• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 9
  • Tagged with
  • 28
  • 28
  • 28
  • 28
  • 28
  • 14
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

High Quality Rolled-Up Microstructures Enabled by Silicon Dry Release Technologies

Saggau, Christian Niclaas 24 August 2022 (has links)
Micro-technology relies on a highly parallel fabrication of 2D electronic and/or microelectromechanical devices, where in most cases silicon wafers are used as substrates. In contrast 3D fabrication shows unique advantages, such as footprint reduction or the possibility to obtain additional functionalities. For example, in the case of a sensor, knowledge of the acceleration in all possible directions, the surrounding electric or magnetic field among other quantities can help to determine the exact position of an object in 3D space. To do that it is crucial to retrieve all components of a vector field, which requires at least one out of plane component. In other fields like integrated optics three dimensional structures can enhance the coupling efficiency with free space interactions. As such 3D micro-structures will be crucial for upcoming products and devices. A highly parallel fabrication is required to enable mass-adaption, self-assembly is an emerging technology that could deliver this purpose. Examples of 3D structures created by self-assembly include polyhedrons like cubes, pyramids or micro tubular structures such as tubes or spirals. Following a self assembly scheme, 3D devices would be created through the fabrication of standard 2D structures that are reshaped through a self-assembly step into a 3D object. In this thesis a novel dry release protocol was developed to roll-up strained nanomembranes from a silicon sacrificial layer employing dry fluorine chemistry. This way a wet release is totally circumvented thus preventing damage of the created structures due to turbulent flow or capillary forces. Additionally the developed process enabled the use of standard CMOS deposition and processing tools, leading to a high increase in yield and quality, with yields exceeding 99% for microtubes. Building on the developed technology various devices where fabricated, for example rolled-up micro capacitors at a wafer scale with an increased yield and a low spread of electrical characteristics. For the E12 industrial standard more than 90% of devices behaved within the required performance characteristics. Furthermore the yield and Q-factor of roll-up whispering gallery mode resonators was strongly improved, making it possible to self assemble 3D coupled photonic molecules, which showed a mode splitting exceeding the FSR, as well as hybrid supermodes at points of energy degeneracy.:Contents Bibliographic Record i List of Abbreviations vii List of Chemical Substances ix 1 Introduction 1 1.1 Microelectromechanical Systems 1 1.2 Strain Engineering 2 1.3 Rolled - Up Nanotechnology 3 1.4 Objective and Structure of the Thesis 5 2 Materials and Methods 9 2.1 Fabrication Techniques 9 2.1.1 Substrates 9 2.1.2 Plasma Enhanced Chemical Vapor Deposition 9 2.1.3 Dry Etching12 2.1.4 Deep Reactive Ion Etching 18 2.1.5 Atomic Layer Deposition 19 2.1.6 Lithography 20 2.2 Characterization Techniques 22 2.2.1 Strain Measurement 22 2.2.2 Ellipsometry 23 3 Dry Roll-Up of Strained Nanomembranes 25 3.1 Rolled - Up Nanotechnology 25 3.2 Fabrication 26 3.2.1 Release 29 3.3 Conclusions 33 4 Rolled-UpMicro Capacitors 35 4.1 Micro Capacitors 35 4.2 Fabrication 38 4.3 Characterization 39 4.4 Conclusion 41 5 Optical Micro-Cavities 43 5.1 Optical Micro Cavities 43 5.2 Theorectical Background 45 5.2.1 Quality - factor 49 5.2.2 FDTD 52 6 Optical Microtube Resonators 55 6.1 Optical Whispering Gallery Mode Microtube Resonators 55 6.2 Fabrication 57 6.3 Active Characterization 60 6.4 Conclusions 64 7 Photonic Molecules 65 7.1 Coupled Photonic Systems 65 7.2 Fabrication 68 7.3 Device Characterization 71 7.4 Multimode Waveguides 84 7.5 Conclusions 85 8 Conclusions and Outlook 87 8.1 Conclusions 87 8.2 Outlook 88 Bibliography 91 List of Figures 109 List of Tables 117 A Equipment 119 Cover Pages 121 Selbstständigkeitserklärung 123 Acknowledgements 125 List of Publications 127 List of Presentations 129 Curriculum Vitae 131
22

Simulation der Modendynamik von Fabry-Pérot-Laserdioden unter Berücksichtigung mikroskopischer Effekte

Kuhn, Eduard 28 November 2022 (has links)
In dieser Dissertation werden verschiedene Methoden zur Simulation der Dynamik der optischen Moden einer Fabry-Pérot-Laserdiode diskutiert. Experimentell lässt sich hierbei der Effekt des Modenrollens oder Modenhüpfens beobachten. Hier sind zu einem gegebenem Zeitpunkt nur ein oder zwei longitudinale Moden aktiv, dabei wechseln sich die Moden in einem bestimmten Wellenlängenbereich ab. Eine Erklärung für diesen Effekt sind Vibrationen der Ladungsträgerdichten in den aktiven Schichten bzw. den Quantenfilmen. So werden in der ersten betrachteten Methode die Ladungsträgerdichten bzw. die Besetzungsfunktionen zunächst als ortsabhängig betrachtet, um die Ladungsträger-Vibrationen direkt zu bestimmen. Bei diesem Vorgehen wird eine hohe Rechenzeit benötigt, welche bei einer anderen Methode mithilfe eines effektiven Modenwechselwirkungsterms allerdings erheblich reduziert wird. Im ersten Teil dieser Arbeit wird gezeigt, dass diese beiden Methoden sehr ähnliche Ergebnisse liefern, außerdem wird der effektive Modenwechselwirkungsterm unter Berücksichtigung verschiedener Streuprozesse hergeleitet. Bei Strukturen mit mehreren Quantenfilmen oder größeren Stegbreiten spielt der Transport der Ladungsträger von den Kontakten zu den Quantenfilmen eine große Rolle, welcher in dieser Arbeit mithilfe der Drift-Diffusions-Gleichungen untersucht wird. Abschließend wird die Modendynamik mithilfe des Traveling-Wave-Modells simuliert. Im Gegensatz zu den bisher in dieser Arbeit verwendeten Methoden wird das optische Feld hierbei nicht mehr in die einzelnen Moden aufgeschlüsselt, sondern es wird partielle Differentialgleichung gelöst. / In this thesis different methods for the simulation of the mode dynamics in Fabry-Pérot laser diodes are discussed. These laser diodes show the effect of mode rolling, where the currently active longitudinal mode changes over time. This effect can be observed experimentally and can be explained by beating vibrations of the carrier densities in the quantum wells. In the first method used in this work the location dependence of the carrier densities and the distribution functions is considered. This procedure requires a lot of computing time, which is significantly reduced in another method using an effective mode interaction term. In the first part of this thesis it is shown that these two methods give very similar results, and the effective mode interaction term is derived taking into account various scattering processes. For structures with multiple quantum wells or broad ridge widths the transport of the charge carriers from the contacts to the quantum wells is important, which is examined in this work using the Drift-diffusion equations. Finally, the mode dynamics is simulated using the traveling wave model. In contrast to the methods used so far in this work the optical field is no longer broken down into the individual modes, instead a partial differential equation is solved.
23

Self-assembled rolled-up devices: towards on-chip sensor technologies

Smith, Elliot John 29 August 2011 (has links)
By implementing the rolled-up microfabrication method based on strain engineering, several systems are investigated within the contents of this thesis. The structural morphing of planar geometries into three-dimensional structures opens up many doors for the creation of unique material configurations and devices. An exploration into several novel microsystems, encompassing various scientific subjects, is made and methods for on-chip integration of these devices are presented. The roll-up of a metal and oxide allows for a cylindrical hollow-core structure with a cladding layer composed of a multilayer stack, plasmonic metamaterial. This structure can be used as a platform for a number of optical metamaterial devices. By guiding light radially through this structure, a theoretical investigation into the system makeup of a rolled-up hyperlens, is given. Using the same design, but rather propagating light parallel to the cylinder, a novel device known as a metamaterial optical fiber is defined. This fiber allows light to be guided classically and plasmonically within a single device. These fibers are developed experimentally and are integrated into preexisting on-chip structures and characterized. A system known as lab-in-a-tube is introduced. The idea of lab-in-a-tube combines various rolled-up components into a single all-encompassing biosensor that can be used to detect and monitor single bio-organisms. The first device specifically tailored to this system is developed, flexible split-wall microtube resonator sensors. A method for the capturing of embryonic mouse cells into on-chip optical resonators is introduced. The sensor can optically detect, via photoluminescence, living cells confined within the resonator through the compression and expansion of a nanogap built within its walls. The rolled-up fabrication method is not limited to the well-investigated systems based on the roll-up from semiconductor material or from a photoresist layer. A new approach, relying on the delamination of polymers, is presented. This offers never-before-realized microscale structures and configurations. This includes novel magnetic configurations and flexible fluidic sensors which can be designed for on-chip and roving detector applications.
24

Binding and characterization of fluorescent nano-aggregates on structured surfaces

Baumgärtel, Thomas 10 July 2012 (has links)
Im Mittelpunkt dieser Arbeit steht die selektive Funktionalisierung von Siliziumoxidnanostrukturen auf alkyl-passivierten Siliziumoberflächen welche durch rasterkraftmikroskopisch induzierte lokale anodische Oxidation (LAO) erzeugt werden. Bei der gezielten Immobilisierung von funktionalen Molekülen auf den Strukturen werden zwei verschiedene Routen verfolgt – Anbindung von ionischen Farbstoffen über elektrostatische Wechselwirkungen sowie stufenweise kovalente chemische Anbindung von bi-funktionalen Verbindermolekülen und Farbstoffen. Eine Untersuchung der hergestellten funktionalen Strukturen erfolgt mittels Rasterkraftmikroskopie, Raster-Kelvin-Mikroskopie sowie zeitaufgelöster Fluoreszenzmikroskopie und-spektroskopie. Durch zwei unabhängige Methoden kann gezeigt werden dass die Ladungen im lokalen Oxide vergleichsweise stabil sind und die elektrostatische Anbindung somit auch noch nach Tagen möglich sein sollte. Das Verhalten der elektrostatisch angebundenen Farbstoffe hängt stark von deren Art ab. Während es bei Rhodamin 6G nur zu einer minimalen spektralen Änderung im Vergleich zur Lösung kommt so zeigen spermin-funktionalisierte Perylenbisimidfarbstoffe eine deutliche H-Aggregation und Ausbildung von Excimerzuständen. Diese Zustände sind eindeutig thermisch aktiviert und zeigen eine wesentlich höhere Aktivierungsenergie als bei allen anderen bisher untersuchten Perylenaggregaten sowie eine Hysterese bei Temperaturveränderung. Die physikalische Ursache für dieses Phänomen liegt allem Anschein nach in der elektrostatischen Anbindung selbst welche ein instabiles Gleichgewicht mit der Wechselwirkung der Moleküle untereinander bildet. Eine geordnete kovalente Anbindung von funktionalen Silanmolekülen an die mittels LAO erzeugten Strukturen erfordert sehr definierte Prozessparameter. Die spektroskopische Untersuchung von an die funktionalen Silane chemisch angebundenen Fluoresceinfarbstoffen lässt indirekte Schlüsse auf deren Belegungsdichte und damit die Qualität der Silanmonolage zu.
25

Synthese und Funktion nanoskaliger Oxide auf Basis der Elemente Bismut und Niob

Wollmann, Philipp 22 March 2012 (has links)
Am Beispiel von ferroelektrischen Systemen auf Bismut-Basis (Bismutmolybdat, Bismutwolframat und Bismuttitanat) und von Strontiumbariumniobat werden neue Möglichkeiten zur Synthese solcher Nanopartikel aufgezeigt. Die Integration der Nanopartikel in transparente Nanokompositmaterialien und die Entwicklung neuer Precursoren für die Herstellung von Dünnschichtproben gehen den Untersuchungen zur Anwendung als elektrooptische aktive Materialien voraus. Durch weitere Anwendungsmöglichkeiten in der Photokatalyse, dem Test dampfadsorptiver Eigenschaften mit Hilfe eines neuartigen Adsorptionstesters (Infrasorb) und auch mit Hilfe der Ergebnisse der ferroelektrischen Charakterisierung von gesinterten Probenkörpern aus einem Spark-Plasma-Prozess wird ein gesamtheitlicher Überblick über die vielfältigen Aspekte in der Arbeit mit nanoskaligen, ferroelektrischen Materialien gegeben.:Inhaltsverzeichnis...........................................................................................................5 Abkürzungsverzeichnis ...................................................................................................9 1. Motivation....................................................................................................................11 2. Stand der Forschung und theoretischer Teil ...............................................................14 2.1. Nanoskalige Materialien...........................................................................................15 2.1.1. Nanopartikel und Nanokompositmaterialien ....................................................... 15 2.1.2. Dünnschichten..................................................................................................... 21 2.1.3. Anwendungen in der Photokatalyse.................................................................... 22 2.1.4. Anwendungen in der Gas- und Dampfsensorik.................................................... 24 2.2. Ferroelektrika .........................................................................................................26 2.2.1. Bismutmolybdat................................................................................................... 32 2.2.2. Bismutwolframat.................................................................................................. 34 2.2.3. Bismuttitanat ....................................................................................................... 36 2.2.4. Strontiumbariumniobat......................................................................................... 37 2.3. Verwendete Methoden.............................................................................................40 2.3.1. Spark-Plasma-Sintering ........................................................................................40 2.3.2. Bestimmung ferroelektrischer Eigenschaften ...................................................... 42 2.3.3. Charakterisierung nichtlinearer, elektrooptischer Eigenschaften......................... 43 3. Experimenteller Teil ....................................................................................................51 3.1. Synthesevorschriften................................................................................................52 3.1.1. Verwendete Chemikalien und Substrate.............................................................. 52 3.1.2. Solvothermalsynthese von Bi2MO6 (M = Mo, W)................................................... 55 3.1.3. Phasentransfersynthese von Bi2MO6 (M = Mo, W)............................................... 56 3.1.4. Präparation von Bi2MO6/PLA Nanokompositmaterialien (M = Mo, W) ................... 57 3.1.5. Sol-Gel-Synthese von Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Ba0.25Sr0.75Nb2O6 und Dünnschichten..................... 57 3.1.6. Mikroemulsionssynthese von Bi4Ti3O12 ............................................................... 59 3.1.7. Sol-Gel-Synthese von Bi2Ti2O7............................................................................. 60 3.1.8. Synthese von BiOH(C2O4), BiOCH3COO und Bi(CH3COO)3................................... 61 3.2. Vorschriften zur Durchführung und Charakterisierung...............................................62 3.2.1. Verwendete Geräte und Einstellungen ................................................................ 62 3.2.2. Spark Plasma Sintering von Bi2MO6 (M = Mo,W) und Bestimmung ferroelektrischer Eigenschaften ........................ 65 3.2.3. Prüfung elektrooptischer Eigenschaften, Präparation der Bauteile und Messaufbau .............................................. 67 3.2.4. Durchführung photokatalytischer Messungen ....................................................... 69 3.2.5. Messung der Dampfadsorption an Nanopartikeln mit Hilfe berührungsloser Detektion ........................................... 70 4. Ergebnisse und Diskussion...........................................................................................71 4.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................72 4.1.1. Synthese von Bi2MO6 (M = Mo, W) Nanopartikeln................................................. 72 4.1.2. Nanokompositmaterialien mit Bi2MO6 (M = Mo, W)................................................ 81 4.1.3. Synthese der Bismuttitanate Bi4Ti3O12 und Bi2Ti2O7 .......................................... 84 4.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 ................. 88 4.2. Funktion der nanoskaligen Materialien .....................................................................100 4.2.1. Bismuthaltige Nanopartikel in der Photokatalyse ..................................................100 4.2.2. Spark-Plasma-Sintern von Bi2MO6-Nanopartikel (M = Mo, W)................................103 4.2.3. Elektrooptische Eigenschaften von Dünnschichten und Kompositmaterialien ............................................................108 4.2.4. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ............114 4.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3....................................118 5. Zusammenfassung ......................................................................................................127 6. Ausblick .......................................................................................................................131 7. Literatur ......................................................................................................................132 8. Abbildungs- und Tabellenverzeichnis ..........................................................................146 8.1. Abbildungsverzeichnis...............................................................................................146 8.2. Tabellenverzeichnis...................................................................................................152 9. Anhang ........................................................................................................................154 9.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................155 9.1.1. Solvothermalsynthese von Bi2MO6 (M = Mo, W).....................................................155 9.1.2. Phasentransfersynthese von Bi2MO6 (M = Mo, W).................................................156 9.1.3. Synthese der Bismutmolybdate Bi4Ti3O12 und Bi2Ti2O7 .......................................156 9.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 .................159 9.2. Funktion der nanoskaligen Materialien ......................................................................164 9.2.1. Spark-Plasma-Sintern..............................................................................................164 9.2.2. Elektro-optische Eigenschaften von Dünnschichten und Kompositmaterialien .........................................................166 9.2.3. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ...........174 9.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3.....................................175 9.3.1. DTA-TG-Ergebnisse .................................................................................................175 9.3.2. Kristalldaten und Strukturverfeinerung ...................................................................177 9.4. Quelltexte ..................................................................................................................181 9.4.1. MATLAB-Skript zur Auswertung elektrooptischer Koeffizienten................................181 9.4.2. MATLAB-Skript zur Auswertung dampfadsorptiver Eigenschaften............................182
26

Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

Rodriguez, Raul D., Sheremet, Evgeniya, Deckert-Gaudig, Tanja, Chaneac, Corinne, Hietschold, Michael, Deckert, Volker, Zahn, Dietrich R. T. 03 June 2015 (has links)
Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm−1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal–nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
27

The substrate matters in the Raman spectroscopy analysis of cells

Mikoliunaite, Lina, Rodriguez, Raul D., Sheremet, Evgeniya, Kolchuzhin, Vladimir, Mehner, Jan, Ramanavicius, Arunas, Zahn, Dietrich R.T. 11 November 2015 (has links)
Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.
28

Micro- and Nano-Raman Characterization of Organic and Inorganic Materials

Sheremet, Evgeniya 07 October 2015 (has links)
Die Raman-Spektroskopie ist eine der nützlichsten optischen Methoden zur Untersuchung der Phononen organischer und anorganischer Materialien. Mit der fortschreitenden Miniaturisierung von elektronischen Bauelementen und der damit einhergehenden Verkleinerung der Strukturen von der Mikrometer- zur Nanometerskala nehmen das Streuvolumen und somit auch das Raman-Signal drastisch ab. Daher werden neue Herangehensweisen benötigt um sie mit optischer Spektroskopie zu untersuchen. Ein häufig genutzter Ansatz um die Signalintensität zu erhöhen ist die Verwendung von Resonanz-Raman-Streuung, das heißt dass die Anregungsenergie an die Energie eines optischen Überganges in der Struktur angepasst wird. In dieser Arbeit wurden InAs/Al(Ga)As-basierte Multilagen mit einer Periodizität unterhalb des Beugungslimits mittels Resonanz-Mikro-Raman-Spektroskopie und Raster-Kraft-Mikroskopie (AFM) den jeweiligen Schichten zugeordnet. Ein effizienterer Weg um die Raman-Sensitivität zu erhöhen ist die Verwendung der oberflächenverstärkten Raman-Streuung (SERS). Sie beruht hauptsächlich auf der Verstärkung der elektromagnetischen Strahlung aufgrund von lokalisierten Oberflächenplasmonenresonanzen in Metallnanostrukturen. Beide oben genannten Signalverstärkungsmethoden wurden in dieser Arbeit zur oberflächenverstärkten Resonanz-Raman-Streuung kombiniert um geringe Mengen organischer und anorganischer Materialien (ultradünne Cobalt-Phthalocyanin-Schichten (CoPc), CuS und CdSe Nanokristalle) zu untersuchen. Damit wurden in beiden Fällen Verstärkungsfaktoren in der Größenordnung 103 bis 104 erreicht, wobei bewiesen werden konnte, dass der dominante Verstärkungsmechanismus die elektromagnetische Verstärkung ist. Spitzenverstärkte Raman-Spektroskopie (TERS) ist ein Spezialfall von SERS, bei dem das Auflösungsvermögen von Licht unterschritten werden kann, was zu einer drastischen Verbesserung der lateralen Auflösung gegenüber der konventionellen Mikro-Raman-Spektroskopie führt. Dies konnte mit Hilfe einer Spitze erreicht werden, die als einzelner plasmonischer Streuer wirkt. Dabei wird die Spitze in einer kontrollierten Weise gegenüber der Probe bewegt. Die Anwendung von TERS erforderte zunächst die Entwicklung und Optimierung eines AFM-basierten TERS-Aufbaus und TERS-aktiver Spitzen, welche Gegenstand dieser Arbeit war. TERS-Bilder mit Auflösungen unter 15 nm konnten auf einer Testprobe mit kohlenstoffhaltigen Verbindungen realisiert werden. Die TERS-Verstärkung und ihre Abhängigkeit vom Substratmaterial, der Substratmorphologie sowie der AFM-Betriebsart wurden anhand der CoPc-Schichten, die auf nanostrukturierten Goldsubstraten abgeschieden wurden, evaluiert. Weiterhin konnte gezeigt werden, dass die hohe örtliche Auflösung der TERS-Verstärkung die selektive Detektion des Signals weniger CdSe-Nanokristalle möglich macht.:Bibliografische Beschreibung 3 Parts of this work are published in 5 Table of contents 7 List of abbreviations 10 Introduction 11 Chapter 1. Principles of Raman spectroscopy, surface- and tip-enhanced Raman spectroscopies 15 1.1. Raman spectroscopy: its benefits and limitations 15 1.2. Electromagnetic enhancement in SERS and TERS 18 1.2.1. Light scattering by a sphere 19 1.2.2. Image dipole effect 22 1.3. Chemical enhancement 23 1.4. Summary 25 Chapter 2. Raman and AFM profiling of nanocrystal multilayer structures 27 2.1. Materials and methods 27 2.1.1. Nanocrystal growth 27 2.1.2. Sample preparation 28 2.1.3. TEM, AFM and Raman measurements 29 2.2. Structure of embedded NCs 31 2.2.1. Size and shape of embedded NCs by TEM 31 2.2.2. Phonon spectra of NCs 32 2.3. Profiling on NC multilayers 34 2.3.1. AFM profiling of multilayer NC structures 34 2.3.2. Raman profiling of NC multilayers 38 2.4. Summary 40 Chapter 3. Surface-enhanced Raman spectroscopy 43 3.1. Materials and methods 43 3.1.1. SERS substrate preparation 43 3.1.2. Organic and inorganic materials 45 3.1.3. Micro-Raman spectroscopy measurements 46 3.1.4. Micro-ellipsometry 46 3.1.5. Numerical simulations 47 3.2. SERS on organic films 47 3.2.1. SERS enhancement of CoPc 48 3.2.2. Polarization dependence of enhancement in SERS 51 3.3. SERS by nanocrytals 53 3.4. Summary 55 Chapter 4. Implementation of tip-enhanced Raman spectroscopy 57 4.1. TERS enhancement factor 58 4.2. State of the art of optical systems for TERS 60 4.3. Implementation of the optical system 61 4.4. TERS tips 64 4.4.1. State of the art of TERS tips 64 4.4.2. Fabrication of tips for AFM-based TERS 66 4.4.3. Mechanical properties of fully metallic TERS tips 68 4.5. Summary 74 Chapter 5. Tip-enhanced Raman spectroscopy imaging 75 5.1. Materials and methods 75 5.1.1. Preparation of multi-component sample 75 5.1.2. TERS experiments 76 5.1.3. Simulations of electric field enhancement 76 5.2. High resolution discrimination of carbon-containing compounds by TERS 78 5.3. Effect of substrate material and morphology on TERS enhancement 82 5.4. Effect of the AFM imaging mode on TERS enhancement 85 5.5. TERS on free-standing colloidal CdSe NCs 90 5.6. Summary 91 Conclusions 93 References 95 List of figures 104 Erklärung 109 Lebenslauf 111 Publication list 112 Acknowledgements 117

Page generated in 0.1424 seconds