• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 61
  • 51
  • 36
  • 11
  • 11
  • 8
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 327
  • 327
  • 99
  • 94
  • 75
  • 69
  • 51
  • 51
  • 50
  • 47
  • 46
  • 45
  • 44
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

On-line local load measurement based voltage instability prediction

Bahadornejad, Momen January 2005 (has links)
Voltage instability is a major concern in operation of power systems and it is well known that voltage instability and collapse have led to blackout or abnormally low voltages in a significant part of the power system. Consequently, tracking the proximity of the power system to an insecure voltage condition has become an important element of any protection and control scheme. The expected time until instability is a critical aspect. There are a few energy management systems including voltage stability analysis function in the real-time environment of control centres, these are based on assumptions (such as off-line models of the system loads) that may lead the system to an insecure operation and/or poor utilization of the resources. Voltage instability is driven by the load dynamics, and investigations have shown that load restoration due to the on-load tap changer (OLTC) action is the main cause of the voltage instability. However, the aggregate loads seen from bulk power delivery transformers are still the most uncertain power system components, due to the uncertainty of the participation of individual loads and shortcomings of the present approaches in the load modeling. In order to develop and implement a true on-line voltage stability analysis method, the on-line accurate modeling of the higher voltage (supply system) and the lower voltage level (aggregate load) based on the local measurements is required. In this research, using the changes in the load bus measured voltage and current, novel methods are developed to estimate the supply system equivalent and to identify load parameters. Random changes in the load voltage and current are processed to estimate the supply system Thevenin impedance and the composite load components are identified in a peeling process using the load bus data changes during a large disturbance in the system. The results are then used to anticipate a possible long-term voltage instability caused by the on-load tap changer operation following the disturbance. Work on the standard test system is provided to validate the proposed methods. The findings in this research are expected to provide a better understanding of the load dynamics role in the voltage stability, and improve the reliability and economy of the system operation by making it possible to decrease uncertainty in security margins and determine accurately the transfer limits.
312

Um novo sistema de refrigeração com controle de temperatura, compressor aberto, máquina de indução trifásica com velocidade variável e correção ativa do fator de potência do estágio de entrada /

Leandro, Eduardo. January 2006 (has links)
Resumo: Este trabalho apresenta uma nova proposta para sistema de refrigeração com controle dinâmico de temperatura, operando com estrutura de compressor aberto, acionado por motor de indução trifásico com velocidade variável, e estágio de entrada retificador com correção ativa do fator de potência. O estágio de entrada é composto por um retificador Boost monofásico com elevado fator de potência, com duas células entrelaçadas, operando no modo de condução crítica, empregando técnica de comutação não dissipativa e controlado por dispositivo FPGA, associado a um estágio de saída inversor de dois níveis convencional trifásico à IGBT, o qual é controlado por um Processador Digital de Sinais (DSP - Digital Signal Processor). A técnica de comutação não dissipativa para o estágio de entrada é baseada em células ZCS (Zero-current-switching). As principais características do retificador incluem a redução da ondulação da corrente de entrada, redução da ondulação da tensão de saída retificada, utilização de componentes com reduzidos esforços, reduzido volume do filtro de entrada para Interferências Eletromagnéticas (EMI - Electromagnetic Interference), elevado Fator de Potência (FP) e reduzida Distorção Harmônica Total (DHT) da corrente de entrada, atendendo os limites da norma IEC61000-3-2. O controle digital para o estágio de saída inversor foi desenvolvido usando duas diferentes técnicas, incluindo a técnica convencional controle escalar Volts/Hertz (V/Hz) e o controle Vetorial com Orientação pelo Fluxo do estator, com o propósito de verificar a aplicabilidade e a performance dos controles digitais propostos, para o controle contínuo da temperatura, aplicados a um protótipo de sistema de refrigeração. / Abstract: This work presents a new proposal for refrigeration systems with dynamic control of temperature, working with structure of open compressor, driving a three-phase induction motor with variable speed, and input rectifier with active power factor correction. The proposed system is composed of a single-phase high-power-factor boost rectifier, with two cells in interleaved connection, operating in critical conduction mode, and employing a softswitching technique, controlled by a Field Programmable Gate Array (FPGA), associated with a conventional three-phase IGBT bridge inverter (VSI - Voltage Source Inverter), controlled by a Digital Signal Processor (DSP). The soft-switching technique for the input stage is based on zero-current-switching (ZCS) cells. The rectifier’s features include reduction in input current ripple, reduction in output voltage ripple, use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output stage inverter has been developed using two different techniques, the conventional Voltage-Frequency control (scalar V/Hz control), and a simplified stator oriented vector control, in order to verify the feasibility and performance of the proposed digital controls, for continuous temperature control, applied at a refrigerator prototype. / Orientador: Carlos Alberto Canesin / Coorientador: Flávio Alessandro Serrão Gonçalves / Banca: Fabio Toshiaki Wakabayashi / Banca: João Onofre Pereira Pinto / Mestre
313

Multilevel Dodecagonal and Octadecagonal Voltage Space Vector Structures with a Single DC Supply Using Basic Inverter Cells

Boby, Mathews January 2017 (has links) (PDF)
Multilevel converters have become the direct accepted solution for high power converter applications. They are used in wide variety of power electronic applications like power transmission and distribution, electric motor drives, battery management and renewable energy management to name a few. For medium and high voltage motor drives, especially induction motor drives, the use of multilevel voltage source inverters have become indispensible. A high voltage multilevel inverter could be realized using low voltage switching devices which are easily available and are of low cost. A multilevel inverter generates voltage waveforms of very low harmonic distortion by switching between voltage levels of reasonably small amplitude differences. Thus the dv/dt of the output voltage waveform is small and hence the electromagnetic interference generated is less. Because of better quality output generation, the switching frequency of the multilevel inverters could be reduced to control the losses. Thus, a multilevel converter stands definitely a class apart in terms of performance from a conventional two-level inverter. Many multilevel inverter topologies for induction motor drives are available in the literature. The basic multilevel topologies are the neutral point clamped (NPC) inverter, flying capacitor (FC) inverter and the cascaded H-bridge (CHB) inverter. Various other hybrid multilevel topologies have been proposed by using the basic multilevel inverter topologies. It is also possible to obtain multilevel output by using conventional two-level inverters feeding an open-end winding induction motor from both sides. All the conventional multilevel voltage source inverters generate hexagonal (6 sided polygons) voltage space vector structures. When an inverter with hexagonal space vector structure is operated in the over modulation range, significant low order harmonics are generated in the phase voltage output. Over modulation operation is required for the full utilization of the available DC-link voltage and hence maximum power generation. Among the harmonics generated, the fifth and seventh harmonics are of significant magnitudes. These harmonics generate torque ripple in the motor output and are undesirable in high performance motor drive applications. The presence of these harmonics further creates problems in the closed loop current control of a motor, affecting the dynamic performance. Again, the harmonic currents generate losses in the stator windings. Therefore, in short, the presence of harmonic voltages in the inverter output is undesirable. Many methods have been proposed to eliminate or mitigate the effect of the harmonics. One solution is to operate the inverter at high switching frequency and thereby push the harmonics generated to high frequencies. The stator leakage inductance offers high impedance to the high frequency harmonics and thus the harmonic currents generated are negligible. But, high switching frequency brings switching losses and high electromagnetic interference generation in the drive system. And also, high switching frequency operation is effective only in the linear modulation range. Another solution is to use passive harmonic filters at the inverter output. For low order harmonics, the filter components would be bulky and costly. The loss created by the filters degrades the efficiency of the drive system as well. The presence of a filter also affects the dynamic performance of the drive system during closed loop operation. Special pulse width modulation (PWM) techniques like selective harmonic elimination (SHE) PWM can prevent the generation of a particular harmonic from the phase voltage output. The disadvantages of such schemes are limited modulation index, poor dynamic performance and extensive offline computations. An elegant harmonic elimination method is to generate a voltage space vector structure having more number of sides like a dodecagon (12 sided polygons) or an octadecagon (18 sided polygons) rather than a hexagon. Inverter topologies generating dodecagonal voltage space vector structure eliminate fifth and seventh order harmonics, represented as 6n 1; n = odd harmonics, from the phase voltages and hence from the motor phase currents, throughout the entire modulation range. The first harmonics appearing the phase voltage are the 11th and 13th harmonics. Another advantage is the increased linear modulation range of operation for a given DC-link voltage, because geometrically dodecagon is closer to circle than a hexagon. An octadecagonal structure eliminates the 11th and 13th harmonics as well from the phase voltage output. The harmonics present in the phase voltage are of the order 18n 1; n = 1; 2; 3; :::. Thus the total harmonics distortion (THD) of the phase voltage is further improved. The linear modulation range also gets enhanced compared to hexagonal and dodecagonal structures. Multilevel dodecagonal and octadecagonal space vector structures combines the advantages of both multilevel structure and dodecagonal and octadecagonal structure and hence are very attractive solutions for high performance induction motor drive schemes. Chapter 1 of this thesis introduces the multilevel in-verter topologies generating hexagonal, dodecagonal and octadecagonal voltage space vector structures. Inverter topologies generating multilevel dodecagonal and octadecago-nal voltage space vector structures have been proposed before but using multiple DC sources delivering active power. The presence of more than one DC source in the inverter topology makes the back to back operation (four-quadrant operation) of the drive system difficult. And also the drive system becomes more costly and bulky. This thesis proposes induction motor drive schemes generating multilevel dodecagonal and octadecagonal volt-age space vector structures using a single DC source. In Chapter 2, an induction motor drive scheme generating a six-concentric multilevel dodecagonal voltage space vector structure using a single DC source is proposed for an open-end winding induction motor. In the topology, two three-level inverters drive an open-end winding IM, one inverter from each side. DC-link of primary inverter is from a DC source (Vdc) which delivers the entire active power, whereas the secondary inverter DC-link is maintained by a capacitor at a voltage of 0:289Vdc, which is self-balanced during the inverter operation. The PWM scheme implemented ensures low switching frequency for primary inverter. Secondary inverter operates at a small DC-link voltage. Hence, switching losses are small for both primary and secondary inverters. An open-loop V/f scheme was used to test the topology and modulation scheme. In the work proposed in Chapter 3, the topology and modulation scheme used in the first work is modified for a star connected induction motor. Again, the scheme uses only a single DC source and generates a six-concentric multilevel space vector struc-ture. The power circuit topology is realized using a three-level flying capacitor (FC) inverter cascaded with an H-bridge (CHB). The capacitors in the CHB inverter are maintained at a voltage level of 0:1445Vdc. The FC inverter switches between volt-age levels of [Vdc; 0:5Vdc; 0] and the CHB inverter switches between voltage levels of [+01445Vdc; 0; 0:1445Vdc]. The PWM scheme generates a quasi-square waveform output from the FC inverter. This results in very few switchings of the FC inverter in a funda-mental cycle and hence the switching losses are controlled. The CHB inverter switches Ch. 0: at high frequency compared to the FC inverter and cancels the low order harmonics (6n 1; n = odd) generated by the FC inverter. Even though the CHB operates at higher switching frequency, the switchings are at low voltage thereby controlling the losses. The linear modulation range of operation is extended to 48:8Hz for a base frequency of 50Hz. An open-loop V/f scheme was used to test the topology and modulation scheme. In Chapter 4, a nine-concentric multilevel octadecagonal space vector structure is proposed for the first time, again using a single DC source. The circuit topology remains same as the work in Chapter 3, except that the CHB capacitor voltage is maintained at 0:1895Vdc. The 5th; 7th; 11th and 13th harmonics are eliminated from the phase voltage output. The linear modulation range is enhanced to 49:5Hz for a base speed of 50Hz. An open-loop V/f scheme and rotor field oriented control scheme were used to test the proposed drive system. All the proposed drive schemes have been extensively simulated and tested in hard-ware. Simulation was performed in MATLAB-SIMULINK environment. For implement-ing the inverter topology, SKM75GB12T4 IGBT modules were used. The control al-gorithms were implemented using a DSP (TI’s TMS320F28334) and an FPGA (Xilinx Spartan XC3S200). A 1kW , 415V , 4-pole induction motor was used for the experiment purpose. The above mentioned induction motor drive schemes generate phase voltage outputs in which the low order harmonics are absent. The linear modulation range is extended near to the base frequency of operation compared to hexagonal space vector structure. In the inverter topologies, the secondary inverters or the CHB inverters functions as harmonic filters and delivers zero active power. The primary inverter in the topologies switches at low frequency, reducing the power loss. Single DC source requirement brings down the cost of the system as well as permitting easy four-quadrant operation. This is also advantageous in battery operated systems like EV applications. With these features and advantages, the proposed drive schemes are suitable for high performance, medium voltage induction motor drive applications.
314

Studies on Single DC Link Fed Multilevel Inverter Topologies by Cascading Flying Capacitor and Floating Capacitor Fed H-Bridges

Pappu, Roshan Kumar January 2014 (has links) (PDF)
Use of multilevel inverters are inevitable in medium and high voltage drives. This is due to the fact that the multilevel inverters can produce voltages in smaller steps which will reduce the harmonic content and result in more sinusoidal voltages and currents as compared to voltages and currents from two-level inverters. Due to the device limitations, use of two-level inverters is not possible in medium and high voltage drive applications. Though multiple devices can be connected both in series and parallel to achieve two-level operation, the output voltages still suffer from high harmonic content. Multilevel inverters have multiple DC voltage levels with switches that enable one of the voltage steps to be applied to the load. Due to decrease in step size during each switching instant, output voltages and currents of the multilevel inverters have considerably less harmonic content. As the number of levels increase, the switching step reduces thereby the harmonic content also reduces drastically. Due to their advantages, multilevel inverters have gained lot of acceptance in the industry even at lower voltages. The three main configurations that have gained popularity are the neutral point clamped converter, the flying capacitor converter and the cascaded H-bridge converter. Each converter has its own set of advantages and disadvantages. Based on the requirements of various applications, it is possible to fabricate hybrid multilevel topologies that are combinations of the three basic topologies. Researchers around the world have proposed several such converters for diverse applications so as to suit particular requirements like modularity, ease of control, improved reliability, fault tolerant capability etc. The present thesis explores multilevel converters with single DC link to be used for motor drive and grid connected applications. A novel five-level inverter topology formed by cascading a floating capacitor H-bridge module to a regular three-level flying capacitor inverter has been explored in chapter 2. The three-level flying capacitor inverter can generate pole voltages of 0, VDC /2 and VDC . By cascading it with another floating capacitor H-bridge of voltage magnitude VDC /4, pole voltages of 0, VDC /4, VDC/2, 3VDC /4 and VDC . Each of these pole voltage levels can have one or more switching combinations. However each switching combination has a unique effect on the state of the two capacitor voltages. By switching through redundant switching combinations for the same pole voltage, the two capacitors present in each phase can be balanced. The proposed topology also has an advantage that if one of the devices in the H-bridge fails, the topology can still be operated as a regular three-level flying capacitor inverter that can supply full load at rated power by bypassing the faulty H-bridge. This fault tolerant operation of the converter will enable it to be used in applications like traction and marine drives where high reliability is needed. The proposed converter needs a single DC link. All the required voltage levels can be generated from the single DC link. This enables back to back grid connected operation possible where multiple converters can interact with a single DC link. Various pole voltage switching combination and its effect on individual capacitor has been studied. A control algorithm to balance the capacitor voltages by switching through multiple redundancies for the same pole voltage has been developed. The proposed configuration has been implemented in hardware using IGBT H-bridge modules and the control circuitry is realized using DSP and FPGA. The performance of the drive is verified for various frequencies and modulation indices during steady state by running a three phase induction motor at no load. The stability of the drive during transients has been studied by accelerating the machine suddenly at no load and analyzing the performance of the drive. The capacitor voltages are made to deviate from their intended values and the capacitor balancing algorithm has been verified for its ability to bring the capacitor voltages back to their intended values. The experimental results have been presented and discussed in detail in the chapter 2. In the third chapter a common-mode voltage eliminated three-level inverter using a single DC link has been proposed. The power schematic is similar to the one presented in chapter 2. In this chapter the space vector polygon formed by the three phases of the proposed topology has been presented. The common-mode voltage generated by different pole voltage combinations for same space vector location and the redundant switching state combinations has been studied. The pole voltage combinations with zero common mode voltage have been studied. The switching state redundancies for the the pole voltage have been studied. The space vector polygon formed with the pole voltage combinations has been analyzed. A drive is made with the proposed common-mode voltage eliminated inverter. The performance of the drive is tested for various modulation indices and frequencies by running a three phase squirrel cage induction motor at no load. The transient performance is verified by accelerating the motor suddenly and checking the common-mode voltage along with the capacitor voltages. The results have been presented and discussed in detail in chapter 3. This converter has advantages like use of single DC supply, ability to operate as a regular three level converter in case of failure of one of the H-bridges. The work presented in fourth chapter proposes a novel three phase 17-level inverter configuration which utilizes a single DC supply. The rest of voltages are generated using three floating capacitor H-bridges. The redundant switching combinations for generating various pole voltages and their effect on the capacitors have been studied and suitable capacitor balancing algorithm has been developed. The proposed topology has been realized in hardware and the performance of the drive during steady state has been studied by running an induction motor at various modulation indices and frequencies. The transient response of the drive has been observed by accelerating the motor suddenly under no load. The results have been presented in detail in chapter four. This configuration also needs a single DC link. The advantages of this configuration is in case of failure of any devices in the H-bridge, the drive can be operated at reduced number of levels while supplying full load current. This feature helps the drive to be used in fault tolerant applications like marine and traction drives where reliability of the drive is of prime importance. All the topologies that have been presented in the previous chapters have mentioned about the usage of the proposed genre of topologies use single DC link and hence will enable back to back grid tied inverter connection. In the fifth chapter this has has been verified experimentally. The three phase squirrel cage induction motor is driven by using the seventeen-level inverter drive proposed in chapter four. A five-level active front-end is realized by the converter topology proposed in chapter two. The converter is run and the performance of the drive is studied at various modulation indices and speeds of the motor. Various aspects like re-generation operation, acceleration and other aspects of the drive have been studied experimentally and the results are presented in detail. For experimental setup, Semikron SKM75GB12T4 IGBT modules have been used to realize the power topology. These IGBTs are driven by M56972L drivers. The control circuit is realized using TMS320F2812 DSP along with Xilinx Spartan 3 FPGA (XC3S200) has been used. The voltages and currents are sensed using LEM LV-20P and LA 55-P hall effect based sensors.
315

Induction Motor Drives Based on Multilevel Dodecagonal and Octadecagonal Volatage Space Vectors

Mathew, K January 2013 (has links) (PDF)
For medium and high-voltage drive applications, multilevel inverters are very popular. It is due to their superior performance compared to 2-level inverters such as reduced harmonic content in the output voltage and current, lower common mode voltage and dv=dt, and lesser voltage stress on power switches. The popular circuit topologies for multilevel inverters are neutral point clamped, cascaded H-bridge and flying capacitor based circuits. There exist different combinations of these basic topologies to realize multilevel inverters with modularity, better fault tolerance, and reliability. Due to these advantages, multilevel converters are getting good acceptance from the industry, and researchers all over the world are continuously trying to improve the performance of these converters. To meet such demands, three multilevel inverter topologies are proposed in this thesis. These topologies can be used for high-power induction motor drives, and the concepts presented are also applicable for synchronous motor drives, grid-connected inverters, etc. To get nearly sinusoidal phase current waveforms, the switching frequency of the conventional inverter has to be increased. It will lead to higher switching losses and electromagnetic interference. The problem with lower switching frequency is the intro- duction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching, and it is possible to eliminate these harmonics by dodecagonal switching. Further improvement in the waveform quality is possible by octadecagonal voltage space-vectors. In this case, the complete elimination of 11th and 13th harmonic is possible for the entire modulation range. The concepts of dodecagonal and octadecagonal voltage space-vectors are used in the proposed inverter topologies. The first topology proposed in this thesis consists of cascaded connection of two H-bridge cells. The two cells are fed from unequal DC voltage sources having a ratio of 1 : 0:366, and this inverter can produce six concentric dodecagonal voltage space- vectors. This ratio of voltages can be obtained easily from a combination of star-delta transformers, since 1 : 0:366 = ( p 3 + 1) : 1. The cascaded connection of two H-bridge cells can generate nine asymmetric pole voltage levels, and the combined three-phase inverter can produce 729 voltage space-vectors (9 9 9). From this large number of combinations, only certain voltage space-vectors are selected, which forms dodecagonal pattern. In the case of conventional multilevel inverters, the voltage space-vector diagram consists of equilateral triangles of equal size, but for the proposed inverter, the triangular regions are isosceles and are having different sizes. By properly placing the voltage space-vectors in a sampling period, it is possible to achieve lower switching frequency for the individual cells, with substantial improvement in the harmonic spectrum of the output voltage. During the experimental veri cation, the motor is operated at di erent speeds using open loop v=f control method. The samples taken are always synchronised with the start of the sector to get synchronised PWM. The number of samples per sector is decreased with increase in the fundamental frequency to limit the switching frequency. Even though many topologies are available in literature, the most preferred topology for drives application such as traction drives is the 3-level NPC structure. This implies that the industry is still looking for viable alternatives to construct multilevel inverter topologies based on available power circuits. The second work focuses on the development of a multilevel inverter for variable speed medium-voltage drive application with dodecagonal voltage space-vectors, using lesser number of switches and power sources compared to earlier implementations. It can generate three concentric 12-sided polygonal voltage space-vectors and it is based on commonly available 2-level and 3-level inverters. A simple PWM timing computation method based on the hexagonal space-vector PWM is developed. The sampled values of the three-phase reference voltages are initially converted to the timings of a two-level inverter. These timings are mapped to the dodecagonal timings using a change of basis transformation. The voltage space- vector diagram of the proposed drive consists of sixty isosceles triangular regions, and the dodecagonal timings calculated are converted to the timings of the inner triangles. A searching algorithm is used to identify the triangular region in which the reference vector is located. A front-end recti er that may be easily implemented using standard star-delta transformers is also developed, to provide near-unity power factor. To test the performance of the inverter drive, an open-loop v=f control is used on a three-phase induction motor under no-load condition. The harmonic spectra of the phase voltages were computed in order to analyse the harmonic distortion of the waveforms. The carrier frequency was kept around 1.2 KHz for the entire range of operation. If the switching frequency is decreased, the conventional hexagonal space-vector based switching introduce signifi cant 5th, 7th, 11th and 13th harmonics in the phase currents. Out of these dominant harmonics, the 5th and 7th harmonics can be completely suppressed using dodecagonal voltage space-vector based switching as observed in the first and second work. It is also possible to remove the 11th and the 13th harmonics by using voltage space-vectors with 18 sides. The last topology is based on multilevel octadecagonal (18-sided polygon) voltage space-vectors, and it has better harmonic performance than the previously mentioned topologies. Here, a multilevel inverter system capable of producing three octadecagonal voltage space-vectors is proposed for the fi rst time, along with a simple timing calculation method. The conventional three-level inverters are only required to construct the proposed drive. Four asymmetric power supply voltages with 0:3054Vdc, 0:3473Vdc, 0:2266Vdc and 0:1207Vdc are required for the operation of the drive, and it is the main drawback of the circuit. Generally front-end isolation transformer is essential for high-power drives and these asymmetric voltages can be easily obtained from the multiple windings of the isolation transformer. The total harmonic distortion of the phase current is improved due to the 18-sided voltage space-vector switching. The ratio of the radius of the largest polygon and its inscribing circle is cos10 = 0:985. This ratio in the case of hexagonal voltage space-vector modulation is cos30 = 0:866, which means that the range of the linear modulation for the proposed scheme is signifi cantly higher. The drive is designed for open-end winding induction motors and it has better fault tolerance. It any of the inverter fails, it can be easily bypassed and the drive will be still functional with reduced speed. Open loop v=f control and rotor flux oriented vector control schemes were used during the experimental verifi cation. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the entire range of operation, the carrier was synchronized with the fundamental. For the synchronization, the sampling period is varied dynamically so that the number of samples in a triangular region is fi xed, keeping the switching frequency around 1.2 KHz. The average execution time for the v=f code was found to be 20 S, where as for vector control it took nearly 100 S. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. To convert the triangle number and the timings to IGBT gate drive logic, an FPGA (XC3S200) was used. A constant dead-time of 1.5 S is also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. Hall-effect sensors were used to measure the phase currents and DC bus voltages. An incremental shaft position encoder with 2500 pulse per revolution is also connected to the motor shaft, to measure the angular velocity. 1200 V, 75 A IGBT half-bridge module is used to realize the switches. The concepts were initially simulated and experimentally verifi ed using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control techniques presented shall still remain applicable.
316

Induction Motor Drives Based on Multilevel Dodecagonal and Octadecagonal Volatage Space Vectors

Mathew, K January 2013 (has links) (PDF)
For medium and high-voltage drive applications, multilevel inverters are very popular. It is due to their superior performance compared to 2-level inverters such as reduced harmonic content in the output voltage and current, lower common mode voltage and dv=dt, and lesser voltage stress on power switches. The popular circuit topologies for multilevel inverters are neutral point clamped, cascaded H-bridge and flying capacitor based circuits. There exist different combinations of these basic topologies to realize multilevel inverters with modularity, better fault tolerance, and reliability. Due to these advantages, multilevel converters are getting good acceptance from the industry, and researchers all over the world are continuously trying to improve the performance of these converters. To meet such demands, three multilevel inverter topologies are proposed in this thesis. These topologies can be used for high-power induction motor drives, and the concepts presented are also applicable for synchronous motor drives, grid-connected inverters, etc. To get nearly sinusoidal phase current waveforms, the switching frequency of the conventional inverter has to be increased. It will lead to higher switching losses and electromagnetic interference. The problem with lower switching frequency is the intro- duction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching, and it is possible to eliminate these harmonics by dodecagonal switching. Further improvement in the waveform quality is possible by octadecagonal voltage space-vectors. In this case, the complete elimination of 11th and 13th harmonic is possible for the entire modulation range. The concepts of dodecagonal and octadecagonal voltage space-vectors are used in the proposed inverter topologies. The first topology proposed in this thesis consists of cascaded connection of two H-bridge cells. The two cells are fed from unequal DC voltage sources having a ratio of 1 : 0:366, and this inverter can produce six concentric dodecagonal voltage space- vectors. This ratio of voltages can be obtained easily from a combination of star-delta transformers, since 1 : 0:366 = ( p 3 + 1) : 1. The cascaded connection of two H-bridge cells can generate nine asymmetric pole voltage levels, and the combined three-phase inverter can produce 729 voltage space-vectors (9 9 9). From this large number of combinations, only certain voltage space-vectors are selected, which forms dodecagonal pattern. In the case of conventional multilevel inverters, the voltage space-vector diagram consists of equilateral triangles of equal size, but for the proposed inverter, the triangular regions are isosceles and are having different sizes. By properly placing the voltage space-vectors in a sampling period, it is possible to achieve lower switching frequency for the individual cells, with substantial improvement in the harmonic spectrum of the output voltage. During the experimental veri cation, the motor is operated at di erent speeds using open loop v=f control method. The samples taken are always synchronised with the start of the sector to get synchronised PWM. The number of samples per sector is decreased with increase in the fundamental frequency to limit the switching frequency. Even though many topologies are available in literature, the most preferred topology for drives application such as traction drives is the 3-level NPC structure. This implies that the industry is still looking for viable alternatives to construct multilevel inverter topologies based on available power circuits. The second work focuses on the development of a multilevel inverter for variable speed medium-voltage drive application with dodecagonal voltage space-vectors, using lesser number of switches and power sources compared to earlier implementations. It can generate three concentric 12-sided polygonal voltage space-vectors and it is based on commonly available 2-level and 3-level inverters. A simple PWM timing computation method based on the hexagonal space-vector PWM is developed. The sampled values of the three-phase reference voltages are initially converted to the timings of a two-level inverter. These timings are mapped to the dodecagonal timings using a change of basis transformation. The voltage space- vector diagram of the proposed drive consists of sixty isosceles triangular regions, and the dodecagonal timings calculated are converted to the timings of the inner triangles. A searching algorithm is used to identify the triangular region in which the reference vector is located. A front-end recti er that may be easily implemented using standard star-delta transformers is also developed, to provide near-unity power factor. To test the performance of the inverter drive, an open-loop v=f control is used on a three-phase induction motor under no-load condition. The harmonic spectra of the phase voltages were computed in order to analyse the harmonic distortion of the waveforms. The carrier frequency was kept around 1.2 KHz for the entire range of operation. If the switching frequency is decreased, the conventional hexagonal space-vector based switching introduce signifi cant 5th, 7th, 11th and 13th harmonics in the phase currents. Out of these dominant harmonics, the 5th and 7th harmonics can be completely suppressed using dodecagonal voltage space-vector based switching as observed in the first and second work. It is also possible to remove the 11th and the 13th harmonics by using voltage space-vectors with 18 sides. The last topology is based on multilevel octadecagonal (18-sided polygon) voltage space-vectors, and it has better harmonic performance than the previously mentioned topologies. Here, a multilevel inverter system capable of producing three octadecagonal voltage space-vectors is proposed for the fi rst time, along with a simple timing calculation method. The conventional three-level inverters are only required to construct the proposed drive. Four asymmetric power supply voltages with 0:3054Vdc, 0:3473Vdc, 0:2266Vdc and 0:1207Vdc are required for the operation of the drive, and it is the main drawback of the circuit. Generally front-end isolation transformer is essential for high-power drives and these asymmetric voltages can be easily obtained from the multiple windings of the isolation transformer. The total harmonic distortion of the phase current is improved due to the 18-sided voltage space-vector switching. The ratio of the radius of the largest polygon and its inscribing circle is cos10 = 0:985. This ratio in the case of hexagonal voltage space-vector modulation is cos30 = 0:866, which means that the range of the linear modulation for the proposed scheme is signifi cantly higher. The drive is designed for open-end winding induction motors and it has better fault tolerance. It any of the inverter fails, it can be easily bypassed and the drive will be still functional with reduced speed. Open loop v=f control and rotor flux oriented vector control schemes were used during the experimental verifi cation. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the entire range of operation, the carrier was synchronized with the fundamental. For the synchronization, the sampling period is varied dynamically so that the number of samples in a triangular region is fi xed, keeping the switching frequency around 1.2 KHz. The average execution time for the v=f code was found to be 20 S, where as for vector control it took nearly 100 S. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. To convert the triangle number and the timings to IGBT gate drive logic, an FPGA (XC3S200) was used. A constant dead-time of 1.5 S is also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. Hall-effect sensors were used to measure the phase currents and DC bus voltages. An incremental shaft position encoder with 2500 pulse per revolution is also connected to the motor shaft, to measure the angular velocity. 1200 V, 75 A IGBT half-bridge module is used to realize the switches. The concepts were initially simulated and experimentally verifi ed using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control techniques presented shall still remain applicable.
317

Programovn­ mikrokontrol©r c2000 v programu MATLAB/Simulink / MATLAB/Simulink Model Based Design Using C2000 Microcontrollers

oupal, Ondej January 2020 (has links)
The aim of this thesis is to explore possibilities of rapid control prototyping, describe the concept of creating the software application in MATLAB/Simulink environment with use for development kit Texas instruments LaunchPad and create an application for DC and induction motor control in this environment. This work describes the application for unipolar/bipolar control H-Bridge of power converter for DC motor, measurement of output currents, speed and its displaying in real time using serial control interface. This thesis also desribes scalar and vector control of induction motor. All software applications with measurements are created in MATLAB/Simulink and attached to the thesis.
318

Materiály pro vinutí elektrických strojů / Materials for electric machine winding

Minks, Ondřej January 2016 (has links)
This work deals with the option of substitute aluminum for copper as winding material in induction motor in several variants and compare them. The advantages and disadvantages of these materials for the application are mentioned. The default element is the machine with power 29 kW, 2p = 4, which is the basis for other variants. It is about the verification of the default copper wire machine with cataloging data and then verification of several aluminum wire variants of the machine. Veryfying the machine designs is performed on the basis of three programs - RMxprt, ANSYS Maxwell and Matlab. In all of these programs, the machine calculations were realized for copper and aluminum winding in point close to the nominal. Final results are evaluated. There are also heat and ventilation calculations of the machine.
319

Speciální asynchronní motory malého výkonu. / Special low-power induction motors.

Belica, Andrej January 2016 (has links)
Master thesis deals with design and construction of the most widely used engines currently. Overall, it is divided into five chapters, the first chapter deals with constructional features of various three-phase asynchronous motors, the second chapter briefly paid attention to single-phase motors. The next chapter focuses on the specific engine types, which differ from standard induction motors in its design implementation. This is an engine with full rotor, hysteresis, linear and with shaded field. Although asynchronous motors are considered the most reliable machines work in imperfect conditions, it leads to frequent breakdowns. This is covered in chapter four. Based on the findings from previous chapters the fifth chapter includes a preliminary draft of the asynchronous motor with a full rotor. The last chapter is devoted to the measurement on functional models.
320

Automatizované měření asynchronního motoru pomocí LabVIEW / Automatic measurement of induction machine using LabVIEW

Halfar, Lukáš January 2016 (has links)
The main purpose of the thesis Automatic measurement of induction machine using LabVIEW was to develope an automated measuring system, which is used to perform tests of induction motors. The algorithm of the system is programmed in LabVIEW. In the practical part of this thesis, a measurement of the motor Atas Elektromotory Náchod a.s. T22VT512 is carried out, in order to verificate functions of the algorithm, and to perform tests of the motor to analyse losses. Another part of the work is dedicated to the electromagnetic calculation of the motor T22VT512. For this purpose, two softwares with different principles of calculation have been used. Firstly, the calculation is solved by an analytical based software called RMxprt. Secondly, the software Maxwell 2D is used to make the calculation of electric and magnetic fields by the finite element method.

Page generated in 0.0926 seconds