• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 49
  • 46
  • 24
  • 17
  • 14
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nano-Domain Analysis Via Massive Cluster Secondary Ion Mass Spectrometry in the Event-by-Event Mode

Pinnick, Veronica Tiffany 2009 December 1900 (has links)
Secondary ion mass spectrometry (SIMS) is a surface analysis technique which characterizes species sputtered by an energetic particle beam. Bombardment with cluster projectiles offers the following notable advantages over bombardment with atomic ions or small clusters: enhanced emission of molecular ions, low damage cross-section, and reduced molecular fragmentation. Additionally, in the case of Au4004 and C60 impacts, desorption originates from nanometric volumes. These features make clusters useful probes to obtain molecular information from both nano-objects and nano-domains. The "event-by-event bombardment/detection mode" probes nano-objects one-at-a-time, while collecting and storing the corresponding secondary ion (SI) information. Presented here are the first experiments where free-standing nano-objects were bombarded with keV projectiles of atomic to nanoparticle size. The objects are aluminum nano-whiskers, 2 nm in diameter and ~250 nm in length. Au4004 has a diameter of ~2 nm, comparable to the nominal diameter of the nanowhiskers. There are notable differences in the SI response from sample volumes too small for full projectile energy deposition. The whisker spectra are dominated by small clusters?the most abundant species being AlO- and AlO2-. Bulk samples have larger yields for AlO2- than for AlO-, while this trend is reversed in whisker samples. Bulk samples give similar abundances of large SI clusters, while whisker samples give an order of magnitude lower yield of these SIs. Effective yields were calculated in order to determine quantitative differences between the nano-objects and bulk samples. The characterization of individual nano-objects from a mixture is demonstrated with negatively charged polymer spheres that are attracted to and retained by the nano-whiskers. The spheres are monodisperse polystyrene nanoparticles (30nm diameter). Our results show that the event-by-event mode can provide information on the nature, size, relative location, and abundance of nano-objects in the field of view. This study presents the first evidence of quantitative molecular information originating from nano-object mixtures. Biologically relevant systems (solid-supported lipid bilayers) were also characterized using Au5 , Au4004 and C60 . Organization-dependent SI emission was observed for phosphocholine bilayers. Lipid domain formation was also investigated in bilayers formed from cholesterol and a mixed lipid system. Trends in the correlation coefficient suggest that cholesterol segregates from the surrounding lipid environment during raft formation.
12

Oxygen Transport Measured by Isotope Tracing through Solid Oxides

Wood, Thomas 31 May 2011 (has links)
The following thesis demonstrates two isotope tracing experiments that measure oxygen transport through electrochemically polarized solid oxides. Cathode-symmetric ‘button’ cells with yttria stabilized zirconia(YSZ) electrolytes and either strontium doped lanthanum manganate(LSM) or composite LSM/YSZ cathodes were studied. The first experiment measured the residence time distributions(RTD) of 34O2. The measured RTDs were compared at different temperatures(700-800°C) and applied potentials(-2 to -8V). Comparisons with simulated RTDs revealed that oxygen transport was laterally heterogeneous. Delamination of the counter electrode is likely the source of the heterogeneity. The second experiment measured a wave of 18O by exposing an interior cross section and applying ToF-SIMS analysis. A depth profile was produced that spans the cathode and electrolyte interface. The depth profile was compared with a variety of limiting oxygen activation scenarios predicted by a simple 1-D model. Comparisons demonstrated that oxygen activation is likely not restricted to the cathode and electrolyte interface.
13

Oxygen Transport Measured by Isotope Tracing through Solid Oxides

Wood, Thomas 31 May 2011 (has links)
The following thesis demonstrates two isotope tracing experiments that measure oxygen transport through electrochemically polarized solid oxides. Cathode-symmetric ‘button’ cells with yttria stabilized zirconia(YSZ) electrolytes and either strontium doped lanthanum manganate(LSM) or composite LSM/YSZ cathodes were studied. The first experiment measured the residence time distributions(RTD) of 34O2. The measured RTDs were compared at different temperatures(700-800°C) and applied potentials(-2 to -8V). Comparisons with simulated RTDs revealed that oxygen transport was laterally heterogeneous. Delamination of the counter electrode is likely the source of the heterogeneity. The second experiment measured a wave of 18O by exposing an interior cross section and applying ToF-SIMS analysis. A depth profile was produced that spans the cathode and electrolyte interface. The depth profile was compared with a variety of limiting oxygen activation scenarios predicted by a simple 1-D model. Comparisons demonstrated that oxygen activation is likely not restricted to the cathode and electrolyte interface.
14

Non-Canonical Amino Acids as Minimal Tags for Investigating Protein Organization and Turnover

Gebura-Vreja, Ingrid-Cristiana 14 October 2015 (has links)
No description available.
15

Studies of Singly and Multiply Charged Secondary Ion Emission And The Effects Of Oxygen On Ionization And Sputter Erosion

January 2012 (has links)
abstract: Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been conducted. Oxygen is commonly used in secondary ion mass spectrometry (SIMS) to increase ion yields, but also can complicate the interpretation of SIMS analyses. An 18O implant in silicon has been used to quantify the oxygen concentration at the surface of sputtered silicon in order to study the dependence on oxygen of several sputtering and depth profile phenomena. The ion yield dependence of trace elements in silicon on the surface oxygen concentration is a function of the ionization potential of the element. The ion yield is high and unaffected by oxygen for elements with low ionization potential and ranges over several orders of magnitude for elements with high ionization potential. Depth resolution in sputter profiles has been shown to be degraded by the presence of oxygen, the mechanism of this effect has been investigated using an 18O implant to quantify oxygen levels and it is shown that the process does not appear to be a consequence of surface oxide formation. Molecular ions are a source of mass interference in SIMS analysis, and multiply charged atomic ion signals might be interference-free due to the possible instability of multiply-charged molecular ions. Sputtered SiH2+, AlH2+, BeH2+, Mo22+ and Mg22+ ions have been observed and appear surprisingly stable. The formation mechanism of some of these species has been explored. / Dissertation/Thesis / Ph.D. Chemistry 2012
16

Boron Isotopic Composition of the Subcontinental Lithospheric Mantle

January 2014 (has links)
abstract: Boron concentrations and isotopic composition of phlogopite mica, amphibole, and selected coexisting anhydrous phases in mantle-derived xenoliths from the Kaapvaal Craton were measured by secondary ion mass spectrometry in an effort to better understand the B isotope geochemistry of the subcontinental lithospheric mantle (SCLM) and its implications for the global geochemical cycle of B in the mantle. These samples display a wide, and previously unrecognized, range in their boron contents and isotopic compositions reflecting a complex history involving melt depletion and metasomatism by subduction- and plume-derived components, as well as late stage isotopic exchange related to kimberlite emplacements. Micas from ancient lithospheric harzburgite metasomatized by slab-derived fluids suggest extensive B-depletion during subduction, resulting in low-B, isotopically light compositions whereas kimberlite-related metasomatic products and a sample from the 2 Ga Palabora carbonatite have boron isotopic compositions similar to proposed primitive mantle. The results suggest that subduction of oceanic lithosphere plays a limited role in the B geochemistry of the convecting mantle. / Dissertation/Thesis / Masters Thesis Geological Sciences 2014
17

Bacterial attachment to polymeric materials correlates with molecular flexibility and hydrophilicity

Sanni, O., Chang, Chien-Yi, Anderson, D.G., Langer, R., Davies, M.C., Williams, P.M., Williams, P., Alexander, M.R., Hook, A.L. 09 December 2014 (has links)
Yes / A new class of material resistant to bacterial attachment has been discovered that is formed from polyacrylates with hydrocarbon pendant groups. In this study, the relationship between the nature of the hydrocarbon moiety and resistance to bacteria is explored, comparing cyclic, aromatic, and linear chemical groups. A correlation is shown between bacterial attachment and a parameter derived from the partition coefficient and the number of rotatable bonds of the materials' pendant groups. This correlation is applicable to 86% of the hydrocarbon pendant moieties surveyed, quantitatively supporting the previous qualitative observation that bacteria are repelled from poly(meth)acrylates containing a hydrophilic ester group when the pendant group is both rigid and hydrophobic. This insight will help inform and predict the further development of polymers resistant to bacterial attachment. / Wellcome Trust (grant number 085245) and EMRP (IND56)
18

Development of a Low Energy Ion Mass Spectrometer

Karapetsas, Spyridon 02 1900 (has links)
<p> The interaction mechanisms of an ion beam with a solid target are identified. Basic parameters associated with ion scattering, charge neutralization, inelastic energy losses and secondary ion production are described. Low energy (1-20 kev) experimental studies on these topics are reviewed. A low energy ion mass spectrometer is described. The ion beam is generated by an existing kev ion accelerator and is directed to a newly constructed UHV target chamer. The energy and angular distributions of the backscattered particles are measured with a hemispherical electrostatic analyser and a channeltron detector. A high precision goniometer allows target rotation about two perpendicular axes by angles of 180° and 90° with an accuracy and repeatability of 0.1°. The interaction chamber is bakeable to 250°c and was designed for an ultimate pressure of 10^-11 torr. The data acquisition system chamber scans the energy spectrum automatically so that the radiation dosage at the target is equalized for all channels. </p> / Thesis / Master of Engineering (MEngr)
19

Incoherent Scatter Radar Study of the Ionospheric D-region

Ma, Zheng 14 July 2015 (has links)
No description available.
20

Comparison of Baseflow-Stormflow Ion Mass Export for Two Streams in the Great Smoky Mountains National Park

Zimmerman, Guy Thomas 01 May 2011 (has links)
This study characterizes the mass transport of ions in two streams in the Great Smoky Mountains National Park, comparing transport between stormflow and baseflow periods. By comparing ion mass transport between these two hydrological conditions, the importance of soil and the governing biogeochemical processes will be underscored. Two water quality monitoring study sites were located on the Middle Prong of the Little Pigeon River and Ramsey Prong within the same basin. These remote sites were equipped with YSI 6920 multi-parameter sonde to record continuous 15-min data of pH, depth, conductivity, turbidity, and temperature. Additionally, ISCO 6712 composite samplers were used to collect stream samples during storm events. Baseflow was collected by grab samples prior to storm events, and stormflow collected by ISCO samplers. Throughfall samples were collected after storm events. All samples were analyzed for pH, ANC, and conductivity using an autotitrator. Inductively coupled plasma spectrometry and ion chromatography were used to determine major cations, trace metals, and anions (Ca2+, Na+, K+, Mg2+, Aln+, Cu, Fe, Mn, Si, Zn, SO42-, NO3-, Cl-, NH4+). Stage-discharge relationships were developed at each site utilizing a combination of field measurements and modeling. Velocity and area field measurements were taken to calculate discharges for mid- to low-flow stages while mid- to upper-flow stages were modeled using RIVER2D and verified with field measurements. Stage-discharge curves and sample ion concentrations were used to compute ion mass transport for a two year period in 2006 through 2008. Differences in mass transport of ions between baseflow and stormflow periods found that greater mass transport of ions, except protons, occurred during baseflow periods. These results indicate that on an annual basis ions are stored from input throughfall sources and released gradually through groundwater flow over time more than rapid interflow transport during storm events. This information illustrates the importance of soils and groundwater storage in the regulation of ion transport and streamwater quality in the Great Smoky Mountains National Park.

Page generated in 0.0723 seconds