• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 13
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach

Roozbeh Gharakhloo (6943460) 16 December 2020 (has links)
<div><div>In this work we use and develop Riemann-Hilbert techniques to study the asymptotic behavior of structured determinants. In chapter one we will review the main underlying</div><div>definitions and ideas which will be extensively used throughout the thesis. Chapter two is devoted to the asymptotic analysis of Hankel determinants with Laguerre-type and Jacobi-type potentials with Fisher-Hartwig singularities. In chapter three we will propose a Riemann-Hilbert problem for Toeplitz+Hankel determinants. We will then analyze this Riemann-Hilbert problem for a certain family of Toeplitz and Hankel symbols. In Chapter four we will study the asymptotics of a certain bordered-Toeplitz determinant which is related to the next-to-diagonal correlations of the anisotropic Ising model. The analysis is based upon relating the bordered-Toeplitz determinant to the solution of the Riemann-Hilbert problem associated to pure Toeplitz determinants. Finally in chapter ve we will study the emptiness formation probability in the XXZ-spin 1/2 Heisenberg chain, or equivalently, the asymptotic analysis of the associated Fredholm determinant.</div></div>
52

Best constants in Markov-type inequalities with mixed weights

Langenau, Holger 18 March 2016 (has links)
Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given. / Markovungleichungen liefern obere Schranken an die Norm einer (höheren) Ableitung eines algebraischen Polynoms in Bezug auf die Norm des Polynoms selbst. Diese vorliegende Arbeit betrachtet den Fall, dass die Normen vom Laguerre-, Gegenbauer- oder Hermitetyp sind, wobei die entsprechenden Gewichte auf beiden Seiten unterschiedlich gewählt werden. Es wird die kleinste Konstante bestimmt, sodass diese Ungleichung für jedes Polynom vom Grad höchstens n erfüllt ist. Die gesuchte kleinste Konstante kann als die Operatornorm des Differentialoperators dargestellt werden. Diese fällt aber mit der Spektralnorm der Matrixdarstellung in einem Paar geeignet gewählter Orthonormalbasen zusammen und kann daher gut behandelt werden. Zur Abschätzung dieser Normen kommen verschiedene Methoden zum Einsatz, die durch die Differenz der in den Gewichten auftretenden Parameter bestimmt werden. Bis auch eine kleine Lücke im Parameterbereich wird das asymptotische Verhalten der kleinsten Konstanten in jedem der betrachteten Fälle ermittelt.
53

Approche spectrale pour l’interpolation à noyaux et positivité conditionnelle / Spectral approach for kernel-based interpolation and conditional positivity

Gauthier, Bertrand 12 July 2011 (has links)
Nous proposons une approche spectrale permettant d'aborder des problèmes d'interpolation à noyaux dont la résolution numérique n'est pas directement envisageable. Un tel cas de figure se produit en particulier lorsque le nombre de données est infini. Nous considérons dans un premier temps le cadre de l'interpolation optimale dans les sous-espaces hilbertiens. Pour un problème donné, un opérateur intégral est défini à partir du noyau sous-jacent et d'une paramétrisation de l'ensemble des données basée sur un espace mesuré. La décomposition spectrale de l'opérateur est utilisée afin d'obtenir une formule de représentation pour l'interpolateur optimal et son approximation est alors rendu possible par troncature du spectre. Le choix de la mesure induit une fonction d'importance sur l'ensemble des données qui se traduit, en cas d'approximation, par une plus ou moins grande précision dans le rendu des données. Nous montrons à titre d'exemple comment cette approche peut être utilisée afin de rendre compte de contraintes de type "conditions aux limites" dans les modèles d'interpolation à noyaux. Le problème du conditionnement des processus gaussiens est également étudié dans ce contexte. Nous abordons enfin dans la dernière partie de notre manuscrit la notion de noyaux conditionnellement positifs. Nous proposons la définition générale de noyaux symétriques conditionnellement positifs relatifs à une espace de référence donné et développons la théorie des sous-espaces semi-hilbertiens leur étant associés. Nous étudions finalement la théorie de l'interpolation optimale dans cette classe d'espaces. / We propose a spectral approach for the resolution of kernel-based interpolation problems of which numerical solution can not be directly computed. Such a situation occurs in particular when the number of data is infinite. We first consider optimal interpolation in Hilbert subspaces. For a given problem, an integral operator is defined from the underlying kernel and a parameterization of the data set based on a measurable space. The spectral decomposition of the operator is used in order to obtain a representation formula for the optimal interpolator and spectral truncation allows its approximation. The choice of the measure on the parameters space introduces a hierarchy onto the data set which allows a tunable precision of the approximation. As an example, we show how this methodology can be used in order to enforce boundary conditions in kernel-based interpolation models. The Gaussian processes conditioning problem is also studied in this context. The last part of this thesis is devoted to the notion of conditionally positive kernels. We propose a general definition of symmetric conditionally positive kernels relative to a given space and exposed the associated theory of semi-Hilbert subspaces. We finally study the optimal interpolation problem in such spaces.
54

Field reconstructions and range tests for acoustics and electromagnetics in homogeneous and layered media / Feld-Rekonstruktionen und Range Tests für Akustik und Elektromagnetik in homogenen und geschichteten Medien

Schulz, Jochen 04 December 2007 (has links)
No description available.
55

Compression et inférence des opérateurs intégraux : applications à la restauration d’images dégradées par des flous variables / Approximation and estimation of integral operators : applications to the restoration of images degraded by spatially varying blurs

Escande, Paul 26 September 2016 (has links)
Le problème de restauration d'images dégradées par des flous variables connaît un attrait croissant et touche plusieurs domaines tels que l'astronomie, la vision par ordinateur et la microscopie à feuille de lumière où les images sont de taille un milliard de pixels. Les flous variables peuvent être modélisés par des opérateurs intégraux qui associent à une image nette u, une image floue Hu. Une fois discrétisé pour être appliqué sur des images de N pixels, l'opérateur H peut être vu comme une matrice de taille N x N. Pour les applications visées, la matrice est stockée en mémoire avec un exaoctet. On voit apparaître ici les difficultés liées à ce problème de restauration des images qui sont i) le stockage de ce grand volume de données, ii) les coûts de calculs prohibitifs des produits matrice-vecteur. Ce problème souffre du fléau de la dimension. D'autre part, dans beaucoup d'applications, l'opérateur de flou n'est pas ou que partialement connu. Il y a donc deux problèmes complémentaires mais étroitement liés qui sont l'approximation et l'estimation des opérateurs de flou. Cette thèse a consisté à développer des nouveaux modèles et méthodes numériques permettant de traiter ces problèmes. / The restoration of images degraded by spatially varying blurs is a problem of increasing importance. It is encountered in many applications such as astronomy, computer vision and fluorescence microscopy where images can be of size one billion pixels. Variable blurs can be modelled by linear integral operators H that map a sharp image u to its blurred version Hu. After discretization of the image on a grid of N pixels, H can be viewed as a matrix of size N x N. For targeted applications, matrices is stored with using exabytes on the memory. This simple observation illustrates the difficulties associated to this problem: i) the storage of a huge amount of data, ii) the prohibitive computation costs of matrix-vector products. This problems suffers from the challenging curse of dimensionality. In addition, in many applications, the operator is usually unknown or only partially known. There are therefore two different problems, the approximation and the estimation of blurring operators. They are intricate and have to be addressed with a global overview. Most of the work of this thesis is dedicated to the development of new models and computational methods to address those issues.

Page generated in 0.1055 seconds