• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 3
  • Tagged with
  • 25
  • 16
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Reprogrammation du métabolisme cyanobactérien de Synechocystis sp. PCC6803 pour une meilleure photoproduction d'hydrogène

Dutheil, Jérémy 26 April 2013 (has links) (PDF)
Le développement d'organismes photosynthétiques (piégeant le C02 en préservant l'eau douce et les terres cultivables sans ajout d'engrais) capables d'utiliser l'énergie solaire pour produire du dihydrogène (H2) passe par une meilleure compréhension du rôle de l'hydrogénase dans le métabolisme cyanobactérien. Le Laboratoire de Biologie et Biotechnologie des Cyanobatéries où j'ai travaillé durant ma thèse utilise une approche de "Biologie Intégrative" pour analyser le métabolisme qui conduit à la photo-production d'H2 chez la cyanobactérie modèle Synechocystis sp. PCC6803. Mon travail s'est focalisé sur l'analyse des réseaux de régulation amenant à la production d'H2 par l'hydrogénase bidirectionnelle à centre Ni-Fe (composée de 5 sous-unités) codée par l'opéron hox. Lorsque j'ai débuté ce travail, 2 activateurs de l'opéron hox avaient été identifiés: AbrB1 et LexA. Un article dont je suis co-premier auteur est paru (Dutheil et al. 2012 J Bact.), il décrit l'identification par l'utilisation de diverses approches d'un nouveau facteur de transcription de l'opéron hox: AbrB2 (homologue d'AbrB1). J'ai ainsi montré que l'expression de l'opéron hox était régulée négativement par AbrB2 en utilisant des fusions transcriptionnelles au gène rapporteur cat (introduites dans la souche sauvage ou dépourvues d'AbrB2) ainsi que des expériences de qRT-PCR. Par la technique de retard sur gel, nous avons confirmé une interaction directe entre AbrB2 et la région promotrice de l'opéron hox. En collaboration avec deux laboratoires du CEA, nous avons montré qu'un mutant dépourvu d'AbrB2 possède une activité hydrogénase augmentée, confirmant ainsi qu'AbrB2 est un régulateur négatif de la production d'H2.Dans un deuxième temps et en collaboration avec deux post-doc du laboratoire, nous avons mis en évidence le rôle de la cystéine unique d'AbrB2 dans le contrôle redox de son activité de régulation transcriptionnelle.Par la technique du retard sur gel,j'ai montré que cette cystéine n'est pas cruciale pour la fixation d'AbrB2 sur le promoteur hox, mais que par contre, la modification redox de celle-ci l'affecte de manière drastique. Dans le cadre de collaborations, nous avons identifié la modification post-traductionnelle qui peut avoir lieu sur la cysteine d'AbrB2 et il s'agit de la première fois, qu'un tel mécanisme de régulation est identifié pour cette famille de régulateur et chez les cyanobactéries. J'ai construit une souche portant l'allèle muté abrB2 Cys>Ser sur le chromosome et exprimé par le promoteur sauvage d'abrB2. J'ai montré grâce à cette construction et en utilisant diverses techniques (activité hydrogénase, qRT-PCR, Western blot et transcriptome) que la cystéine d'AbrB2 joue un rôle dans son activité de régulation qui est 60% moins bonne sur les 529 gènes cibles (directes ou indirectes) du régulateur muté. L'effet est également visible sur l'activité hydrogénase. Ce résultat a été complété par des tests de surexpression thermoinduite d'AbrB2 qui montrent que la mutation C34S affecte la stabilité de la protéine qui ne s'accumule pas autant que la sauvage dans les même conditions et dont la surexpression est létale. Un manuscrit dont je suis copremier auteur et décrivant ces résultats est en cours de finalisation et sera prochainement soumis à l'Intern. Journ. of Hydrogen Energy.L'ensemble de ces travaux permet de mieux comprendre les mécanismes biologiques liés à l'expression de l'hydrogénase bidirectionnelle et vont dans le sens d'un rôle important de celle-ci dans la détoxification des stress redox. La détermination des relations entre les différents régulateurs de l'hydrogénase et les possibles modifications post-traductionnelles de chacun de ces facteurs que j'ai mises en évidence traduisent une enzyme à la régulation complexe. Ces nouvelles connaissances permettent d'éclairer sous un angle nouveau la photoproduction d'H2 par les cyanobactéries et permettront peut-être d'élaborer des stratégies de production d'H2 efficace.
22

Réduction bioélectrocatalytique du dioxygène par des enzymes à cuivres connectées sur des électrodes nanostructurées et fonctionnalisées : intégration aux biopiles enzymatiques / Bioelectrocatalytic reduction of dioxygen by multi-copper oxidases oriented and connected on functionalized nanostructured electrodes : application to enzymatic biofuel cells

Lalaoui, Noémie 10 December 2015 (has links)
Dans la nature, la réduction du dioxygène est catalysée par des enzymes de la famille des oxydoréductases. A l’heure actuelle, ces protéines spécifiques et efficaces sont envisagés comme biocatalyseurs au sein de biopile enzymatique. Dans ce contexte, l’optimisation de l’orientation et de la connexion d’oxydases multi-cuivre (MCOs) pour la réduction d’O2 sur des matrices de nanotubes carbone (CNTs) fonctionnalisées a été étudiée. Dans un premier temps, le transfert électronique direct de la laccase est optimisé par la fonctionnalisation non covalente de CNTs par divers dérivés hydrophobes. La dynamique moléculaire ainsi que la modélisation électrochimique ont permis la rationalisation des performances des différentes biocathodes développées. Dans une seconde approche, la modification spécifique par des groupements pyrène de la surface de laccases modifiées par mutagénèse a également été envisagée. La fonctionnalisation supramoléculaire de CNTs par des feuillets de graphène fonctionnalisés d’une part, et par des nanoparticules d’or d’autre part, a également permis de favoriser la connexion de laccases. La seconde partie présente l’élaboration d’autres types de biocathodes basées sur la connexion directe de bilirubines oxydases. Plusieurs stratégies de fonctionnalisation covalente et non covalente de CNTs ont été envisagées. Les différentes biocathodes élaborées par l’assemblage supramoléculaire de MCOs et de matériaux nanostructurés délivrent des densités de courant de réduction du dioxygène de plusieurs mA cm-2. Ces nouvelles bioélectrodes combinées à une bioanode qui catalyse l’oxydation du glucose ont permis le développement de biopiles enzymatiques glucose/O2 délivrant des densités maximales de puissances allant de 250 µW cm-2 à 750 µW cm-2 selon les conditions expérimentales. Enfin une bioanode à base d’une hydrogénase hyperthermophile a été développée et associée à une biocathode à base de bilirubine oxydase pour former un nouveau design de biopile H2/O2. Au sein de ce dispositif, la biocathode à diffusion de gaz réduit directement l’oxygène provenant de l’air, ce qui permet de s’affranchir de l’utilisation d’une membrane séparatrice tout en protégeant l’hydrogénase de sa désactivation en présence d’oxygène. Cette nouvelle biopile délivre une densité maximale de puissance de 750 µW cm-2. / The reduction of oxygen is realized in nature by oxidoreductase enzymes. Currently, these highly specific and efficient proteins are considered as biocatalysts for the development of biofuel cells. In this context, optimizing the orientation and the connection of multicopper oxidase (MCOs) for the reduction of O2 on functionalized carbon nanotubes was studied. In the first part of this manuscript, direct electron transfer of laccase is assessed and optimized by the non-covalent functionalization of CNTs by various hydrophobic derivatives. Electrochemical modeling and molecular dynamics enabled the rationalization of the developed biocathodes efficiency. In a second approach, the specific modification by pyrene moieties of laccases surface modified by protein engineered has also been considered. Additionally, supramolecular functionalization of CNTs by modified graphene sheets and gold nanoparticles also helped to promote laccase connection. The second part presents the development of other types of biocathodes based on the direct connection of bilirubin oxidase. Several strategies of covalent and non-covalent CNTs functionalization have been considered. The different biocathodes developed by the supramolecular assembly of nanostructured materials and MCOs delivered current density of several mA cm-2 for oxygen reduction. These new bioelectrodes combined with a bioanode which catalyzes the glucose oxidation have enabled the development of glucose/O2 enzymatic biofuel cells; delivering maximum power densities from 250 µW cm-2 to 750 µW cm-2 depending on the experimental conditions. Finally a hyperthermophilic hydrogenase based bioanode was developed and associated with a bilirubin oxidase-based biocathode to form a new design of H2/O2 biofuel cell. Within this device, the gas diffusion biocathode directly reduces oxygen from the air, which eliminates the use of a separation membrane while protecting the hydrogenase from its deactivation in the presence oxygen. This new biofuel cell delivers a maximum power density of 750 µW cm-2.
23

Hydrogénase - Promoteur ou inhibiteur de la corrosion microbienne ? / Hydrogenase - Promoter or inhibitor of the microbial corrosion ?

Rouvre, Ingrid 11 April 2016 (has links)
Les hydrogénases ont été identifiées comme des protéines clé de la corrosion induite par les microorganismes (CIM) mais leur réel impact est encore sujet à controverses. Bien qu’elles soient présentes dans la plupart des microorganismes impliqués dans la biocorrosion anaérobie, leur participation dans un transfert électronique direct a rarement été démontrée. L’objectif de ce travail est d’étudier l’influence de l’hydrogénase sur la corrosion anaérobie de l’acier en approfondissant la compréhension des phénomènes interfaciaux qui régissent son action. Il s’agit en particulier d’étudier l’incidence des centres Fe-S présents dans la protéine et qui s’étaient révélés être des acteurs majeurs lors de précédents travaux au LGC. Pour cela, différents types d’hydrogénases ont été conçus, élaborés en collaboration avec l’équipe EAD3 du LISBP, INSA Toulouse, et étudiés : la native et des mutants possédant un nombre plus ou moins important de centres Fe-S. Dans un premier temps, le choix des matériaux a été réalisé sur la base des résultats de caractérisation et d’étude du comportement électrochimique dans le milieu Tris-HCl. L’acier doux S235JR a été choisi car c’est le matériau le plus réactif pour mettre en évidence l’influence de l’hydrogénase. Par la suite, les premières études en présence de divers types d’hydrogénases (native et mutants) ont révélé que la présence de certaines molécules additionnelles dans le milieu de purification ne permet pas d’obtenir un saut du potentiel d’abandon et une vitesse de corrosion exclusivement liés aux enzymes. Le protocole de purification des enzymes a donc été optimisé pour permettre un meilleur rendement de purification avec une activité enzymatique haute, tout en ayant le moins possible d’impact sur les signaux électrochimiques. Enfin, l’utilisation d’un sac de dialyse pour concentrer l’hydrogénase au voisinage de l’électrode de travail a permis d’exacerber l’effet de l’enzyme : une augmentation du potentiel d’abandon ainsi que de la vitesse de corrosion a été observée. La spectroscopie d’impédance couplée à des analyses de surface a également confirmé le fort pouvoir corrosif de l’hydrogénase. En outre, les électrolyses réalisées à potentiel cathodique ont mis en évidence la catalyse de la réaction de réduction par transfert électronique direct entre l’hydrogénase et la surface de l’acier. Le moteur responsable de la prise d’électrons est le centre catalytique de l’enzyme, les centres Fe-S jouant seulement un rôle de transfert des électrons au sein de la protéine. / Hydrogenases have been identified as key proteins in microbially induced corrosion (MIC) phenomena but their real impact is still a controversial issue. Even though they are present in most of the microorganisms involved in anaerobic biocorrosion, their participation in a direct electron transfer mechanism has rarely been demonstrated. The purpose of the present work is to study the influence of hydrogenase on the anaerobic corrosion of steel by deepening the understanding of interfacial phenomena governing its action. The study is particularly focusing on the effect of Fe-S clusters, which had proved to be major players in earlier work at LGC. To achieve this, different types of hydrogenases were designed, developed in collaboration with the EAD3 team of LIBP, INSA Toulouse, and studied: the native and mutants, containing a higher or lower number of Fe-S. First, the material choice was carried out on the base of the characterization results and electrochemical behavior study in TrisHCl medium. The S235JR mild steel was chosen since it is the more reactive material to highlight the influence of hydrogenase. Thereafter, the first studies in presence of various types of hydrogenases (native and mutants) have revealed that the presence of additional molecules in the purification medium does not permit to get an open-circuit potential jump and a corrosion rate that could be attributed solely to enzymes. The enzyme purification protocol has been then optimized to simultaneously allow a better purification performance with a high enzymatic activity and a lower impact on electrochemical signals. Finally, the use of a dialysis bag to concentrate hydrogenase in the close vicinity of the working electrode led to the exacerbation of the enzyme effect: an open-circuit potential ennoblement as well as a corrosion rate increase were observed. Impedance spectroscopy coupled with surface analysis also confirmed the strong corrosiveness of hydrogenase. Electrolysis performed at a cathodic potential brought to light the catalysis of the reduction reaction that occurred by direct electronic transfer between the hydrogenase and the steel surface. The driving force of the electron uptake is the catalytic center of the enzyme, the Fe-S clusters only acting in the electron transfer within the protein.
24

Biopiles enzymatiques H2-O2 : nanostructuration de l'interface électrochimique pour l'immobilisation des enzymes redox / H2/O2 Biofuel cells : nanostructuration of the electrochemical interface for the immobilisation of redox enzymes

De poulpiquet de Brescanvel, Anne 04 December 2014 (has links)
Dans la nature, la réduction de l'oxygène et l'oxydation de l'hydrogène sont catalysées par des enzymes oxydoréductases. Ces catalyseurs spécifiques, efficaces, renouvelables et biodégradables constituent une alternative séduisante au platine dans les piles à combustible. L'immobilisation à des interfaces nanostructurées de l'hydrogénase membranaire tolérante à l'oxygène de la bactérie hyperthermophile Aquifex aeolicus, et de la bilirubine oxydase thermostable de la bactérie Bacillus pumilus, a été étudiée dans ce sens.L'électrochimie et la dynamique moléculaire ont permis d'affiner le modèle d'orientation de l'hydrogénase sur les surfaces planes. L'efficacité de l'immobilisation de l'hydrogénase sur différents nanomatériaux carbonés (nano-particules, tubes et fibres de carbone) structurant la surface de l'électrode a été évaluée. Les nanofibres de carbone (CNFs) ont permis de former une bioanode efficace pour l'oxydation de l'H2 en l'absence de médiateurs redox. L'étude a souligné l'importance d'un transport efficace du substrat dans le film carboné mésoporeux. Les CNFs ont également été utilisées comme matériau d'électrode pour réaliser la 1ère connexion directe de la bilirubine oxydase. L'existence d'une forme resting alternative de l'enzyme, influencée par les ions chlorures, le pH et la température, a été mise en évidence. Une biocathode efficace pour la réduction de l'oxygène a été développée.Les deux électrodes thermostables ont permis le développement de la 1ère biopile H2/O2 qui délivre des densités de puissance supérieures au mW.cm-2 sur une large gamme de température. Ce résultat ouvre la voie à l'alimentation électrique de dispositifs de faibles puissances. / The oxygen reduction and the hydrogen oxidation reactions are realized in nature by oxidoreductase enzymes. These highly efficient, specific, renewable and biodegradable catalysts appear as a seducing alternative to platinum in fuel cell devices. The immobilization at nanostructured interfaces of the membrane-bound oxygen-tolerant hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus, and of the thermostable bilirubin oxidase from Bacillus pumilus, has been studied within this objective.Electrochemistry and molecular dynamics have been used to validate the orientation model of the hydrogenase at planar electrodes. Hydrogenase immobilisation in 3D-networks based on various carbon materials (nanoparticles, nanotubes and nanofibers) has been especially studied. Fishbone carbon nanofibers were demonstrated to provide an efficient platform for mediatorless H2 oxidation. Mass transport inside the carbon mesoporous film has been especially studied and demonstrated to be one of the limitations of the catalytic efficiency. Direct electrical connection of bilirubin oxidase has also been realized for the first time thanks to its immobilization on carbon nanofiber films. An alternative resting form of the enzyme, influenced by chlorides, pH and temperature, has been evidenced. An efficient biocathode for the oxygen reduction reaction has been developed. Thanks to the two thermostable electrodes, the first H2-O2 bio fuel cell able to deliver power densities over 1 mW.cm-2 over a large temperature range has been developed. This result paves the way for the electrical alimentation of low-power devices.
25

Construction et analyse de mutants de la machinerie de photoproduction d'hydrogène chez la cyanobactérie modèle Synechocystis / Construction and analysis of mutants of the hydrogen photoproduction machine in the model cyanobacterium Synechocystis

Ortega-Ramos, Marcia 13 January 2014 (has links)
Les microorganismes photosynthétiques suscitent un intérêt biotechnologique grandissant pour la production de dihydrogène (H₂) à partir d'eau et d'énergie solaire en préservant l'eau douce et les terres cultivables sans ajout d'engrais. La cyanobactérie modèle Synechocystis PCC 6803 est capable de produire du H₂ de manière faible et transitoire grâce à une hydrogénase [NiFe] bidirectionnelle Hox. Cette enzyme possède 5 sous-unités protéiques (HoxEFUYH) qui catalysent la réaction réversible : 2H⁺ + 2e⁻ ↔ H₂. Le site actif [NiFe] de cette enzyme est assemblé par un complexe de six protéines HypABCDEF. L’hydrogénase est ensuite maturée par une protéase HoxW qui clive la sous-unité HoxH et active le site catalytique [NiFe]. L’ingénierie de cyanobactéries pour la photoproduction biologique d’H₂ passe par une meilleure compréhension du rôle de l'hydrogénase dans le métabolisme cyanobactérien. Au cours de ma thèse, j’ai construit et analysé 7 mutants sophistiqués de Synechocystis permettant la surexpression simultanée (constitutive ou régulée par la température de croissance) des gènes hoxEFUYHW et hypABCDEF. On a ainsi montré que la surproduction simultanée des protéines HoxEFUYHW et HypABCDEF combinée à une augmentation de la disponibilité de nickel dans le milieu conduit à une augmentation de l’activité hydrogénase d’un facteur 20. D’autre part, un mutant dépourvu de l'opéron hoxEFUYH a permis également de montrer que l'hydrogénase n'est pas indispensable à la croissance dans les conditions photoautotrophiques standard. La comparaison des phénotypes des divers mutants construits durant ce travail a permis également de montrer pour la première fois que l’hydrogénase joue un rôle dans la défense cellulaire contre le stress oxydant induit par le H₂O₂, par la présence de glucose ou de glycérol dans le milieu de culture. Par ailleurs, j'ai participé à la caractérisation d'un nouveau régulateur de l'expression de l’hydrogénase. Ce facteur de transcription (AbrB2) qui réprime l’opéron hoxEFUYH est impliqué dans la tolérance au stress induit par le diamide ou le nickel. Un contrôle redox de l'activité de ce régulateur par une modification post-traductionnelle de glutathionylation a été mise en évidence pour la première fois chez les cyanobactéries. L'ensemble de ces résultats démontre que l’on doit combiner plusieurs stratégies génétiques et physiologiques pour augmenter fortement la production d’hydrogène chez Synechocystis, et que nos mutants sont des outils très importants vers cet objectif. / Photosynthetic organisms are attractive organisms for hydrogen production using water and solar energy, while preserving fresh water and arable soils without adding fertilizers. The model cyanobacterium Synechocystis PCC 6803 produces small and transitory amounts of H₂ thanks to its bidirectional [NiFe] hydrogenase Hox. The Hox complex with its 5 protein subunits (HoxEFUYH) catalyzes the reversible reaction 2H⁺ + 2e⁻ ↔ H₂. The [NiFe] catalytic site of the Hox enzyme is assembled using a six-subunits HypABCDEF complex and matured by the HoxW protease that cleaves HoxH and activates its [NiFe]-containing center. Engineering cyanobacteria for hydrogen production relies on a better understanding of the role of hydrogenase in the cyanobacterium metabolism. During my PhD, I have constructed and analyzed 7 sophisticated mutants of Synechocystis, allowing the simultaneous over-expression (constitutive or regulated by the growth temperature) of the hoxEFUYH and hypABCDEF genes. We demonstrated that the simultaneous over-production of the HoxEFUYH and HypABCDEF proteins, combined to an increase in nickel availability led to an approximately 20-fold increase of the active hydrogenase level. Moreover, using a deleted hox-operon mutant we showed that hydrogenase is dispensable in standard phototrophic growth conditions. Comparing the phenotypes of different mutants constructed in this study enables us to demonstrate for the first time that the hydrogenase operates in cell protection against oxidative stress (H₂O₂) and sugar stress (glucose or glycerol). Besides, I have also participated to the characterization of a new regulator (AbrB2) of the expression of the hydrogenase. This transcription factor represses the hoxEFUYH operon and is involved in the tolerance to stress induced by diamide or nickel. For the first time in cyanobacteria, a redox control of the activity of this regulator by a post-translational gluthathionylation was identified. Collectively, our findings showed that several genetic and physiological strategies should be combined in a single strain to strongly increase hydrogen production in Synechocystis. Meanwhile the presently constructed mutants proved to be very powerful tools to achieve this goal.

Page generated in 0.044 seconds