• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • Tagged with
  • 19
  • 19
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Symétrie miroir et fibrations elliptiques spéciales sur les surfaces K3 / Mirror symmetry and special elliptic fibrations on K3 surfaces

Comparin, Paola 26 September 2014 (has links)
Une surface K3 est une surface X complexe compacte projective lisse qui a fibré canonique trivial et h0;1(X) = 0. Dans cette thèse on s'intéresse à deux problèmes pour ces surfaces. D'abord on considère des surfaces K3 obtenues comme recouvrement double de P2 ramifié le long d'une sextique. On classifie les fibrations elliptiques sur ces surfaces et leur groupe de Mordell-Weil, c'est-à-dire le groupe des sections. Vu que une section de 2-torsion définit une involution de la surface (dite involution de van Geemen-Sarti), alors en classifiant les fibrations et les section de 2-torsion on obtient une classification complète des involutions de van Geemen-Sarti sur ce type de surfaces K3. On montre aussi comment calculer l'équation de la fibration et on étudie le quotient par l'involution de van Geemen-Sarti. Ensuite on montre la construction de Berglund-Hübsch-Chiodo-Ruan (BHCR): il s'agit d'une construction miroir qui part d'un polynôme dans un espace projectif à poids et d'un groupe d'automorphismes (avec certaines propriétés) et qui donne, en toute dimension, des paires de variétés Calabi-Yau. Ces deux variétés sont l'une miroir de l'autre en sense classique. On classifie toutes les paires de surfaces K3 obtenues avec cette construction qui aient en plus un automorphisme non{symplectique d'ordre premier p > 3. Pour les surfaces K3 une autre notion de symétrie miroir a été introduite par Dolgachev et Nikulin : la symétrie pour K3 polarisées (LPK3). On montre dans la thèse comment polariser les surfaces obtenues avec la construction BHCR et on preuve que deux surfaces miroir au sense BHCR, dûment polarisées, appartiennent à deux familles miroir LPK3. / A K3 surface is a complex compact projective surface X which is smooth and such that its canonical bundle is trivial and h0;1(X) = 0. In this thesis we study two different topics about K3 surfaces. First we consider K3 surfaces obtained as double covering of P2 branched on a sextic curve. For these surfaces we classify elliptic fibrations and their Mordell-Weil group, i.e. the group of sections. A 2-torsion section induces a symplectic involution of the surface, called van Geemen-Sarti involution. The classification of elliptic fibrations and 2-torsion sections allows us to classify all van Geemen-Sarti involutions on the class of K3 surfaces we are considering. Moreover, we give details in order to obtain equations for the elliptic fibrations and their quotient by the van Geemen-Sarti involutions. Then we focus on the mirror construction of Berglund-Hübsch-Chiodo-Ruan (BHCR). This construction starts from a polynomial in a weighted projective space together with a group of diagonal automorphisms (with some properties) and gives a pair of Calabi-Yau varieties which are mirror in the classical sense. The construction works for any dimension. We use this construction to obtain pairs of K3 surfaces which carry a non-symplectic automorphism of prime order p > 3. Dolgachev and Nikulin proposed another notion of mirror symmetry for K3 surfaces: the mirror symmetry for lattice polarized K3 surfaces (LPK3). In this thesis we show how to polarize the K3 surfaces obtained from the BHCR construction and we prove that these surfaces belong to LPK3 mirror families.
12

The Frobenius Manifold Structure of the Landau-Ginzburg A-model for Sums of An and Dn Singularities

Webb, Rachel Megan 27 June 2013 (has links) (PDF)
In this thesis we compute the Frobenius manifold of the Landau-Ginzburg A-model (FJRW theory) for certain polynomials. Specifically, our computations apply to polynomials that are sums of An and Dn singularities, paired with the corresponding maximal symmetry group. In particular this computation applies to several K3 surfaces. We compute the necessary correlators using reconstruction, the concavity axiom, and new techniques. We also compute the Frobenius manifold of the D3 singularity.
13

Voisin’s conjecture on Todorov surfaces

Zangani, Natascia 19 June 2020 (has links)
The influence of Chow groups on singular cohomology is motivated by classical results by Mumford and Roitman and has been investigated extensively. On the other hand, the converse influence is rather conjectural and it takes place in the framework of the ``philosophy of mixed motives'', which is mainly due to Grothendieck, Bloch and Beilinson. In the spirit of exploring this influence, Voisin formulated in 1996 a conjecture on 0--cycles on the self--product of surfaces of geometric genus one. There are few examples in which Voisin's conjecture has been verified, but it is still open for a general $K3$ surface. Our aim is to present a new example in which Voisin's conjecture is true, a family of Todorov surfaces. We give an explicit description of the family as quotient of complete intersection of four quadrics in $mathbb{P}^{6}$. We verify Voisin's conjecture for the family of Todorov surfaces of type $(2,12)$. Our main tool is Voisin's ``spreading of cycles'', we use it to establish a relation between 0--cycles on the Todorov surface and on the associated K3 surface. We give a motivic version of this result and some interesting motivic applications.
14

Duality on 5-dimensional S1-Seifert bundles / Duality on 5-dimensional S1-Seifert bundles

Cuadros Valle, Jaime 25 September 2017 (has links)
We describe a correspondence between two different links associated to the same K3 orbifold. This duality is produced when two elements, one inside and the other on the boundary of the Kähler cone, are identified. We call this correspondence ∂-duality. We also discuss the consequences of ∂-duality at the level of metrics. / Describimos una correspondencia entre dos enlaces asociados a un mismo espacio K3 que soporta a lo más, singularidades cíclicas de tipo orbifold. Esta dualidad se hace evidente cuando dos elementos, uno en el interior y el otro en la frontera del cono de Kähler, son identificados. Denominamos a esta correspondencia ∂-dualidad. También discutimos las consecuencias de ∂-dualidad al nivel de estructuras riemaniannas.
15

Equivariant Moduli Theory on K3 Surfaces

Chen, Yuhang 08 September 2022 (has links)
No description available.
16

Gieseker-Petri divisors and Brill-Noether theory of K3-sections

Lelli-Chiesa, Margherita 04 October 2012 (has links)
Diese Dissertation untersucht Brill-Noether-Theorie der algebraischen Kurven, unter besonderer Berücksichtigung von Kurven auf K3-Flächen und Del-Pezzo-Flächen. In Kapitel 2 studieren wir den Gieseker-Petri-Ort GP_g im Modulraum M_g der glatten irreduziblen Kurven vom Geschlecht g. Dieser Ort wird definiert durch Kurven mit einer Brill-Noether-Varietät G^r_d(C), die singulär ist oder deren Dimension größer als erwartet ist. Der Satz von Gieseker-Petri impliziert, dass GP_g mindestens Kodimension 1 hat, und es wurde vermutet, dass er von reiner Kodimension 1 ist. Wir beweisen diese Vermutung für Geschlecht höchstens 13. Dies wird dadurch ermöglicht, dass man für kleine Geschlechter die Dimension der irreduziblen Komponenten von GP_g mittels "ad hoc"-Beweisführungen untersuchen kann. Lazarsfelds Beweis des Gieseker-Petri-Theorems mittels Kurven auf allgemeninen K3-Flächen deutet darauf hin, dass die Brill-Noether-Theorie von K3-Schnitten wichtig ist, um den Gieseker-Petri-Ort besser zu verstehen. Linearscharen von Kurven, die auf K3-Flächen liegen, stehen in tiefgehender Beziehung zu sogenannten Lazarsfeld-Mukai-Vektorbündeln. In Kapitel 3 untersuchen wir die Stabilität der Lazarsfeld-Mukai-Vektorbündel vom Rang 3 auf einer K3-Fläche S, und wir zeigen, dass sie viele Informationen über Netze vom Typ g^2_d auf Kurven in S enthalten. Wenn d größ genug ist, erhalten wir eine obere Schranke für die Dimension der Varietät G^2_d(C). Wenn die Brill-Noether-Zahl negativ ist, beweisen wir, dass jedes g^2_d in einer von einem Geradenbündel induzierten Linearschar enthalten ist, wie von Donagi und Morrison vermutet wurde. Kapitel 4 befasst sich mit Syzygien einer gegebenen Kurve C, die auf einer Del-Pezzo-Fläche liegt. Wir insbesondere, dass C die Greens Vermutung erfüllt, die impliziert, dass die Existenz gewisser spezieller Linearscharen auf C von den Gleichungen ihrer kanonischen Einbettung abgelesen werden kann. / We investigate Brill-Noether theory of algebraic curves, with special emphasis on curves lying on $K3$ surfaces and Del Pezzo surfaces. In Chapter 2, we study the Gieseker-Petri locus GP_g inside the moduli space M_g of smooth, irreducible curves of genus g. This consists, by definition, of curves [C] in M_g such that for some r, d the Brill-Noether variety G^r_d(C), which parametrizes linear series of type g^r_d on C, either is singular or has some components exceeding the expected dimension. The Gieseker-Petri Theorem implies that GP_g has codimension at least 1 in M_g and it has been conjectured that it has pure codimension 1. We prove this conjecture up to genus 13; this is possible since, when the genus is low enough, one is able to determine the irreducible components of GP_g and to study their codimension by "ad hoc" arguments. Lazarsfeld''s proof of the Gieseker-Petri-Theorem by specialization to curves lying on general K3 surfaces suggests the importance of the Brill-Noether theory of K3-sections for a better understanding of the Gieseker-Petri locus. Linear series on curves lying on a K3 surface are deeply related to the so-called Lazarsfeld-Mukai bundles. In Chapter 3, we study the stability of rank-3 Lazarsfeld-Mukai bundles on a K3 surface S, and show it encodes much information about nets of type g^2_d on curves C contained in S. When d is large enough and C is general in its linear system, we obtain a dimensional statement for the variety G^2_d(C). If the Brill-Noether number is negative, we prove that any g^2_d is contained in a linear series which is induced from a line bundle on S, as conjectured by Donagi and Morrison. Chapter 4 concerns syzygies of any given curve C lying on a Del Pezzo surface S. In particular, we prove that C satisfies Green''s Conjecture, which implies that the existence of some special linear series on C can be read off the equations of its canonical embedding.
17

K3 surfaces and moduli of holomorphic differentials

Barros, Ignacio 10 July 2018 (has links)
In dieser Arbeit behandeln wir die birationale Geometrie verschiedener Modulräume; die Modulräume von Kurven mit einem k-Differential mit vorgeschierbenen Nullen, besser bekannt als Strata von Differenzialen, Moduln von K3 Flächen mit markierten Punkten und Moduln von Kurven. Für bestimmte Geschlechter nennen wir Abschätzungen der Kodaira-Dimension, konstruieren unirationale Parametrisierungen, rationale deckende Kurven und unterschiedliche birationale Modelle. In Kapitel 1 führen wir die zu untersuchenden Objekte ein und geben einen kurzen Überblick ihrer wichtigsten Eigenschaften und offenen Problemen. In Kapitel 2 konstruieren wir einen Hilfsmodulraum, der als Brücke zwischen bestimmten finiten Quotienten von Mgn für kleines g und den Moduln der polarisierten K3 Flächen vom Geschlecht 11 dient. Wir entwickeln die Deformationstheorie, die nötig ist, um die Eigenschaften und die oben genannten Modulräume zu erforschen. In Kapitel 3 bedienen wir uns dieser Werkzeuge, um birationale Modelle für Moduln polarisierter K3 Flächen vom Geschlecht 11 mit markierten Punkten zu konstruieren. Diese nutzen wir, um Resultate über die Kodaira-Dimension herzuleiten. Wir beweisen, dass der Modulraum von polarisierten K3 Flächen vom Geschlecht 11 mit n markierten Punkten unirational ist, falls n<=6, und uniruled, falls n<=7. Wir beweisen auch, dass die Kodaira-Dimension von Modulraum von polarisierten K3 Flächen vom Geschlecht 11 mit n markierten Punkten nicht-negativ ist für n>= 9. Im letzten Kapitel gehen wir noch auf die fehlenden Fälle der Kodaira-Klassifizierung von Mgnbar ein. Schliesslich behandeln wir in Kapitel 4 die birationale Geometrie mit Blick auf die Strata von holomorphen und quadratischen Differentialen. Wir zeigen, dass die Strata holomorpher und quadratischer Differentiale von niedrigem Geschlecht uniruled sind, indem wir rationale Kurven mit pencils auf K3 und del Pezzo Flächen konstruieren. Durch das Beschränken des Geschlechts 3<= g<=6 bilden wir projektive Bündel über rationale Varietäten, die die holomorphe Strata mit maximaler Länge g-1 dominieren. Also zeigen wir auch, dass diese Strata unirational sind. / In this thesis we investigate the birational geometry of various moduli spaces; moduli spaces of curves together with a k-differential of prescribed vanishing, best known as strata of differentials, moduli spaces of K3 surfaces with marked points, and moduli spaces of curves. For particular genera, we give estimates for the Kodaira dimension, construct unirational parameterizations, rational covering curves, and different birational models. In Chapter 1 we introduce the objects of study and give a broad brush stroke about their most important known features and open problems. In Chapter 2 we construct an auxiliary moduli space that serves as a bridge between certain finite quotients of Mgn for small g and the moduli space of polarized K3 surfaces of genus eleven. We develop the deformation theory necessary to study properties of the mentioned moduli space. In Chapter 3 we use this machinery to construct birational models for the moduli spaces of polarized K3 surfaces of genus eleven with marked points and we use this to conclude results about the Kodaira dimension. We prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points is unirational when n<= 6 and uniruled when n<=7. We also prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points has non-negative Kodaira dimension for n>= 9. In the final section, we make a connection with some of the missing cases in the Kodaira classification of Mgnbar. Finally, in Chapter 4 we address the question concerning the birational geometry of strata of holomorphic and quadratic differentials. We show strata of holomorphic and quadratic differentials to be uniruled in small genus by constructing rational curves via pencils on K3 and del Pezzo surfaces respectively. Restricting to genus 3<= g<=6 we construct projective bundles over rational varieties that dominate the holomorphic strata with length at most g-1, hence showing in addition, these strata are unirational.
18

Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds / Automorphismes non-symplectiques des variétés symplectiques holomorphes

Cattaneo, Alberto 18 December 2018 (has links)
Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1.Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution.Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique. / We study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution.
19

Automorphismes des variétés de Kummer généralisées / Automorphisms of generalized Kummer varieties

Tari, Kévin 08 December 2015 (has links)
Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action d'ordre premier sur le réseau de Beauville-Bogomolov. Dans un premier temps, nous donnons les lieux fixes des automorphismes naturels de cette forme. Par la suite, nous développons des outils sur les réseaux en vue de les appliquer à nos variétés. Une étude réticulaire des tores complexes de dimension 2 permet de mieux comprendre les automorphismes naturels sur les variétés de type Kummer. Nous classifions finalement tous les automorphismes décrits précédemment sur ces variétés. En application de nos résultats sur les réseaux, nous complétons également la classification des automorphismes d'ordre premier sur les variétés équivalentes par déformations à des schémas de Hilbert de 2 points sur des surfaces K3, en traitant le cas de l'ordre 5 qui restait ouvert. / Ln this work, we classify non-symplectic automorphisms of varieties deformation equivalent to 4-dimensional generalized Kummer varieties, having a prime order action on the Beauville-Bogomolov lattice. Firstly, we give the fixed loci of natural automorphisms of this kind. Thereafter, we develop tools on lattices, in order to apply them to our varieties. A lattice-theoritic study of 2-dimensional complex tori allows a better understanding of natural automorphisms of Kummer-type varieties. Finaly, we classify all the automorphisms described above on thos varieties. As an application of our results on lattices, we complete also the classification of prime order automorphisms on varieties deformation-equivalent to Hilbert schemes of 2 points on K3 surfaces, solving the case of order 5 which was still open.

Page generated in 0.032 seconds