• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 39
  • 18
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 157
  • 54
  • 54
  • 37
  • 33
  • 33
  • 32
  • 31
  • 24
  • 23
  • 22
  • 16
  • 15
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Regulation of Heat Shock Protein 70 Levels in Red Blood Cells of Rainbow Trout

Henrickson, Lynsi January 2010 (has links)
The physiological responses to stressor exposure can be broadly grouped into the organismal and the cellular stress responses. The organismal stress response involves the release of hormones into general circulation, while the cellular stress response involves the synthesis of proteins, the most important being the heat shock proteins (HSPs), which play a role in maintaining protein homeostasis. Elevated HSP70 expression in response to stressors has been demonstrated in trout (Oncorhynchus mykiss) red blood cells (RBCs). The ease of repeated sampling of blood suggests the possibility of using this tissue as a non-lethal marker of cellular stress in fish. This study tested the hypothesis that stressor exposure will elevate HSP70 expression in trout RBCs and the role of stress hormones in mediating this response. Acute heat shock exposure (+12oC) significantly elevated plasma cortisol, glucose and lactate levels in heat shocked fish over 24 h. A tissue-specific response was seen in HSP70 expression in liver, brain, gill and RBCs. To enable measurement of RBC HSP70 concentrations, an enzyme-linked immunosorbent assay (ELISA) was developed using a commercially available rabbit anti-salmon HSP70 and a recombinant chinook salmon (Oncorhynchus tshawytscha) HSP70. To determine effects of chronic exposure, two studies were conducted exposing trout to either cadmium (0, 0.75 or 2.0 µg/L over 28 d) or municipal wastewater effluent (0, 20 or 90% over 14 d). However, neither exposure elicited a significant HSP70 response. Effects of stress hormones on RBC HSP70 levels were tested by exposing cells in vitro to either cortisol (10 and 100 ng/mL) or epinephrine (10 nM) with or without heat shock. Heat shock elevated HSP70 content in trout RBCs but no modulation by stress hormones was seen. It was shown for the first time that RBCs release HSP70 content into the medium in response to an acute heat shock and this release is attenuated by stress hormones. Overall, HSP70 levels in RBCs have the potential to be a reliable non-lethal marker of acute cellular stress effects in fish. The release of HSP70 from RBCs leads to the hypothesis that HSP70 may also have an extracellular role in fish, and warrants further study.
92

Heat Shock Protein 70 Of Plasmodium Falciparum: Proteomic Analysis Of Its Complexes And Cellular Functions

Singh, Varsha 10 1900 (has links)
Hest shock protein 70 (Hsp70) class of chaperones is highly conserved and present ubiquitously in all cellular organisms They play important role in folding of nascent polypeptides and translocation of precursor proteins to endoplasmic reticulum, mitochondria and chloroplast Hsp70 assists in assembly of proteins complexes as well as in disassembly e g uncoatmg of clathrin coated vesicles Chaperone function of Hsp70 is modulated by cochaperones of DnaJ class, Hip, Hop etc Hsp70 is a component of multi chaperone complex with Hsp90 and helps in maturation of kinases or transcription factors. Plasmodium falciparum is responsible for most severe form of human malaria Plasmodmm in its intraerythrocytic cycle presents an example of a cell with multiple, complex membrane bound structures both inside the parasite as well as m the infected erythrocyte cytosol Parasite deploys proteins in host erythrocyte cytosol, at erythrocyte plasma membrane or traffics them for secretion outside the infected cell in addition to trafficking of proteins to its own organelles like mitochondria, apicoplast, food vacuole, ER etc It is of interest to malaria biologists to understand these trafficking events and role of chaperones in regulating them This study was aimed at understanding the function(s) of Hsp70 in Plasmodium infected erythrocyte in protein maturation and trafficking events We have attempted to study Hsp70 chaperone present in Plasmodium infected erythrocytes We have largely focused on the cytosohc Hsp70, PfHsp70, in the parasite and systematically analyzed its expression, localization, abundance and complexes in the intraerythrocytic cycle To gain insight into its function, we have identified a subset of PfHsp70 interacting proteins, parasite Hsp90, Hsp70-3, Hsp60 and beta tubulin by coimmunoprecipitation experiments in conjunction with proteomic tools like 2DGE and mass spectrometry Parasite Hsp60 is a mitochondria-targeted protein and we have examined the involvement of PfHsp70 in translocation of Hsp60 precursor protein to parasite mitochondrion PfHsp70 and PfHsp90 were found to be present in a complex Geldanarnycm, a drug that affects Hsp70-Hsp90 complex, was used to investigate the role of PfHsp70 in parasite protein trafficking Since there are no known parasite derived chaperones in erythrocyte cytosol compartment, we have examined the possible "involvement of host Hsp70 in supporting transport and assembly of parasite proteins in erythrocyte cytosol Hsp70 in Plasmodium falciparum intraerythrocytic cycle P. falciparum genome codes for five Hsp70 homologs Two of these, pfHsp70-l and PfBiP are expressed in intraerythrocytic stage and have been localized to nucleocytoplasmic and endoplasmic reticulum fraction of the parasite respectively We have focused this study on PfHsp70 of the parasite We show that PfHsp70 is an abundant protein in the cytosol constituting about 2% of the total soluble pool It gets further induced during stress like heat shock and translocates to nuclear fraction indicating that PfHsp70 may be involved in protective function in the parasite nucleus during stress Nuclear translocation of mammalian Hsp70 during stress has been linked to its phosphorylation at Tyr524 We found PfHsp70 to be phosphorylated by in vivo phosphate labeling m the parasite Analysis of PfHsp70 by 2-dimensional gel electrophoresis on narrow gradient IPG strips indicated that it exists in four forms differing in their isoelectnc points (pi) Phosphatase treatment combined with analysis using a phosphorylation prediction tool,Proteomod (http //www biochem use ernet in/proteomod html) suggested that PfHsp70 is phosphorylated at three residues in the parasite The extent of phosphorylation of PfHsp70 may determine substrate specificity or subcellular localization or both Using 2DGE and mass spectrometry approach, we also identified chaperones like Hsp909 BiP, Hsp60, and protein disulphide isomerase (PDI) m P falciparum proteome In summary, PfHsp70 appears to be a highly abundant, cytosohc chaperone It is inducible by stress and multiply phosphorylated and is likely to participate in multiple processes in the parasite. PfHsp70 complexes and interacting proteins in the parasite To gam insight into the functions of Hsp70, we looked for PfHsp70 interacting proteins in the parasite We used gel filtration chromatography to resolve and enrich PfHsp70 complexes and also employed coimmunoprecipitation approach to identify interacting proteins We found parasite Hsp90, Hsp70-3, Hsp60 and beta-tubulin interact with PfHsp70 Fractionation of parasite lysate indicated that PfHsp70 is present in two major complexes of 200 kDa and 450 kDa We find that PfHsp90 interacts with PfHsp70 and both are present in 450 kDa complex Our analysis indicated that 450-kDa complex is like Hsp70-Hsp90 multichaperone complex described in mammalian cells while 200 kDa complex is likely to be an Hsp70-cochaperone complex Smaller complex appears to be a precursor for multichaperone complex Use of an Hsp90 inhibitor, geldanamycin (GA), to study the function of this multi chaperone showed that GA inhibits parasite growth Maturation of four phosphoproteins interacting with PfHsp70 was affected by GA implicating them in regulation of parasite growth GA appeared to mediate its effects by inhibiting H§p^0 phosphorylation Amongst the other three interacting proteins, PfHsp70-3 is amoveJ/Hsp70 homolog that was found at the protein level for the first time in this study PfHsp60 is mitochondria-targeted protein in the parasite and it is likely that cytoshc PfHsp70 helps in translocation of PfHsp60 to mitochondria from cytosol Tubuhn is a cytoskeletal protein and its interaction with PfHsp70 suggests possible role of PfHsp70 in cytoskeleton organization during invasion, growth or cell division In all, we find that Hsp70 in the parasite exist in a multi chaperone complex with Hsp90 which might be responsible for maturation of signaling molecules important for growth The smaller complex of PfHsp70 is a precursor of multi chaperone complex and is likely to be an Hsp70- co chaperone complex Role of Hsp70 in protein translocation and trafficking Cytosolic Hsp70 aids in translocation of precursor proteins from cytosol to mitochondria (or chloroplast) We found a mitochondnal chaperone, PfHsp60, interact with PfHsp70 and we examined the possibility that PfHsp60 translocation is assisted by cytosolic PfHsp70 We found that PfHsp60 had a cleavable, N-thermal targeting sequence Examination of PfHsp60 forms present in mitochondnal and cytosolic fraction of the parasite showed that mitochondnal form was more acidic in pi than cytosolic form as expected after targeting sequence cleavage Cytosolic PfHsp60 interacted with both PfHsp70 and PfHsp90 Interestingly, while mitochondnal PfHsp60 appeared to be in a chaperonm like complex, as expected, cytosolic form was present in smaller ohgomeric complex of about 450 kDa This suggested that PfHsp60 precursor form could be bound to multichperone complex All these experiments together strongly indicated that PfHsp60 precursor interacts with cytosolic Hsp70 and Hsp90 before former's translocation into mitochondria This interaction might be required to keep the precursor in the transport competent state P falciparum lives inside a vacuole in the infected cells but it deploys a number of proteins to host cell cytosol and to the plasma membrane To examine the involvement of multichaperone complex in trafficking, we studied the effect of GA on targeting of two parasite proteins, knob associated histidme-rich protein (KAHRP) and glycogen synthase kinase (GSK) KAHRP is indispensable for the formation of cytoadherence complexes called knobs at erythrocyte plasma membrane We found that KAHRP transport to erythrocyte plasma membrane was blocked in GA-treated parasites and it appeared all over the infected cell Further analysis showed that GA caused block in KAHRP transport at some step beyond its exit from parasite ER The targeting of GSK to membranous inclusions in the infected RBC cytosol was not severely affected m the GA-treated parasites suggesting that GSK transport may not be regulated by multi chaperone complex It also indicated that parasite may be using different pathways for trafficking of proteins to the host compartment In summary, PfHsp70 and PfHsp90 interact with PfHsp60 precursor in the cytosol They probably help keep the precursor in transport competent form before arrival at the translocase complex of mitochondria The multi chaperone complex may also be important for trafficking of at least one parasite protein, KAHRP, to the host cell compartment Analysis of erythrocyte Hsp70 in Plasmodium falciparum infected cells The remodeled plasma membrane of parasite-infected erythrocytes is important for the cytoadherence property of the infected cells Knobs, supramolecular complexes on the infected cell surface, formed by parasite proteins, PfEMPl, KAHRP, and PfEMP3 are responsible for cytoadherence of infected cells to vascular endothehum or placenta KAHRP transport is BFA-sensitive inside the parasite while PfEMP proteins undergo vesicle mediated trafficking in the erythrocyte cytosol The involvement of molecular chaperones has been implicated in the trafficking and assembly of knob components in the erythrocyte cytosol There is no evidence for the presence of bona fide parasite derived chaperones in the host compartment The chaperones of the erythrocyte origin, Hsp70, Hsp90, Hip and Hop were readily detected in the host cytosol, on the other hand By analyzing localization, abundance and biochemical characteristics of the host chaperones of erythrocyte origin, we examined if host chaperones are being utilized by the parasite for its functions Localization experiment showed that while PfHsp70, PfHsp90 and PfBiP were present in the parasite compartment, host-Hsp70 was present in erythrocyte cytosol fraction Host~Hsp70 was about 60% as abundant as PfHsp70 and was potentially capable of facilitating chaperone function in the erythrocyte cytosol Though host-Hsp70 was soluble in unmfected cells, it was present in membrane bound, triton-insoluble complexes, containing KAHRP, in infected cells Since knobs are triton-insoluble complexes at the erythrocyte plasma membrane, we isolated erythrocyte ghost (plasma membrane) fraction and could detect both Hsp70 and KAHRP Hsp70 association with erythrocyte plasma membrane was specific as it could be crosshnked to KAHRP in ghost fraction of infected cells Host-hsp70 was present in purified cytoskeleton fraction containing knobs from infected cells along with cochaperone Hop All these evidences suggest that parasite may be exploiting host-Hsp70 in erythrocyte cytosol compartment Summary This study gives insight into some functions performed by PfHsp70 in mtraerythrocytic cycle of malarial parasite PfHsp70 is an abundant cytosohc chaperone in the parasite It gets induced during stress and translocates to the nucleus It is also phosphorylated at three sites Analysis of Pfhsp70 complexes shows that it is present in bimodal complexes (450 kDa and 200 kDa), which are in equilibrium PfHsp70 and PfHsp90 interact and are part of 450 kDa multichaperone complex This multichaperone complex appears to regulate trafficking of one parasite protein to host cytosol compartment In addition, PfHsp70 and PfHsp90 are also bound to mitochondria-targeted PfHsp60 precursor in the cytosol probably keeping them m a transport competent state In addition to PfHsp90 and PfHsp60, PfHsp70 interacts with a novel Hsp70 homolog of the parasite, PfHsp70-3, and cytoskeletal protein, beta-tubuhn Examination of chaperones available in erythrocyte cytosol, showed that parasite chaperones were absent while host chaperone (Hsp70) was present and exhibited altered properties during parasite infection It was associated with membrane-bound, triton-insoluble complexes on the infected cell plasma membrane suggesting that host-Hsp70 might be involved in trafficking and/or assembly of parasite proteins In all, PfHsp70, as part of multichaperone complex, appears to be regulating translocation and trafficking of parasite proteins to organellar locations or outside the parasite Host-Hsp70, in erythrocyte cytosol, might also be engaged in specific chaperone function upon infection
93

Regulation of Heat Shock Protein 70 Levels in Red Blood Cells of Rainbow Trout

Henrickson, Lynsi January 2010 (has links)
The physiological responses to stressor exposure can be broadly grouped into the organismal and the cellular stress responses. The organismal stress response involves the release of hormones into general circulation, while the cellular stress response involves the synthesis of proteins, the most important being the heat shock proteins (HSPs), which play a role in maintaining protein homeostasis. Elevated HSP70 expression in response to stressors has been demonstrated in trout (Oncorhynchus mykiss) red blood cells (RBCs). The ease of repeated sampling of blood suggests the possibility of using this tissue as a non-lethal marker of cellular stress in fish. This study tested the hypothesis that stressor exposure will elevate HSP70 expression in trout RBCs and the role of stress hormones in mediating this response. Acute heat shock exposure (+12oC) significantly elevated plasma cortisol, glucose and lactate levels in heat shocked fish over 24 h. A tissue-specific response was seen in HSP70 expression in liver, brain, gill and RBCs. To enable measurement of RBC HSP70 concentrations, an enzyme-linked immunosorbent assay (ELISA) was developed using a commercially available rabbit anti-salmon HSP70 and a recombinant chinook salmon (Oncorhynchus tshawytscha) HSP70. To determine effects of chronic exposure, two studies were conducted exposing trout to either cadmium (0, 0.75 or 2.0 µg/L over 28 d) or municipal wastewater effluent (0, 20 or 90% over 14 d). However, neither exposure elicited a significant HSP70 response. Effects of stress hormones on RBC HSP70 levels were tested by exposing cells in vitro to either cortisol (10 and 100 ng/mL) or epinephrine (10 nM) with or without heat shock. Heat shock elevated HSP70 content in trout RBCs but no modulation by stress hormones was seen. It was shown for the first time that RBCs release HSP70 content into the medium in response to an acute heat shock and this release is attenuated by stress hormones. Overall, HSP70 levels in RBCs have the potential to be a reliable non-lethal marker of acute cellular stress effects in fish. The release of HSP70 from RBCs leads to the hypothesis that HSP70 may also have an extracellular role in fish, and warrants further study.
94

The role of HSP70 chaperones in papovavirus disassembly and assembly /

Chromy, Laura R. January 2007 (has links)
Thesis (Ph.D. in Molecular Biology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 142-165). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
95

The interferon induced serine/threonine protein kinase, PKR, is regulated by the influenza virus activated protein, P58IPK, and the molecular chaperones, Hsp40 and Hsp70 /

Melville, Mark Wallace. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves 113-139).
96

Efeitos da modulação das proteínas HSP70 e HMGB1 na neuroinflamação provocada pela sepse em ratos

Santos, João Paulo Almeida dos January 2013 (has links)
A sepse é um conjunto complexo de interações moleculares e celulares mediado pela estimulação de receptores celulares envolvidos na inflamação. O controle desta rede de sinalização é compensado pela resposta pró- e antiinflamatória do organismo. Os desequilíbrios inflamatórios induzidos alteram o estado fisiológico de diversos órgãos. No cérebro, observam-se diversas modificações que envolvem desde o aumento na permeabilidade da barreira hematoencefálica (BHE), morte de células neurais por apoptose ou necrose, redução do fluxo sanguíneo e aumento do estresse oxidativo, resultando no desenvolvimento do delirium associado à sepse. O delirium associado à sepse é um conjunto de disfunções neurológicas induzidas por uma resposta inflamatória sistêmica. Assim, é possível que diferentes mecanismos compensatórios estejam envolvidos durante a sepse. Este estudo objetivou analisar a influência do modelo de ligação cecal e punção (CLP), na excreção de ligantes do receptor para produtos finais de glicação avançada (RAGE) e as modificações ocasionadas no cérebro pela inflamação sistêmica decorrente da sepse. Nossos resultados demonstraram que os níveis séricos de TNF-α aumentaram após a indução da CLP, confirmando o estado inflamatório dos animais CLP, ocorrendo um aumento nos níveis de proteínas carboniladas, HSP70 e HMGB-1 no soro desses animais, indicando um aumento de estresse oxidativo nesses animais e liberação de proteínas associadas a manutenção e estabilização intracelular. Entretanto, encontramos uma redução no imunoconteúdo de destas proteínas no hipocampo e córtex, possivelmente por aumento nos níveis de necrose/lise celular ou por eliminação durante o período de disrupção da BHE. Assim, concluímos que durante a sepse ocorre uma aumento expressivo nos níveis séricos de proteínas associadas a resposta inflamatória crônica, além de alterações nos níveis destas proteínas relacionadas a proteção intracelular no hipocampo e córtex, que pode ter relação com as alterações observadas em pacientes e modelos animais. / Sepsis is a complex whole of molecular and cellular interactions mediated stimulation of cellular receptors involved in inflammation. The control of this system is compensated by pro and anti-inflammatory response in organism. The imbalance induced inflammatory alters the physiological state of different organs. In the brain, there are various modifications that involve from the increase in permeability of the blood-brain barrier (BBB), neural cell death by apoptosis or necrosis, reduced blood flow and increased oxidative stress, resulting in the development of sepsis-associated delirium. Sepsis-associated delirium is a whole of neurological dysfunctions induced a systemic inflammatory response. Thus, it is possible that different compensatory mechanisms are involved during sepsis. The aim of the study was to analyze the influence of the model cecal ligation and puncture (CLP), in the excretion of agonists for receptor advanced glycation end products (RAGE) and alterations in the brain caused by systemic inflammation caused by sepsis. Our results showed that serum levels of TNF-α increased after the induction of CLP, confirming the inflammatory status of CLP animals, which results in increased levels of carbonylated proteins, HSP70 and HMGB-1 in the serum of these animals, indicating an increase of stress oxidative these animals and release of proteins associated with maintaining and stabilizing intracellular. However, happened a reduction in immunocontent these proteins in the hippocampus and cortex, possibly by increased levels of necrosis/lysis cell or by removal during the period of disruption of the BBB. Therefore, concluded that during sepsis occurs a significant increase in serum proteins associated with chronic inflammatory response and changes in levels of proteins related to intracellular protection in the hippocampus and cortex, which may be related to the changes observed in patients and models animals.
97

Efeitos da ingestão de água e bebida esportiva em parâmetros de estresse oxidativo e expressão de proteínas de choque térmico em jogadores de futebol

Escobar, Mariana January 2008 (has links)
O aumento do consumo de oxigênio durante o exercício pode causar uma maior produção de espécies reativas do oxigênio (ERO), por outro lado, as defesas antioxidantes (AO) podem adaptar-se e aumentar sua atividade através da exposição ao exercício regular. A desidratação e a depleção de carboidratos podem ser as causas da fadiga durante o exercício. É possível que a expressão de HSPs possa complementar a defesa enzimática antioxidante. Este estudo tem como objetivo comparar os efeitos de hidratação com água (WAT) ou bebida esportiva (CHO-E) sobre parâmetros de estresse oxidativo em atletas futebolistas submetidos a um protocolo de exercício intermitente. A amostra foi composta por 30 atletas futebolistas de 2 times de futebol em 2 protocolos de experimentais, 18 atletas foram analisados em um protocolo sem reposição de fluídos e 12 atletas foram analisados com reposição de WAT e CHO-E. As coletas de sangue foram realizadas antes, depois e 6 horas após a realização de um protocolo de exercício intermitente. A reposição de líquidos (200 ml) foi efetuada a cada 20 minutos. O exercício físico intermitente por si só foi capaz de gerar aumento nos parâmetros de estresse oxidativo. A utilização de água (WAT) não alterou atividade das enzimas antioxidantes SOD e CAT e os níveis de dano oxidativo a proteínas, porem aumentou os níveis de peroxidação lipídica e expressão de HSP70. A Reposição com CHO-E aumentou significativamente a atividade da enzima SOD, o dano oxidativo a proteínas e não alterou outros parâmetros. Os grupos WAT e CHO-E não apresentaram diferenças significativas na sua taxa de sudorese, percentual de desidratação, perda de suor e osmolalidade plasmática quando comparados. No entanto o grupo CHO-E apresentou uma maior glicemia após o exercício. Concluímos que a reposição de carboidratos deve ser realizada com cautela, e mais estudos, com quantidades diferentes de carboidratos devem ser efetuados para uma prescrição nutricional segura durante o exercício. / The increase of oxygen consumption during exercise can result a higher production of reactive oxygen species (ERO),on the other hand, the antioxidant defenses (AO) can be adapted and increase its activity through the exposition to regular exercise. The dehydration and the carbohydration depletion can be the factor of fatigue during the exercise. Its Possible that the expression of HSPs can complement the antioxidant enzymatic defense. This study objective compare the effect of exercise and fluid repleacemet with water (WAT) or sport drink (CHO-E) on parameters of oxidative stress in soccers players submitted a protocol of intermittent exercise. The sample was composed for 30 athletes of 2 teamses of soccer in 2 experimental protocols , 18 athletes had been analyzed in a protocol without fluid replacement and 12 athletes had been analyzed with replacement of WAT and CHO-E. The blood samples had been carried through before, later and 6 hours after intermittent exercise. The fluid replacement (200 ml) was realized to each 20 minutes. The intermittent exercise by itself was capable to generate increase in the ofoxidative stress parameters. The WAT did not modify SOD and CAT enzymes activities, carbonyl proteins, but increased the levels of lipid peroxidation and HSP70 expression. The Replacement with CHO-E significantly increased the SOD enzyme activity, the oxidative damage of proteins and it did not modify other parameters. Groups WAT and CHO-E had not presented significant differences in sweat rate, dehydration, sweat loss and osmolality when compared. However group CHO-E presented a increase in blood glucose ater after the exercise. We conclude that carbohydrate replacement must be carried through with caution, and more studies, with different amounts of carbohydrate must be made for a secure nutritional reposition during the exercise.
98

Efeito da suplementação de glutamina e dipeptídeo L-alanill-glutamina sobre a expressão de proteínas de choque térmico de 70 kDa (HSP70) e a sinalização da insulina em camundongos tratados com dieta hiperlipídica

Bock, Patricia Martins January 2015 (has links)
Os lipídeos da dieta desempenham um importante papel na obesidade, e a ingesta excessiva está relacionada com problemas de saúde. A presença crônica de ácidos graxos saturados na dieta pode induzir um estado de inflamação sistêmica de baixo grau, característica da obesidade, do diabetes e das doenças cardiovasculares. A HSP70 é um regulador chave da inflamação (atuando como uma molécula anti-inflamatória) e da sensibilidade à insulina. Interessantemente, alguns nutrientes, tais como a glutamina e a alanilglutamina, podem potenciar a expressão de HSP70. Assim, a suplementação de aminoácidos poderia ser uma estratégia útil para aumentar a expressão de HSP70, diminuir a inflamação e melhorar a sensibilidade à insulina. Este trabalho teve como objetivos investigar os efeitos de longo prazo da suplementação com glutamina e alanil-glutamina em camundongos B6129SF2J alimentados com uma dieta rica em lipídeos (HFD), sobre a sensibilidade à insulina, estresse oxidativo, metabolismo e expressão de HSP70, bem como comparar a resposta metabólica de camundongos das linhagens B6129SF2-J e C57BL/6J recebendo HFD. Camundongos B6129SF2-J foram alimentados com uma dieta padrão com baixo teor de gordura (PAD) ou HFD durante 20 semanas. Na 21a semana, camundongos do grupo HFD foram alocados em cinco grupos e receberam suplmentação por 8 semanas adicionais: grupo HFD controle (HFD-Con), grupo HFD + dipeptideo alanil-glutamina (HFD-Dip), grupo HFD + alanina (HFD-Ala), grupo HFD + glutamina (HFD-Gln) e grupo HFD alanina + glutamina (nas suas formas livres) (HFD-Ala + Gln). Em adição, camundongos C57BL/6J foram alimentados com PAD ou HFD durante 16 semanas. A administração de HFD induziu um aumento de peso corporal, gordura corporal total, glicose em jejum e colesterol total em comparação com o grupo PAD. A suplementação de aminoácidos não induziu quaisquer alterações nestes parâmetros. Dados de teste de tolerância à insulina (ITT), indicam resistência à insulina em todos os grupos HFD, no entanto, a suplementação de aminoácidos não melhorou a sensibilidade à insulina. Não houve diferença significativa na expressão das proteínas IR, Akt e TLR4. Notavelmente, a expressão de HSP70 total (HSP72 + Hsp73) no fígado foi acentuadamente maior no grupo HFD-Con em comparação com o grupo PAD. Em conclusão, a suplementação com glutamina e dipeptideo alanil-glutamina não reverteu as alterações metabólicas induzidas por administração prévia de HFD. Aparentemente, ao contrário dos camundongos C57BL/6J, que são geneticamente predispostos para se tornarem obesos e desenvolverem hiperglicemia frente a HFD, camundongos B6129SF2-J são mais resistentes aos efeitos nocivos de HFD, por meio de um mecanismo que pode incluir a adaptação intestinal, por reduzida absorção de nutrientes, incluindo aminoácidos, o que pode explicar parcialmente nossos resultados. / Dietary fat plays a major role in obesity and great intake is linked with the development of health problems, and the chronic presence of saturated fatty acids on the diet can induce a state of low-grade inflammation which is a hallmark in obesity, diabetes and cardiovascular diseases. Heat shock protein 70 is a key regulator of inflammation (by acting as an anti-inflammatory molecule) and insulin sensitivity. Interestingly, some nutrients, such as glutamine and alanyl-glutamine were shown to potentiate the expression of HSP70. Thus, amino acid supplementation may be a useful tool to enhance HSP70 expression, decrease inflammation and improve insulin sensitivity. In this work we aimed to investigate the effects of long term glutamine and alanylglutamine supplementation on High-Fat Diet-Fed B6129SF2-J mice over the insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression, and to compare B6129SF2-J and C57BL/6J in terms of high-fat diet (HFD) metabolic response. B6129SF2-J mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. On the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide l-alanil-l-glutamine group (HFD-Dip), HFD + alanine group (HFD-Ala), HFD + glutamine group (HFD-Gln) and the HFD alanine + glutamine (in their free forms) group (HFD-Ala+Gln). In addiction, C57BL/6J mice were fed in a standard low-fat diet (STA) or a HFD for 16 weeks. HFD induced higher body weight, fat pad, fasted glucose and total cholesterol in comparison with the STA group. Amino acid supplementation did not induce any modifications in these parameters. ITT data indicates insulin resistance in all HFD groups, however, amino acid supplementation did not improve insulin sensitivity. There was no significant difference in protein content of IR, Akt and TLR4 expression. Notably, total HSP70 (HSP72+HSP73) protein contents in liver is markedly increased in HFD-Con group compared with STA group. In conclusion, glutamine and dipeptide alanyl-glutamine supplementation fails to improve metabolic changes induced by prior long term High-Fat Diet. Apparently, unlike the C57BL/6J mice, that are genetically predisposed to become overweight and develop hyperglycemia if raised on a HFD, B6129SF2-J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing nutrients absorption, including amino acids, which may explain the lack of improvements in our intervention.
99

A oxidação da proteína de choque térmico HSP70 e seus efeitos sobre a modulação da ativação de macrófagos da linhagem RAW 264.7 : a relação com a sepse e a possível sinalização pela ligação ao receptor dos produtos finais de glicação avançada-RAGE

Grunwald, Marcelo Sartori January 2013 (has links)
A expressão da HSP70 intracelular está associada a efeitos citoprotetores contra uma variada gama de estímulos estressores, tais como processos inflamatórios, estresse oxidativo, endotoxinas bacterianas, infecções e febre. Este efeito citoprotetor é principalmente atribuído à habilidade de as proteínas de choque térmico estabilizarem estruturas protéicas através de interações reversíveis. A HSP70 foi recentemente detectada no meio extracelular, e sua presença tem sido associada a situações patológicas, nas quais ela exerce efeitos modulatórios sobre células do sistema imunológico. Previamente, nós descrevemos a relação entre os níveis de HSP70 sérica, o estatus oxidante e o desfecho clínico de pacientes sépticos; o grupo de pacientes com maiores níveis pró-oxidantes e maiores níveis de HSP70 sérica também foi aquele que houve maior mortalidade. Afim de investigar a possível associação entre HSP70 oxidada e efeitos citoprotetores ou morte celular, macrófagos da linhagem RAW 264.7 foram incubados com HSP70 e HSP70 oxidada, e a produção de nitrito, proliferação celular, viabilidade celular, produção de espécies reativas de oxigênio, liberação de TNF-α e atividade fagocítica foram avaliadas. Também foram avaliadas as modificações estruturais causadas pela oxidação na HSP70 purificada. Observamos que a oxidação da HSP70 alterou a estrutura da proteína; e que os efeitos modulatórios da HSP70 oxidada sobre a linhagem de macrófagos RAW 264.7 foram diferentes dos efeitos modulatórios da HSP70 nativa. Os macrófagos tratados com HSP70 oxidada apresentaram menor proliferação, maior produção de espécies reativas de oxigênio, menor atividade fagocítica e menor liberação de TNF-α. Estes resultados indicam que a oxidação da HSP70 extracelular modifica suas propriedades sinalizadoras, causando alterações na modulação das funções e da viabilidade dos macrófagos. / Expression of intracellular HSP70 is associated to cytoprotective effects against a wide range extent of stressful stimuli, such as inflammation, oxidative stress, hypoxia, endotoxins, infections and fever. This cytoprotective effect is mainly attributed to their ability to stabilize protein structures through chaperon-like reversible interactions. HSP70 was recently detected in the extracellular medium and its presence in serum is commonly associated with pathological situations, where it exerts modulatory effects on cells of the immune system. Previously, we have described the relationship between serum HSP70 levels, oxidant status and clinical outcome of septic patients; the group of patients with higher pro-oxidant status and higher serum HSP70 had also higher mortality. To investigate the possible association between oxidized HSP70 and cytoprotection or cell death, we incubated RAW 264.7 macrophages with oxidized HSP70 and evaluated nitrite production, cell proliferation, cell viability, reactive oxygen species production, TNF-α release and phagocytic activity. We also evaluated structural modifications caused by oxidation in purified HSP70. Oxidation of HSP70 altered its protein structure; besides, the modulatory effect of oxidized HSP70 on RAW265.7 cells was different from native HSP70. Macrophages treated with oxidized HSP70 presented lower proliferation, higher reactive oxygen species production, lower phagocytic activity and TNF-α release. These results indicate that oxidation of extracellular HSP70 modify its signaling properties, causing alterations on its modulatory effects on macrophage function and viability.
100

Efeitos da modulação das proteínas HSP70 e HMGB1 na neuroinflamação provocada pela sepse em ratos

Santos, João Paulo Almeida dos January 2013 (has links)
A sepse é um conjunto complexo de interações moleculares e celulares mediado pela estimulação de receptores celulares envolvidos na inflamação. O controle desta rede de sinalização é compensado pela resposta pró- e antiinflamatória do organismo. Os desequilíbrios inflamatórios induzidos alteram o estado fisiológico de diversos órgãos. No cérebro, observam-se diversas modificações que envolvem desde o aumento na permeabilidade da barreira hematoencefálica (BHE), morte de células neurais por apoptose ou necrose, redução do fluxo sanguíneo e aumento do estresse oxidativo, resultando no desenvolvimento do delirium associado à sepse. O delirium associado à sepse é um conjunto de disfunções neurológicas induzidas por uma resposta inflamatória sistêmica. Assim, é possível que diferentes mecanismos compensatórios estejam envolvidos durante a sepse. Este estudo objetivou analisar a influência do modelo de ligação cecal e punção (CLP), na excreção de ligantes do receptor para produtos finais de glicação avançada (RAGE) e as modificações ocasionadas no cérebro pela inflamação sistêmica decorrente da sepse. Nossos resultados demonstraram que os níveis séricos de TNF-α aumentaram após a indução da CLP, confirmando o estado inflamatório dos animais CLP, ocorrendo um aumento nos níveis de proteínas carboniladas, HSP70 e HMGB-1 no soro desses animais, indicando um aumento de estresse oxidativo nesses animais e liberação de proteínas associadas a manutenção e estabilização intracelular. Entretanto, encontramos uma redução no imunoconteúdo de destas proteínas no hipocampo e córtex, possivelmente por aumento nos níveis de necrose/lise celular ou por eliminação durante o período de disrupção da BHE. Assim, concluímos que durante a sepse ocorre uma aumento expressivo nos níveis séricos de proteínas associadas a resposta inflamatória crônica, além de alterações nos níveis destas proteínas relacionadas a proteção intracelular no hipocampo e córtex, que pode ter relação com as alterações observadas em pacientes e modelos animais. / Sepsis is a complex whole of molecular and cellular interactions mediated stimulation of cellular receptors involved in inflammation. The control of this system is compensated by pro and anti-inflammatory response in organism. The imbalance induced inflammatory alters the physiological state of different organs. In the brain, there are various modifications that involve from the increase in permeability of the blood-brain barrier (BBB), neural cell death by apoptosis or necrosis, reduced blood flow and increased oxidative stress, resulting in the development of sepsis-associated delirium. Sepsis-associated delirium is a whole of neurological dysfunctions induced a systemic inflammatory response. Thus, it is possible that different compensatory mechanisms are involved during sepsis. The aim of the study was to analyze the influence of the model cecal ligation and puncture (CLP), in the excretion of agonists for receptor advanced glycation end products (RAGE) and alterations in the brain caused by systemic inflammation caused by sepsis. Our results showed that serum levels of TNF-α increased after the induction of CLP, confirming the inflammatory status of CLP animals, which results in increased levels of carbonylated proteins, HSP70 and HMGB-1 in the serum of these animals, indicating an increase of stress oxidative these animals and release of proteins associated with maintaining and stabilizing intracellular. However, happened a reduction in immunocontent these proteins in the hippocampus and cortex, possibly by increased levels of necrosis/lysis cell or by removal during the period of disruption of the BBB. Therefore, concluded that during sepsis occurs a significant increase in serum proteins associated with chronic inflammatory response and changes in levels of proteins related to intracellular protection in the hippocampus and cortex, which may be related to the changes observed in patients and models animals.

Page generated in 0.1325 seconds