• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 12
  • 11
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 20
  • 16
  • 14
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild / Aplications of the Groebner Basis theory to the computation of the Hochschild Cohomology

Amaya, Ana Melisa Paiba 24 October 2018 (has links)
A Cohomologia de Hochschild é um invariante associado a álgebras o qual pode nos fornecer propiedades homologicas das álgebras e suas categorias de módulos. Além disso tem aplicações em Geometria Algébrica e Teoria de Representações, entre outras áreas. Para álgebras A sobre um corpo, o i-ésimo grupo de cohomologia de Hochschild HH^i(A,M) de A, com coeficientes no bimódulo M, coincide com Ext^i_{A^e}(A,M). Logo, este pode ser calculado usando uma resolução projetiva da álgebra como A-bimódulo. Diferentes autores como Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell e Andrea Solotar desenvolveram ferramentas para a construção destas resoluções em casos específicos. Um resultado recente e muito importante é apresentado por Andrea Solotar e Sergio Chohuy, onde se mostra a construção de uma resolução projetiva de bimódulos para álgebras associativas generalizando o resultado para álgebras monomiais feito por Bardzell. Nesta dissertação pretendemos introduzir ao leitor no conceito de Cohomologia de Hochschild mostrando a importância da mesma mediante resultados conhecidos para álgebras de dimensão finita. Além disso, apresentamos os conceitos e resultados do trabalho de Chohuy e Solotar mencionado acima. No decorrer deste trabalho complementamos algumas demonstrações dos resultados enunciados com o fim de propiciar uma ferramenta para o melhor entendimento dos tópicos trabalhados aqui. / The Hochschild Cohomology is an invariant attached to associative algebras which may provide us some homological aspects of the algebras and its category of modules. Moreover, it has applications to Algebraic Geometry and Representation Theory, among others areas. For algebras A over a field the Hochschild cohomology group HH^i(A,M) of A with coeficients in a bimodule M coincides with Ext^i_{A^e}(A,M). So it can be computed using a projective resolution of the algebra, as a bimodule over itself. Therefore different authors like Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell, Sergio Chohuy and Andrea Solotar developed tools for the construction of these resolutions in particular cases. A recent and very important result was introduced by Andrea Solotar and Sergio Chohuy, where they show a construction of a projective bimodule resolution for associative algebras generalizing the result for monomial algebras made by Bardzell. In this dissertation we intend to introduce the reader in the cohomology Hochschild concept, showing its importance through known results for finite dimensional algebras. Besides, we exhibit the concepts and results of Chohuy and Solotar mentioned before. During this text, we complement some demonstrations with the purpose of giving a tool for the a better understanding.
12

Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild / Aplications of the Groebner Basis theory to the computation of the Hochschild Cohomology

Ana Melisa Paiba Amaya 24 October 2018 (has links)
A Cohomologia de Hochschild é um invariante associado a álgebras o qual pode nos fornecer propiedades homologicas das álgebras e suas categorias de módulos. Além disso tem aplicações em Geometria Algébrica e Teoria de Representações, entre outras áreas. Para álgebras A sobre um corpo, o i-ésimo grupo de cohomologia de Hochschild HH^i(A,M) de A, com coeficientes no bimódulo M, coincide com Ext^i_{A^e}(A,M). Logo, este pode ser calculado usando uma resolução projetiva da álgebra como A-bimódulo. Diferentes autores como Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell e Andrea Solotar desenvolveram ferramentas para a construção destas resoluções em casos específicos. Um resultado recente e muito importante é apresentado por Andrea Solotar e Sergio Chohuy, onde se mostra a construção de uma resolução projetiva de bimódulos para álgebras associativas generalizando o resultado para álgebras monomiais feito por Bardzell. Nesta dissertação pretendemos introduzir ao leitor no conceito de Cohomologia de Hochschild mostrando a importância da mesma mediante resultados conhecidos para álgebras de dimensão finita. Além disso, apresentamos os conceitos e resultados do trabalho de Chohuy e Solotar mencionado acima. No decorrer deste trabalho complementamos algumas demonstrações dos resultados enunciados com o fim de propiciar uma ferramenta para o melhor entendimento dos tópicos trabalhados aqui. / The Hochschild Cohomology is an invariant attached to associative algebras which may provide us some homological aspects of the algebras and its category of modules. Moreover, it has applications to Algebraic Geometry and Representation Theory, among others areas. For algebras A over a field the Hochschild cohomology group HH^i(A,M) of A with coeficients in a bimodule M coincides with Ext^i_{A^e}(A,M). So it can be computed using a projective resolution of the algebra, as a bimodule over itself. Therefore different authors like Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell, Sergio Chohuy and Andrea Solotar developed tools for the construction of these resolutions in particular cases. A recent and very important result was introduced by Andrea Solotar and Sergio Chohuy, where they show a construction of a projective bimodule resolution for associative algebras generalizing the result for monomial algebras made by Bardzell. In this dissertation we intend to introduce the reader in the cohomology Hochschild concept, showing its importance through known results for finite dimensional algebras. Besides, we exhibit the concepts and results of Chohuy and Solotar mentioned before. During this text, we complement some demonstrations with the purpose of giving a tool for the a better understanding.
13

Estruturas de Poisson não comutativas / Noncommutative Poisson structures.

Orseli, Marcos Alexandre Laudelino 27 February 2019 (has links)
Introduzimos o conceito de estrutura de Poisson não comutativa em álgebras associativas e mostra como este conceito se relaciona com o caso clássico, quando a álgebra em questão é a álgebra de funções em uma variedade de Poisson. Mostramos como quocientes simpléticos, não necessariamente suaves, fornecem exemplos de estruturas de Poisson não comutativas. / We introduce the concept of noncommutative Poisson structure on associative algebras and shows how this concept is related to the classical case, that is, the algebra under study is the algebra of functions on a Poisson manifold. We also show how symplectic quotients, not necessarily smooth, provides examples of noncommutative Poisson structures.
14

Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra / Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associative

Armenta Armenta, Marco 10 September 2019 (has links)
Dans cette thèse nous démontrons que le calcul de Tamarkin-Tsygan d’une algèbre `associative de dimension finie sur un corps est un invariant dérivé. En d’autres mots, le résultat principal de ce travail est le suivant : une équivalence dérivée entre deux algèbres de dimension finie sur un corps induit un isomorphisme entre l’homologie de Hochschild et la cohomologie de Hochschild qui respecte simultanément le cup produit, le cap produit, le crochet de Gerstenhaber et la ´différentielle de Connes. / In this thesis we prove that the Tamarkin-Tsygan calculus of a finite dimensionalassociative algebra over a field is a derived invariant. In other words, the mainresult of this work goes as follows: a derived equivalence between two finite dimensional associative algebras over a field induces an isomorphism betweenHochschild homology and Hochschild cohomology that respects simultaneouslythe cup product, the cap product, the Gerstenhaber bracket and the Connes differential.
15

Champs de modules des catégories linéaires et abéliennes

Anel, Mathieu 23 June 2006 (has links) (PDF)
Les catégories linéaires ont naturellement plusieurs notions d'identification : l'isomorphie, l'équivalence de catégories et l'équivalence de Morita. On construit les champs classifiant les catégories pour ces trois structures ($\ukcatiso$, $\ukcateq$, $\ukcatmor$) ainsi que le champ classifiant les catégories abéliennes ($\ukab$), l'originalité étant que les trois derniers champs sont des champs supérieurs.<br /><br />Le résultat principal de la thèse est que, sous des conditions de finitude des objets classifiés, ces champs sont géométriques au sens de C.~Simpson. En particulier, on trouve que les complexes tangents de ces champs en une catégorie $C$, i.e. les objets classifiant les déformations au premier ordre de $C$, sont donnés par des tronqués du complexe de cohomologie de Hochschild de $C$.<br /><br />En plus, il existe une suite naturelle de morphismes surjectifs de champs :<br />$$\ukcatiso \tto \ukcateq \tto \ukcatmor \tto \ukab$$<br />dont on montre que celui du milieu est étale, et celui de droite une équivalence.
16

La structure de Lie de la cohomologie de Hochschild d'algèbres monomiales.

Sanchez-Flores, Selene 15 June 2009 (has links) (PDF)
Cette thèse porte sur la structure de Lie de la cohomologie de Hochschild, donnée par le crochet de Gerstenhaber. Plus précisément, on étudie la structure d'algèbre de Lie du premier groupe de cohomologie et la structure de module de Lie des groupes de cohomologie de Hochschild de certaines algèbres monomiales. Une algèbre monomiale est définie comme le quotient de l'algèbre de chemins d'un carquois par un idéal bilatère admissible engendré par un ensemble de chemins de longueur au moins deux. On utilise les données combinatoires intrinsèques à de telles algèbres pour étudier la structure de Lie définie sur la cohomologie de Hochschild. En fait, on examine deux aspects de cette structure algébrique. Le premier est la relation entre la semi-simplicité du premier groupe de cohomologie de Hochschild et la nullité des groupes de cohomologie de Hochschild. Dans le second aspect, on se concentre sur la structure de module de Lie des groupes de cohomologie de Hochschild d'une famille d'algèbres particulière: celles dont le radical de Jacobson au carré est nul.
17

Le groupe fondamental algébrique

Reynaud, Eric 18 June 2002 (has links) (PDF)
Dans l'optique d'étudier les modules de génération finie sur des algèbres de dimension finie, il a été développé ces dernières années une méthode diagramatique, essentiellement due à P. Gabriel, basée sur des carquois, c'est-à-dire sur des graphes orientées finis. Plus précisément, il a été démontré que pour toute algèbre A sobre de dimension finie sur un corps k algébriquement clos, il existe un carquois unique Q et au moins un idéal I admissible de l'algèbre kQ, l'algèbre des chemins de Q, tels que A soit isomorphe à kQ=I. Un tel couple (Q; I) est nommé une présentation de A par carquois et relations. Pour chaque paire (Q; I), nous pouvons définir un groupe fondamental Pi1(Q; I). En général, cependant, différentes présentations d'une même algèbre peuvent conduire à des groupes fondamentaux difféerents. Ainsi, une algèbre dont toutes les présentations donnent un groupe fondamental trivial est appelée simplement connexe. L'importance des algèbres simplement connexes dans la théorie des représentations d'algèbres réside dans le fait que souvent il est possible de réduire, avec l'aide des recouvrements, l'étude des modules indécomposables d'une algèbre à ceux d'une algèbre simplement connexe bien choisie. Le premier résultat consiste à donner une vision géométrique du groupe fondamental pour une certaine classe d'algèbre : les algèbres d'incidence. Ces algèbres ont une particularité : leur groupe fondamental ne dépend pas du choix de la présentation. Ainsi, à chaque algèbre d'incidence, il est possible d'associer un groupe fondamental algébrique. Par ailleurs, à partir de ce poset, est possible de construire un complexe simplicial qui possède quant à lui un groupe fondamental topologique. Nous prouvons, ici, que ces groupes sont isomorphes. Ce lien permet non seulement d'adapter certains théorèmes de topologie tel que le théorème de Van Kampen, mais également de faire le lien entre des résultats déjà établis en topologie et d'autres en théorie des représentations. Dans un deuxième temps, afn de donner une vision géométrique de tout groupe fondamen- tal algébrique, nous avons associé à toute présentation (Q; I) d'algèbre une algèbre d'incidence A dont le groupe fondamental a la particularité, d'après le résultat précédent, de se réaliser géométriquement. Nous montrons ensuite que les groupes fondamentaux précédents s'insèrent dans la suite exacte : 1 --> H --> Pi1(Q; I) --> Pi1(A) --> 1 où H est un sous-groupe décrit par générateur et relations. Nous donnons également de nom- breux cas où le sous groupe H est trivial. Enfin, nous donnons un algorithme de calcul du groupe fondamental, qui permet de présenter rapidement le groupe fondamental par générateurs et relations. Pour calculer le groupe fondamental d'un couple (Q; I), nous montrons qu'il est isomorphe au groupe fondamental d'un couple (Q0; I0) où Q0 contient un sommet de moins que Q. Ainsi en réitérant le processus, le groupe fondamental Pi1(Q; I) est isomorphe au groupe fondamental d'un carquois ne contenant qu'un seul sommet, ce qui donne une présentation par générateurs et relations.
18

”Jag är inte polis, jag arbetar som polis” : En studie av förhållandet mellan rollen som polis och privatperson

Lindfors, Daniel January 2011 (has links)
Denna studie syftar till att öka förståelsen för hur poliser inom Stockholms polismyndighet förhåller sig till sin yrkesroll och för hur relationen mellan yrkesroll och privatroll upprätthålls med fokus på det emotionella arbete som ingår i polisrollen. Studien bygger på fem kvalitativa samtalsintervjuer med poliser som arbetar inom två av Stockholms läns åtta polisdistrikt, och som har en tjänstgöringsålder på mellan två till fyra år. Den insamlade empirin har analyserats med hjälp av Goffmans dramaturgiska perspektiv samt tidigare forskning om emotioner relaterade till det polisiära yrket. Uppsatsen visar att respondenterna strävar efter att särskilja sin yrkesroll från rollen som privatperson i mötet med allmänheten, vilket av respondenterna anses vara en förutsättning för att kunna prestera i sin yrkesroll. Om denna åtskillnad ej görs kan den enskilda polisen få svårigheter att spela rollen som polis vilken kan leda till att allmänheten ej vet om individen agerar i egenskap av polis eller privatperson vilket kan leda till svårigheter för den enskilda polisen i sitt yrkesagerande. Uppsatsen visar vidare hur respondenterna under arbetstid kan skifta mellan rollen som polis och privatperson då allmänheten ej är närvarande och de befinner sig på en plats förbehållen för poliser. Intervjuerna vittnar om att skiftet mellan rollen som polis och privatperson kan ske mycket hastigt och ofta per automatik varför respondenterna menar att de ej behöver reflektera över detta skifte.
19

On the cohomology of joins of operator algebras

Husain, Ali-Amir 30 September 2004 (has links)
The algebra of matrices M with entries in an abelian von Neumann algebra is a C*-module. C*-modules were originally defined and studied by Kaplansky and we outline the foundations of the theory and particular properties of M. Furthermore, we prove a structure theorem for ultraweakly closed submodules of M, using techniques from the theory of type I finite von Neumann algebras. By analogy with the classical join in topology, the join for operator algebras A and B acting on Hilbert spaces H and K, respectively, was defined by Gilfeather and Smith. Assuming that K is finite dimensional, Gilfeather and Smith calculated the Hochschild cohomology groups of the join. We assume that M is the algebra of matrices with entries in a maximal abelian von Neumann algebra U, A is an operator algebra acting on a Hilbert space K, and B is an ultraweakly closed subalgebra of M containing U. In this new context, we redefine the join, generalize the calculations of Gilfeather and Smith, and calculate the cohomology groups of the join.
20

The A-infinity Algebra of a Curve and the J-invariant

Fisette, Robert, Fisette, Robert January 2012 (has links)
We choose a generator G of the derived category of coherent sheaves on a smooth curve X of genus g which corresponds to a choice of g distinguished points P1, . . . , Pg on X. We compute the Hochschild cohomology of the algebra B = Ext (G,G) in certain internal degrees relevant to extending the associative algebra structure on B to an A1-structure, which demonstrates that A1-structures on B are finitely determined for curves of arbitrary genus. When the curve is taken over C and g = 1, we amend an explicit A1-structure on B computed by Polishchuk so that the higher products m6 and m8 become Hochschild cocycles. We use the cohomology classes of m6 and m8 to recover the j-invariant of the curve. When g 2, we use Massey products in Db(X) to show that in the A1-structure on B, m3 is homotopic to 0 if and only if X is hyperelliptic and P1, . . . , Pg are chosen to be Weierstrass points. iv

Page generated in 0.0314 seconds