des protéines histones déacétylases (HDAC), présente des propriétés anti-athérosclérotiques par sa capacité d’atténuer la prolifération et la migration des CMLV. Des travaux récents ont aussi montré qu’au cours de l’HTA la protéine Sirt-1 est faiblement exprimée dans les CMLV. Son implication dans le développement des pathologies vasculaires semble apparente, mais des études demeurent nécessaires pour décrire son rôle exact dans la pathogenèse des MCV. Dans cette optique, l’objectif de cette étude a été d’observer la variation d’expression de Sirt-1 dans les CMLV, isolées de l’aorte ascendante de rat, en réponse à l’ET-1. On a remarqué qu’une heure de stimulation des CMLV avec l’ET-1 induit une diminution de l’expression de Sirt-1 via l’activation des récepteurs ETA. Ces résultats suggèrent que la capacité d’ET-1 à atténuer l’expression de Sirt-1 serait un éventuel mécanisme d’action avec des effets favorisant les MCV. / Cardiovascular diseases (CVD) are associated with several vascular dysfunctions such as heart failure and hypertension. These phenomena cause increased synthesis of endothelin-1 (ET-1), a neuropeptide, synthesized by endothelial cells which has vasoconstrictor action on vascular smooth muscle cells (VSMC). Overexpression of this vasopeptide leads eventually to hypertension (HTA). This usually happen after atherosclerosis or restenosis, leading to proliferation and migration of VSMC from media to intima. It was shown that during atherosclerosis, the protein sirtuin-1 (Sirt-1), a member of protein histone deacetylases (HDAC), has an anti-atherosclerotic effect due to its ability to diminish proliferation and migration of VSMC. It has also been observed that during hypertension, Sirt-1 was poorly expressed in VSMC. Its role in vascular pathophysiology remains sparsely studied, therefore it’s essential to explore it. In the present study we investigated the expression of Sirt-1 in VSMC isolated from the ascending aorta of rats, in response to ET-1 stimulation. We observed that Sirt-1 expression decreases after 1 hour of stimulation by ET-1 via ETA receptors. In summary, these results suggest that the ability of ET-1 to attenuate Sirt-1 expression in VSMC, may be a potential mechanism for promoting CVD.
|
5 |
Caractérisation de la fonction des complexes histone déacétylases Rpd3S et Set3CDrouin, Simon 05 1900 (has links)
La chromatine est essentielle au maintien de l’intégrité du génome, mais, ironiquement, constitue l’obstacle principal à la transcription des gènes. Plusieurs mécanismes ont été développés par la cellule pour pallier ce problème, dont l’acétylation des histones composant les nucléosomes. Cette acétylation, catalysée par des histones acétyl transférases (HATs), permet de réduire la force de l’interaction entre les nucléosomes et l’ADN, ce qui permet à la machinerie transcriptionnelle de faire son travail. Toutefois, on ne peut laisser la chromatine dans cet état permissif sans conséquence néfaste. Les histone déacétylases (HDACs) catalysent le clivage du groupement acétyle pour permettre à la chromatine de retrouver une conformation compacte.
Cette thèse se penche sur la caractérisation de la fonction et du mécanisme de recrutement des complexes HDACs Rpd3S et Set3C. Le complexe Rpd3S est recruté aux régions transcrites par une interaction avec le domaine C-terminal hyperphosphorylé de Rpb1, une sous-unité de l’ARN polymérase II. Toutefois, le facteur d’élongation DSIF joue un rôle dans la régulation de cette association en limitant le recrutement de Rpd3S aux régions transcrites. L’activité HDAC de Rpd3S, quant à elle, dépend de la méthylation du résidu H3K36 par l’histone méthyltransférase Set2.
La fonction du complexe Set3C n’est pas clairement définie. Ce complexe est recruté à la plupart de ses cibles par l’interaction entre le domaine PHD de Set3 et le résidu H3K4 di- ou triméthylé. Un mécanisme indépendant de cette méthylation, possiblement le même que pour Rpd3S, régit toutefois l’association de Set3C aux régions codantes des gènes les plus transcrits.
La majorité de ces résultats ont été obtenus par la technique d’immunoprécipitation de la chromatine couplée aux biopuces (ChIP-chip). Le protocole technique et le design expérimental de ce type d’expérience fera aussi l’objet d’une discussion approfondie. / Chromatin is essential for the maintenance of genomic integrity but, ironically, is also the main barrier to gene transcription. Many mechanisms, such as histone acetylation, have evolved to overcome this problem. Histone acetylation, catalyzed by histone acetyltransferases (HATs), weakens the internucleosomal and nucleosome-DNA interactions, thus permitting the transcriptional machinery access to its template. However, this permissive chromatin state also allows for opportunistic DNA binding events. Histone deacetylases (HDACs) help restore a compact chromatin structure by catalyzing the removal of acetyl moieties from histones.
This thesis focuses on the characterization of the function and of the recruitment mechanism of HDAC complexes Rpd3S and Set3C. The Rpd3S complex is recruited to actively transcribed coding regions through interactions with the hyperphosphorylated C-terminal domain of Rpb1, a subunit of RNA polymerase II, with the DSIF elongation factor playing a role in limiting this recruitment. However, the HDAC activity of Rpd3S depends on H3K36 methylation, which is catalyzed by the Set2 histone methyltransferase.
The Set3C complex’ function is still not clearly defined. It is recruited to most of its targets through the interaction between the Set3 PHD domain and di- or trimethylated H3K4. However, Set3C recruitment to genes displaying high RNA polymerase II occupancy is independent of H3K4 methylation. The mechanism by which Set3C is recruited to this gene subset is under investigation.
These results have mostly been obtained through chromatin immunoprecipitation coupled to tiling microarrays (ChIP-chip). The protocol and experimental design challenges inherent to this technique will also be discussed in depth.
|
6 |
Caractérisation de la fonction des complexes histone déacétylases Rpd3S et Set3CDrouin, Simon 05 1900 (has links)
La chromatine est essentielle au maintien de l’intégrité du génome, mais, ironiquement, constitue l’obstacle principal à la transcription des gènes. Plusieurs mécanismes ont été développés par la cellule pour pallier ce problème, dont l’acétylation des histones composant les nucléosomes. Cette acétylation, catalysée par des histones acétyl transférases (HATs), permet de réduire la force de l’interaction entre les nucléosomes et l’ADN, ce qui permet à la machinerie transcriptionnelle de faire son travail. Toutefois, on ne peut laisser la chromatine dans cet état permissif sans conséquence néfaste. Les histone déacétylases (HDACs) catalysent le clivage du groupement acétyle pour permettre à la chromatine de retrouver une conformation compacte.
Cette thèse se penche sur la caractérisation de la fonction et du mécanisme de recrutement des complexes HDACs Rpd3S et Set3C. Le complexe Rpd3S est recruté aux régions transcrites par une interaction avec le domaine C-terminal hyperphosphorylé de Rpb1, une sous-unité de l’ARN polymérase II. Toutefois, le facteur d’élongation DSIF joue un rôle dans la régulation de cette association en limitant le recrutement de Rpd3S aux régions transcrites. L’activité HDAC de Rpd3S, quant à elle, dépend de la méthylation du résidu H3K36 par l’histone méthyltransférase Set2.
La fonction du complexe Set3C n’est pas clairement définie. Ce complexe est recruté à la plupart de ses cibles par l’interaction entre le domaine PHD de Set3 et le résidu H3K4 di- ou triméthylé. Un mécanisme indépendant de cette méthylation, possiblement le même que pour Rpd3S, régit toutefois l’association de Set3C aux régions codantes des gènes les plus transcrits.
La majorité de ces résultats ont été obtenus par la technique d’immunoprécipitation de la chromatine couplée aux biopuces (ChIP-chip). Le protocole technique et le design expérimental de ce type d’expérience fera aussi l’objet d’une discussion approfondie. / Chromatin is essential for the maintenance of genomic integrity but, ironically, is also the main barrier to gene transcription. Many mechanisms, such as histone acetylation, have evolved to overcome this problem. Histone acetylation, catalyzed by histone acetyltransferases (HATs), weakens the internucleosomal and nucleosome-DNA interactions, thus permitting the transcriptional machinery access to its template. However, this permissive chromatin state also allows for opportunistic DNA binding events. Histone deacetylases (HDACs) help restore a compact chromatin structure by catalyzing the removal of acetyl moieties from histones.
This thesis focuses on the characterization of the function and of the recruitment mechanism of HDAC complexes Rpd3S and Set3C. The Rpd3S complex is recruited to actively transcribed coding regions through interactions with the hyperphosphorylated C-terminal domain of Rpb1, a subunit of RNA polymerase II, with the DSIF elongation factor playing a role in limiting this recruitment. However, the HDAC activity of Rpd3S depends on H3K36 methylation, which is catalyzed by the Set2 histone methyltransferase.
The Set3C complex’ function is still not clearly defined. It is recruited to most of its targets through the interaction between the Set3 PHD domain and di- or trimethylated H3K4. However, Set3C recruitment to genes displaying high RNA polymerase II occupancy is independent of H3K4 methylation. The mechanism by which Set3C is recruited to this gene subset is under investigation.
These results have mostly been obtained through chromatin immunoprecipitation coupled to tiling microarrays (ChIP-chip). The protocol and experimental design challenges inherent to this technique will also be discussed in depth.
|
Page generated in 0.0643 seconds