• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 352
  • 313
  • 107
  • 2
  • 2
  • 1
  • Tagged with
  • 777
  • 777
  • 214
  • 145
  • 143
  • 127
  • 126
  • 126
  • 126
  • 126
  • 111
  • 103
  • 98
  • 96
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

La gestión del cambio para la implementación de inteligencia artificial en los procesos de reclutamiento y selección: Empresas peruanas de consumo masivo

Jarufe Ocharan, Fátima Johana, Martinez Bendezu, Gabriel Antonio 18 February 2021 (has links)
En los últimos años, el avance en la investigación ha permitido que el uso de la inteligencia artificial sea más accesible en el contexto empresarial. Esto sucede debido a la creación de herramientas para áreas tales como marketing, finanzas, recursos humanos, entre otros, con la finalidad de predecir patrones, comportamientos y habilidades de sus clientes, trabajadores y postulantes a un puesto de trabajo dentro de su empresa. Así, el uso de estas nuevas herramientas impulsa cambios en la manera realizar de procesos, especialmente, en sectores que requieren para sus operaciones el procesamiento de grandes cantidades de información como, por ejemplo, el sector consumo masivo. No obstante, de no implementar de forma correcta las nuevas herramientas, se podrían dar resultados contraproducentes. Debido a ello, la presente investigación tiene como objetivo conocer y entender de qué manera se desarrolla la gestión del cambio en organizaciones del sector consumo masivo que hayan implementado herramientas de inteligencia artificial en los procesos de reclutamiento y selección en Perú. Para lograr dicho objetivo, se procedió a realizar una revisión exhaustiva de las investigaciones pertinentes a dicho tema, y se recogieron las experiencias de expertos de distintas empresas de consumo masivo peruanas que ya pasaron por este proceso. Mediante la recolección de información, se construyeron lineamientos generales empíricos a base de las experiencias contadas y la teoría recolectada en el marco teórico y contextual, se establecieron sus implicancias y se dieron recomendaciones para su implementación. Los lineamientos establecidos en el presente trabajo de investigación son de especial importancia para las empresas que se encuentren en proceso de integración de tecnologías de inteligencia artificial, especialmente para aquellas que busquen facilitar los procesos de reclutamiento y selección, ya que permiten tener un panorama general de los factores más importantes a tener en cuenta al implementar este cambio.
492

Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient

Silva Obregón, Gustavo Manuel 05 April 2019 (has links)
Convolutional sparse representations and convolutional dictionary learning are mathematical models that consist in representing a whole signal or image as a sum of convolutions between dictionary filters and coefficient maps. Unlike the patch-based counterparts, these convolutional forms are receiving an increase attention in multiple image processing tasks, since they do not present the usual patchwise drawbacks such as redundancy, multi-evaluations and non-translational invariant. Particularly, the convolutional dictionary learning (CDL) problem is addressed as an alternating minimization between coefficient update and dictionary update stages. A wide number of different algorithms based on FISTA (Fast Iterative Shrinkage-Thresholding Algorithm), ADMM (Alternating Direction Method of Multipliers) and ADMM consensus frameworks have been proposed to efficiently solve the most expensive steps of the CDL problem in the frequency domain. However, the use of the existing methods on large sets of images is computationally restricted by the dictionary update stage. The present thesis report is strategically organized in three parts. On the first part, we introduce the general topic of the CDL problem and the state-of-the-art methods used to deal with each stage. On the second part, we propose our first computationally efficient method to solve the entire CDL problem using the Accelerated Proximal Gradient (APG) framework in both updates. Additionally, a novel update model reminiscent of the Block Gauss-Seidel (BGS) method is incorporated to reduce the number of estimated components during the coefficient update. On the final part, we propose another alternative method to address the dictionary update stage based on APG consensus approach. This last method considers particular strategies of theADMMconsensus and our first APG framework to develop a less complex solution decoupled across the training images. In general, due to the lower number of operations, our first approach is a better serial option while our last approach has as advantage its independent and highly parallelizable structure. Finally, in our first set of experimental results, which is composed of serial implementations, we show that our first APG approach provides significant speedup with respect to the standard methods by a factor of 1:6 5:3. A complementary improvement by a factor of 2 is achieved by using the reminiscent BGS model. On the other hand, we also report that the second APG approach is the fastest method compared to the state-of-the-art consensus algorithm implemented in serial and parallel. Both proposed methods maintain comparable performance as the other ones in terms of reconstruction metrics, such as PSNR, SSIM and sparsity, in denoising and inpainting tasks. / Tesis
493

Fusión de datos para segmentación semántica en aplicaciones urbanas de teledetección aérea usando algoritmos de aprendizaje profundo

Chicchón Apaza, Miguel Angel 27 June 2019 (has links)
La creciente urbanización requiere un mapeo y monitoreo preciso del sistema urbano para planificar futuros desarrollos. La teledetección permite obtener información de la superficie de la Tierra y a partir de esta comprender el proceso de urbanización. Esta información hoy en dia puede ser obtenida en forma masiva utilizando vehículos aéreos no tripulados. Esta información puede ser variada incluyendo imágenes ópticas rgb, multiespectrales y modelos digitales de superficie, generandose la necesida de contar con técnicas de fusión multisensorial eficientes y efectivas para explotarlas completamente. La segmentación semántica en teledetección urbana permite la interpretación automática de los datos y es útil en tareas como el mapeo de la cobertura terrestre y la planificación urbana. Actualmente, el aprendizaje profundo se ha vuelto de interés en Visión por computador y Teledetección, existiendo diferentes estudios de la aplicación de variantes de redes neuronales convolucionales (CNN) en segmentación semántica. En el presente trabajo de tesis se investiga la utilización de métodos de fusión de datos basado en algoritmos de aprendizaje profundo para la segmentación semántica en aplicaciones urbanas de teledetección. / Tesis
494

Comparación de modelos de aprendizaje de máquina en la predicción del incumplimiento de pago en el sector de las microfinanzas

López Malca, Jiam Carlos 24 June 2021 (has links)
Las instituciones financieras dedicadas a las Microfinanzas brindan sus servicios a un público objetivo que en su mayoría presentan bajos recursos económicos y/o cuyo acceso a los sistemas bancarios tradicionales es limitado, estas instituciones al desarrollarse en un contexto poco favorable los riesgos de incumplimiento en los pagos son mayores en comparación a la banca tradicional. Por tanto, se exige hacer una evaluación económica financiera con mayor grado de detalle, requiriendo para tal fin la participación de un experto del negocio que basado en información obtenida y pericia propia determine si el potencial cliente será un buen pagador. Esta forma de evaluar a un cliente ha evolucionado en el sector financiero en los últimos años, esto debido en gran medida a la aplicación de tecnologías como la inteligencia artificial y el aprendizaje de máquina, ofreciendo una singularidad que es la capacidad de aprender de los datos, demandando menos esfuerzo y participación humana, y redituando mayores niveles de precisión. Se presentan en este artículo los resultados de la experimentación realizada con los siguientes modelos de aprendizaje de maquina: Regresión Logística, XGBoost, Random Forest, Gradient Boosting, Perceptron Multicapa (MLP) y algoritmos de aprendizaje profundo para la predicción del incumplimiento de pagos, aplicándose técnicas de balanceo de submuestreo y sobremuestreo, incluida la técnica de SMOTE. Así mismo, se aplicó la técnica de One Hot Encoding para el tratamiento de variables categóricas. Los diferentes modelos de aprendizaje de maquina se aplicaron a un conjunto de datos proporcionado por una institución peruana líder en el sector de las microfinanzas, reportando los mejores resultados el modelo XGBoost, con una exactitud de 97.53% y un F1-Score de 0.1278. / The financial institutions dedicated to Microfinance offer their services to a target audience that, for the most part, has low economic resources and/or whose access to traditional banking systems is limited, these institutions to develop in an unfavorable context the risks of non-compliance in the payments are greater compared to traditional banking, therefore it is required to make a financial economic evaluation with a greater degree of detail, requiring for this purpose the participation of a business expert that based on information obtained and own expertise determine if the potential client will be a good payer, this way of evaluating a customer has evolved in the financial sector in recent years, this largely due to the application of technologies such as artificial intelligence and machine learning, offering a uniqueness that is the ability to learn from the data, demanding less effort and human participation mana, and yielding higher levels of accuracy. This article presents the results of the experimentation carried out with the following machine learning models: Logistic Regression, XGBoost, Random Forest, Gradient Boosting, Multilayer Perceptron (MLP) and deep learning algorithms for the prediction of non-payment, applying subsampling and oversampling balancing techniques, including the SMOTE technique, and the One Hot Encoding technique was applied for the treatment of categorical variables. The different models of machine learning were applied to a data set provided by a leading Peruvian institution in the microfinance sector, with the XGBoost model reporting the best results, with an accuracy of 97.53% and an F1-Score of 0.1278.
495

Inteligencia artificial e incunables poéticos: creación de un modelo extendido de transcripción automática

Ripoll Cervera, Juan Enrique 04 July 2024 (has links)
El reconocimiento de grafías ha dado un salto cualitativo con el cambio del modelo estadístico clásico a las redes neuronales profundas. En un momento en el que la digitalización del patrimonio bibliográfico está plenamente instaurada, la siguiente fase lógica pasa por habilitar un mecanismo que extraiga su contenido textual con la mínima intervención manual. El reconocimiento automático de caracteres se presenta como el puente entre la digitalización y la representación textual del conocimiento. Aunque la transcripción de textos contemporáneos se considera un problema resuelto, no es así con el material antiguo. Al estado del soporte, deteriorado por el paso del tiempo y la exposición a agentes externos, se une la gran variedad tipográfica que existe en las primeras prensas. Los tipos móviles se creaban artesanalmente a imagen y semejanza de las grafías manuscritas con formas y tamaños variados. Esto genera que la transcripción de los textos del periodo incunable precise de modelos de inteligencia artificial adaptados a las especiales características que presenta este material. Si bien han surgido diversas investigaciones en humanidades digitales que atienden a la transcripción de obras castellanas en prosa del Siglo de Oro, esta tesis viene a cubrir el hueco existente en la poesía de cancionero. Sus resultados han permitido el desarrollo específico de un modelo extendido de red neuronal de transcripción automática que es aplicable con éxito a todos los incunables poéticos en tipografía gótica e, incluso, con un potencial que asegure su rentabilidad cercana al 100% en la transcripción automática de impresos similares del siglo XVI, con lo que ello implica como avance técnico y científico para el proceso de la fijación textual de la poesía de cancionero.
496

[en] AN ARTIFICIAL INTELLIGENCE MIDDLEWARE FOR DIGITAL GAMES / [pt] UM MIDDLEWARE DE INTELIGÊNCIA ARTIFICIAL PARA JOGOS DIGITAIS

BORJE FELIPE FERNANDES KARLSSON 07 March 2006 (has links)
[pt] A aplicação de inteligência artificial (IA) em jogos digitais atualmente se encontra sob uma constante necessidade de melhorias, na tentaiva de atender as crescentes demandas dos jogadores por realismo e credibilidade no comportamento dos personagens do universo do jogo. De modo a facilitar o atendimento destas demandas, técnicas e metodologias de engenharia de software vêm sendo utilizadas no desenvolvimento de jogos. No entanto, o uso destas técnicas e a construção de middlewares na área de IA ainda está longe de gerar ferramentas genéricas e flexíveis o suficiente para o uso nesse tipo de aplicação. Outro fator importante é a falta de literatura disponível tratando de propostas relacionadas a esse campo de estudo. Esta dissertação discute o esforço de pesquisa no desenvolvimento de uma arquitetura flexível aplicável a diferentes estilos de jogos, que dê suporte a várias funcionalidades de IA em jogos e sirva com base a introdução de novas técnicas que possam melhorar a jogabilidade. Neste trabalho são apresentadas: questões de projeto de tal sistema e de sua integração com jogos; um estudo sobre a arquitetura de middlewares de IA; uma análise dos poucos exemplos desse tipo de software disponíveis; e um levantamento da literatura disponível. Com base nessa pesquisa, foi realizado o projeto e a implementação da arquitetura de um middleware de IA; também descritos nesse trabalho. Além da implementação propriamente dita, é apresentado um estudo sobre a aplicação de padrões de projeto no contexto do desenvolvimento e evolução de um framework de IA para jogos. / [en] The usage of artificial intelligence (AI) techniques in digital games is currently facing a steady need of improvements, so it can cater to players higher and higher expectations that require realism and believability in the game environment and in its characters' behaviours. In order to ease the fulfillment of these goals, software engineering techniques and methodologies have started to be used during game development. However, the use of such techniques and the creation of AI middleware are still far from being a generic and flexible enough tool for developing this kind of application. Another important factor to be mentioned in this discussion is the lack of available literature related to studies in this field. This dissertation discusses the research effort in developing a flexible architecture that can be applied to diferent game styles, provides support for several game AI functionalities and serves as basis for the introduction of more powerful techniques that can improve gameplay and user experience. This work presents: design issues of such system and its integration with games; a study on AI middleware architecture for games; an analysis of the state-of-the-art in the field; and a survey of the available relevant literature. Taking this research as starting point, the design and implementation of the proposed AI middleware architecture was conducted and is also described here. Besides the implementation itself, a study on the use of design patterns in the context of the development and evolution of an AI framework for digital games is also presented.
497

[en] A CRITICAL VIEW ON THE INTERPRETABILITY OF MACHINE LEARNING MODELS / [pt] UMA VISÃO CRÍTICA SOBRE A INTERPRETABILIDADE DE MODELOS DE APRENDIZADO DE MÁQUINA

JORGE LUIZ CATALDO FALBO SANTO 29 July 2019 (has links)
[pt] À medida que os modelos de aprendizado de máquina penetram áreas críticas como medicina, sistema de justiça criminal e mercados financeiros, sua opacidade, que impede que as pessoas interpretem a maioria deles, se tornou um problema a ser resolvido. Neste trabalho, apresentamos uma nova taxonomia para classificar qualquer método, abordagem ou estratégia para lidar com o problema da interpretabilidade de modelos de aprendizado de máquina. A taxonomia proposta que preenche uma lacuna existente nas estruturas de taxonomia atuais em relação à percepção subjetiva de diferentes intérpretes sobre um mesmo modelo. Para avaliar a taxonomia proposta, classificamos as contribuições de artigos científicos relevantes da área. / [en] As machine learning models penetrate critical areas like medicine, the criminal justice system, and financial markets, their opacity, which hampers humans ability to interpret most of them, has become a problem to be solved. In this work, we present a new taxonomy to classify any method, approach or strategy to deal with the problem of interpretability of machine learning models. The proposed taxonomy fills a gap in the current taxonomy frameworks regarding the subjective perception of different interpreters about the same model. To evaluate the proposed taxonomy, we have classified the contributions of some relevant scientific articles in the area.
498

Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial. / Short term load forecasting in eletrical areas using artificial inteligence.

Guirelli, Cleber Roberto 30 November 2006 (has links)
Hoje em dia, com a privatização e aumento da competitividade no mercado elétrico, as empresas precisam encontrar formas de melhorar a qualidade do serviço e garantir lucratividade. A previsão de carga de curto prazo é uma atividade indispensável à operação que pode melhorar a segurança e diminuir custos de geração. A fim de realizar a previsão da carga, é necessária a identificação de padrões de comportamento de consumo e da sua relação com variáveis exógenas ao sistema tais como condições climáticas. Originalmente o problema foi resolvido de forma matemática e estatística através de técnicas tais como as séries numéricas, que fornecem bons resultados, mas utilizam processos complexos e de difícil modelamento. O surgimento das técnicas de inteligência artificial forneceu uma nova ferramenta capaz de lidar com a grande massa de dados das cargas e inferir por si mesmo a relação entre as variáveis do sistema. Notadamente, as redes neurais e a lógica fuzzy se destacaram como as técnicas mais adequadas, sendo que já vem sendo estudadas e utilizadas para a previsão de carga a mais de 20 anos. Este trabalho apresenta uma metodologia para a previsão da curva de carga diária de áreas elétricas através do uso de técnicas de inteligência artificial, mais especificamente as redes neurais. Inicialmente são apresentadas as principais técnicas de previsão sendo dado maior detalhamento as redes neurais e a lógica fuzzy. É feita a análise dos dados necessários à previsão e seu tratamento. Em seguida, o processo do uso de redes neurais e lógica fuzzy na previsão é descrito e é apresentado o desenvolvimento e resultados obtidos com o desenvolvimento e implementação de um sistema de previsão com redes neurais na concessionária CTEEP Transmissão Paulista. Como contribuição dessa tese, a transformada Wavelet é analisada como ferramenta para a filtragem e compactação de dados na previsão com redes neurais. / Nowadays, with privatization of utility companies and increase in competition in the energy market, companies must increase their service quality and ensure profits. Short term load forecasting is essential for operation of power systems and can increases security and reduces generation costs. Forecasting the load demands the identification of load patterns and its relations with exogenous variables such as weather. Originally, the problem was solved using mathematics and statistics with techniques such as time series, which produces good results but are complex and have a difficult modeling. With the advent of artificial intelligence techniques, new tools capable of dealing with large amounts of data and learn by themselves system variables relations were available. Artificial neural networks and fuzzy logic came up as the most suitable for load forecasting that have been tested and used for load forecasting for the last 20 years. This work presents a methodology for daily load forecasting of electrical areas using artificial intelligence techniques, specifically neural networks. At first, forecasting techniques are presented with emphasis on neural networks and fuzzy logic. Acquisition and treatment of data are analyzed. The load forecasting using neural networks and fuzzy logic is described and the results of the development and tests of a load forecasting system at CTEEP Transmissão Paulista presented. As contribution of this thesis, Wavelet transform is analyzed as a tool for denoising and data compression for neural network load forecasting.
499

Métodos iterativos paralelos para la resolución de sistemas lineales hermíticos y definidos positivos

Castel de Haro, María Jesús 17 July 2000 (has links)
Proyecto DGSIC PB98-0977
500

Previsão da carga de curto prazo de áreas elétricas através de técnicas de inteligência artificial. / Short term load forecasting in eletrical areas using artificial inteligence.

Cleber Roberto Guirelli 30 November 2006 (has links)
Hoje em dia, com a privatização e aumento da competitividade no mercado elétrico, as empresas precisam encontrar formas de melhorar a qualidade do serviço e garantir lucratividade. A previsão de carga de curto prazo é uma atividade indispensável à operação que pode melhorar a segurança e diminuir custos de geração. A fim de realizar a previsão da carga, é necessária a identificação de padrões de comportamento de consumo e da sua relação com variáveis exógenas ao sistema tais como condições climáticas. Originalmente o problema foi resolvido de forma matemática e estatística através de técnicas tais como as séries numéricas, que fornecem bons resultados, mas utilizam processos complexos e de difícil modelamento. O surgimento das técnicas de inteligência artificial forneceu uma nova ferramenta capaz de lidar com a grande massa de dados das cargas e inferir por si mesmo a relação entre as variáveis do sistema. Notadamente, as redes neurais e a lógica fuzzy se destacaram como as técnicas mais adequadas, sendo que já vem sendo estudadas e utilizadas para a previsão de carga a mais de 20 anos. Este trabalho apresenta uma metodologia para a previsão da curva de carga diária de áreas elétricas através do uso de técnicas de inteligência artificial, mais especificamente as redes neurais. Inicialmente são apresentadas as principais técnicas de previsão sendo dado maior detalhamento as redes neurais e a lógica fuzzy. É feita a análise dos dados necessários à previsão e seu tratamento. Em seguida, o processo do uso de redes neurais e lógica fuzzy na previsão é descrito e é apresentado o desenvolvimento e resultados obtidos com o desenvolvimento e implementação de um sistema de previsão com redes neurais na concessionária CTEEP Transmissão Paulista. Como contribuição dessa tese, a transformada Wavelet é analisada como ferramenta para a filtragem e compactação de dados na previsão com redes neurais. / Nowadays, with privatization of utility companies and increase in competition in the energy market, companies must increase their service quality and ensure profits. Short term load forecasting is essential for operation of power systems and can increases security and reduces generation costs. Forecasting the load demands the identification of load patterns and its relations with exogenous variables such as weather. Originally, the problem was solved using mathematics and statistics with techniques such as time series, which produces good results but are complex and have a difficult modeling. With the advent of artificial intelligence techniques, new tools capable of dealing with large amounts of data and learn by themselves system variables relations were available. Artificial neural networks and fuzzy logic came up as the most suitable for load forecasting that have been tested and used for load forecasting for the last 20 years. This work presents a methodology for daily load forecasting of electrical areas using artificial intelligence techniques, specifically neural networks. At first, forecasting techniques are presented with emphasis on neural networks and fuzzy logic. Acquisition and treatment of data are analyzed. The load forecasting using neural networks and fuzzy logic is described and the results of the development and tests of a load forecasting system at CTEEP Transmissão Paulista presented. As contribution of this thesis, Wavelet transform is analyzed as a tool for denoising and data compression for neural network load forecasting.

Page generated in 0.1002 seconds