• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 45
  • 15
  • 5
  • 1
  • 1
  • Tagged with
  • 118
  • 56
  • 54
  • 39
  • 30
  • 23
  • 22
  • 22
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Photodissoziation von Polyhalogenmethanen in Fluiden: Kurzzeitdynamik und Mechanismen / Photodissociation of polyhalomethanes in fluids: Ultrafast dynamics and mechanisms

Wagener, Philipp 29 April 2008 (has links)
No description available.
72

Physical processes of the CO2 hydrate formation and decomposition at conditions relevant to Mars / Physical processes of the CO2 hydrate formation and decomposition at conditions relevant to Mars

Genov, Georgi Yordanov 14 January 2005 (has links)
No description available.
73

Phasenbeziehungen und kinetische Modellierung von flüssigphasengesintertem SiC mit oxidischen und nitridischen Additiven

Neher, Roland 17 July 2014 (has links) (PDF)
In the present dissertation the formation of microstructure, the kinetics of densification and the formation of surface layers developing during liquid phase sintering of silicon carbide are studied. The focus is on the additive systems Al2O3 plus Y2O3 and AlN plus Y2O3. Phase and especially liquid phase formation in both of the systems SiC, Al2O3 , Y2O3 and AlN, Al2O3 , Y2O3 are investigated in detail examining 12 espectively 17 different compositions per system. Melting temperatures have been determined by TG/DTA, in both systems for the first time. Phase composition of samples was analysed by the combination of XRD, SEM and EDX. In the system SiC, Al2O3 , Y2O3 the formation of the phases expected from the quasibinary Al2O3 , Y2O3 could be observed thus silicon carbide has to be in equilibrium with the oxide additives. The low solubility of SiC in the oxide melt, which was suggested by Hoffmann and Nader, could be confirmed. In the system AlN, Al2O3 , Y2O3 the formation of phases as stated by Medraj was confirmed, except for the dimension of the stability region of the γ- spinel and YAG which is wider in the present work. For the first time diffusion coefficients of the species Y3+ and Al3+ in the oxide melt formed by Al2O3 and Y2O3 at temperatures above 1825 ◦ C were determined. The values are in the order of 2 · 10−6 cm2 /s which results in a diffusion length of 14.1 μm for a diffusion time of one second. This allows the fast equilibration of Y and Al deficiencies. Kinetics of densification was modeled by kinetic field, master curve and thermokinetic method, based on detailed experimental investigation of the shrinkage during liquid phase sintering of SiC. It could be proved that the first 30 − 40 % of densification are controlled by solid phase reactions which accelerate particle rearrangement without presence of a liquid phase. During the remaining 60 − 70 % of densification a liquid is present, resulting in the predominance of mechanisms of liquid phase sintering. The models deliver activation energies in the range from 608 KJ/mol to 1668 kJ/mol and allow, within the scope of validity of each method the prediction of densification during liquid phase sintering of silicon carbide. When sintering silicon carbide with Al2O3 plus Y2O3 the formation of several surface layers, depending on atmosphere, maximum temperature, dwelling time and amount and composition of additives was observed. In nitrogen atmosphere with low partial pressures a surface layer consisting of AlN is forming whilst at high partial pressures SiAlON- polytypes occur. After sintering in Argon or Ar-CO- atmosphere three main types of surface layers are present. One consists of alumina, one contains only YAG and one shows highly porous, additive depleted regions. An explanation for the formation of the several surface layers could be given by the combination of the determined diffusion coefficients with the results achieved in the thermodynamics part. The results achieved in this work can be a contribution to the knowledge based design of the production process of liquid phase sintering of silicon carbide.
74

On the relevance of adhesion : applications to Saturn's rings

January 2006 (has links)
Since their discovery in 1610 by Galileo Galilei, Saturn's rings continue to fascinate both experts and amateurs. Countless numbers of icy grains in almost Keplerian orbits reveal a wealth of structures such as ringlets, voids and gaps, wakes and waves, and many more. Grains are found to increase in size with increasing radial distance to Saturn. Recently discovered "propeller" structures in the Cassini spacecraft data, provide evidence for the existence of embedded moonlets. In the wake of these findings, the discussion resumes about origin and evolution of planetary rings, and growth processes in tidal environments. In this thesis, a contact model for binary adhesive, viscoelastic collisions is developed that accounts for agglomeration as well as restitution. Collisional outcomes are crucially determined by the impact speed and masses of the collision partners and yield a maximal impact velocity at which agglomeration still occurs. Based on the latter, a self-consistent kinetic concept is proposed. The model considers all possible collisional outcomes as there are coagulation, restitution, and fragmentation. Emphasizing the evolution of the mass spectrum and furthermore concentrating on coagulation alone, a coagulation equation, including a restricted sticking probability is derived. The otherwise phenomenological Smoluchowski equation is reproduced from basic principles and denotes a limit case to the derived coagulation equation. Qualitative and quantitative analysis of the relevance of adhesion to force-free granular gases and to those under the influence of Keplerian shear is investigated. Capture probability, agglomerate stability, and the mass spectrum evolution are investigated in the context of adhesive interactions. A size dependent radial limit distance from the central planet is obtained refining the Roche criterion. Furthermore, capture probability in the presence of adhesion is generally different compared to the case of pure gravitational capture. In contrast to a Smoluchowski-type evolution of the mass spectrum, numerical simulations of the obtained coagulation equation revealed, that a transition from smaller grains to larger bodies cannot occur via a collisional cascade alone. For parameters used in this study, effective growth ceases at an average size of centimeters. / Seit ihrer Entdeckung im Jahre 1610 durch Galileo Galilei faszinieren die Ringe des Saturn sowohl Laien als auch Experten. Planetare Ringe finden sich in der Äquatorialebene aller vier Riesenplaneten unseres Sonnensystems und sind eines der eindruckvollsten Beispiele granularer Gase. Darunter gehören die Saturnringe zu den Bekanntesten. Sie bergen eine Vielzahl von Strukturen und erstrecken sich über mehr als 240 000 Kilometer, wobei sie weit weniger als 100 Meter dick sind. Unzählige kleinerer Körper bewegen sich auf leicht exzentrischen Kepler-ähnlichen Bahnen um den Zentralplaneten und bestehen dabei vorwiegend aus Eis. Die seit Juli 2004 im Orbit um den Saturn befindliche Raumsonde Cassini liefert atemberaubende Bilder und Daten, die nicht nur neue Erkenntnisse liefern, sondern auch alte Fragestellungen neu aufleben lassen. Dazu gehört z.B. die Frage nach dem Ursprung und den Entwicklungsstufen planetarer Ringe. Kürzlich, im äusseren A-Ring entdeckte Kleinmonde, deren Existenz schon viel früher postuliert wurde, weisen auf eventuell stattfindende Wachstumsprozesse hin. Da sich planetare Ringe jedoch hauptsächlich innerhalb der sogenannten Roche-Zone des jeweiligen Planeten befinden, ist ein effektives, allein auf gravitativen Wechselwirkungen beruhendes Größenwachstum nicht zu erwarten. Der Einfluß von Teilchenadhäsion auf diese Prozesse ist bis dato fraglich. Im Rahmen dieser Dissertation ist ein Kontaktmodell für adhäsive, viskoelastische Binärstöße granularer Teilchen entwickelt worden, welches sowohl deren Agglomeration als auch Restitution gestattet. Chakateristisch für granulare Materie ist die dissipative Wechselwirkung der einzelnen Teilchen untereinander. Dieser Energieverlust wird gewöhnlich mittels des Restitutionskoeffizienten erfaßt, der das Verhältnis von Relativgeschwindigkeiten nach zu vor dem Stoß darstellt. Dieser Parameter ermöglicht es, Agglomeration und Restitution nicht nur qualitativ sondern auch quantitativ voneinander zu unterscheiden. Ferner ergibt sich eine maximale Impaktgeschwindigkeit, bei der eine Agglomeration noch immer möglich ist. Basierend auf der Existenz derartiger Grenzgeschwindigkeiten für Agglomeration und Fragmentation, wurde in dieser Dissertation ein selbstkonsistentes, kinetisches Strukturbildungsmodell vorgestellt und im Hinblick auf die Koagulation von Teilchen weitergehend untersucht. Eine Koagulationsgleichung, die einer eingeschränkten Haftwahrscheinlichkeit Rechnung trägt, ist analytisch hergeleitet worden. Aus ihr läßt sich die allgemein bekannte, aber ansonsten phenomenologische Smoluchowski Gleichung als ein Grenzfall ableiten, bei dem jeder mögliche Kontakt zur Koagulation führt. Qualitative und quantitative Untersuchungen der Relevanz von Adhäsion in kräftefreien und Kepler-gescherten Systemen beziehen sich auf die Stabilität von Zwei-Teilchen-Agglomeraten, die Wahrscheinlichkeit eines gegenseitigen "Einfangens" beider Teilchen, und die zeitliche Entwicklung der Größenverteilung unter Berücksichtigung der im ersten Teil dieser Arbeit eingeführten Kollisionsdynamik. Dabei ergab sich ein kritischer Abstand zum Zentralkörper, der das ansonsten in diesem Rahmen benutzte Roche Kriterium erweitert. Numerische Simulationen der vorgestellten Koagulationsgleichung zeigen deutlich, daß im Vergleich zu Smoluchowski-ähnlichem Verhalten, ein kollisionsbasiertes Wachstum von kleineren zu größeren Körpern nicht notwendigerweise auftritt. Lediglich Größen von Zentimetern konnten an dieser Stelle erreicht werden. Die Relevanz von adhäsiven Teilchenwechselwirkungen konnte damit nachgewiesen werden. Vermögen diese auch nicht für ein effektives Wachstum aufzukommen, so sind sie dennoch von Bedeutung für die kollektive Dynamik planetarer Ringe.
75

Multifunktionale (Meth)acrylat-Copolymere mit Phosphonsäurederivaten

Starke, Sandra 07 December 2015 (has links) (PDF)
Ziel der Doktorarbeit war es, Copolymere mit phosphonsäurehaltigen Seitenketten zu entwickeln, die nachfolgend über polymeranaloge Umsetzungen in Terpolymere mit polymerisationsfähgen Gruppen umgewandelt werden sollten. Die Terpolymere können dann somit im Bereich der Schicht,- Lackindustrie eingesetzt werden.
76

Multifunktionale (Meth)acrylat-Copolymere mit Phosphonsäurederivaten

Starke, Sandra 17 November 2015 (has links)
Ziel der Doktorarbeit war es, Copolymere mit phosphonsäurehaltigen Seitenketten zu entwickeln, die nachfolgend über polymeranaloge Umsetzungen in Terpolymere mit polymerisationsfähgen Gruppen umgewandelt werden sollten. Die Terpolymere können dann somit im Bereich der Schicht,- Lackindustrie eingesetzt werden.
77

A concept for nanoparticle-based photocatalytic treatment of wastewater from textile industry

Le, Hoai Nga 14 September 2018 (has links)
Industrial wastewater, such as the effluents from textile and garment companies, may contain toxic organic pollutants, which resist conventional wastewater treatment. Their complete and environmentally friendly degradation requires innovative technologies. Photocatalysis, an advanced oxidation process, can serve this purpose. Since 1972, when the photocatalytic activity of titanium dioxide was first noticed, photocatalysis has drawn the attention of scientists and engineers but it has not yet been widely applied in industrial practice. This is mainly related to the challenges of up-scaling from laboratory experiments to large production sites. The main goal of this thesis is to develop a concept of nanoparticle-based photocatalysis for the treatment of wastewater. Ideally, process parameters should be adjustable and process conditions should be well-defined. These constraints are prerequisite for establishing process models and comparing the photocatalytic efficiency of different photocatalysts or for different pollutants. More importantly, the configuration should be scalable, in order to cover a wide spectrum of applications. In response to these requirements, this thesis introduces a new reactor concept for photocatalytic wastewater treatment, which relies on finely dispersed photocatalysts as well as uniform and defined process conditions with regard to illumination and flow. The concept was realized in a photocatalytic setup with an illuminated flow reactor. The flow channel has a rectangular cross section and meanders in a plane exposed to two dimensional illumination. Crucial process parameters, e.g., volumetric flow rate and light intensity, can be adjusted in a defined manner. This facilitates the study on the photocatalytic degradation of different organic pollutants in the presence of various photocatalytic materials under arbitrary illumination. The thesis provides a comprehensive description of the operational procedures necessary to run photocatalytic reactions in the experimental setup. It includes three main steps: i) dispersion of photocatalysts, ii) equilibration with respect to pollutant adsorption and iii) accomplishing the photocatalytic reaction. Samples are collected in a mixing tank for online or offline analysis. The proceeding decrease in the concentration of organic pollutant is used to assess the activity of the photocatalytic materials. A particular focus lies on the first of these steps, the dispersion of photocatalysts, because it is ignored in most studies. Typically, photocatalysts are in an aggregated state. The thesis demonstrates that type, intensity and energy of dispersion exert a crucial influence on size and morphology of the photocatalyst particles and, thus, on their optical properties and, accordingly, macroscopic photocatalytic behavior. Apart from this, a proper dispersion is necessary to reduce speed of gravitational solid-liquid separation, at best, to prevent catalyst sedimentation and to avoid misleading results. The photocatalytic performance was intensively investigated for the color removal of a model dye substance, methylene blue. Commercial titanium dioxide nanoparticles, widely explored in literature, were used as a photocatalyst. Their characteristics (size, morphology, stability and optical properties) were determined. Photocatalytic experiments were carried out under UV irradiation. Influences of different factors, including the concentration of the photocatalyst, the concentration of the organic compounds, light intensity, optical pathlength and pH were examined. The degradation was quantified via the decrease of methylene blue concentration. This conversion is, however, an immediate result influenced by all process parameters, e.g., the volume, the light intensity, the optical pathlength. Hence, kinetic models on macroscopic and microscopic levels are established. Normalizations with respect to process conditions are proposed. The apparent reaction kinetics are traced back to volume- and intensity-related reaction rate constants, and the reaction rate constant at the illuminated surface of the reactor. Additionally, the model is modified to be used for time-variant UV intensities, as encountered for solar photocatalysis. These achievements allow for a comparison of the experimental results from different laboratories. Moreover, they are prerequisite for the translation of laboratory results into large scale plants. Selected case studies for further applications are introduced. The photocatalytic degradation of different organic molecules (one antibiotic and two commercial dyes) with different photocatalytic materials (commercial nanomaterials and self-synthesized magnetic particles) under artificial or natural light sources was performed. Additionally, photocatalysis was studied in a realistic application. Preliminary tests with dye solutions of a textile company in Danang, Vietnam, impressively showed the feasibility of wastewater treatment by means of photocatalysis. Based on the reported capacity of wastewater in the current treatment plant of the company, the necessary process parameters were assessed. The rough estimation showed that photocatalysis can improve the working ability of the current wastewater treatment plant. In conclusion, this thesis presents a concept for wastewater treatment by slurry photocatalysis. As the process conditions are adjustable and definable, the process can be ideally performed in laboratories for research purposes, where different materials need to be tested and the working volume can be lower than hundreds of milliliters. The photocatalytic configuration is expected to work with a capacity of hundreds of liters, although appropriate experimental evidences are reserved for further up-scaling studies.
78

Thermodynamic and kinetic investigations into the syntheses of CdSe and CdTe nanoparticles

Waurisch, Christian 19 July 2012 (has links)
This thesis addresses the syntheses towards high quality CdSe and CdTe nanoparticles. Therefore, thermodynamic and kinetic aspects of the hot injection method are investigated. By means of the introduction of a thermodynamically less favored nuclei species the nucleation event of CdSe quantum dot synthesis is affected. Utilizing highly reactive tin or lithium silylamides, primarily formed SnSe or Li2Se nuclei undergo a cation exchange to the demanded CdSe particles. The further growth proceeds without the incorporation of the so called quasi-seed species. In this manner, the mechanism of the cation exchange-mediated nucleation is proven and optimized with respect to the required amount of the quasi-seed species. Furthermore, this protocol is applied to up-scaling attempts to reduce the efforts for optimization to a minimum. Following this, a successful laboratory batch up-scaling is achieved by increasing flask size as well as precursor concentrations by factors of 2 and 10, respectively. A further possibility to thermodynamically influence the hot injection synthesis is the activation of the precursor species. By altering the injection pathway, as compared to the standard synthesis, the precursor species are differently coordinated and hence possess different thermodynamic stabilities. Investigations on the system of CdTe quantum dots lead to the result of a cation activation by the use of the thermodynamically less stable carboxylate ligands instead of phosphonates. Additionally, anion activation is suggested due to a kind of aging of the phosphine ligands via their oxidation by phosphonic acids. Furthermore, it is found that the ratio of Cd-to-Te strongly influences the formation of so called magic-sized clusters. Following the results, the smallest detectable species is determined as a cluster species with a size of 1.8 nm. The role of the magic-sized clusters is not fully resolved, but the initial growth is assumed to occur via monomer deposition onto or the fusion of the observed clusters. On the other hand, cluster dissolution is thermodynamically forced by the decreasing monomer concentration and can simply be explained by the process of Ostwald ripening via the creation of a smaller cluster species. Mechanistically this is explained by the formation of configurational deviations from the ideal closed-shell structure. Finally the inorganic coating of the core quantum dots in investigated. Therefore, homoepitaxial coating is employed to overcome the limit in particle size by introducing additional monomer supply. As a result, following the classical crystallization theory, defined injections of precursor material during the diffusion limited growth regime allow a fine tuning of the final particle size. Nevertheless, homoepitaxial coating inevitably leads to photoluminescence quenching, whereas heteroepitaxial growth usually improves the optical quality. By means of a type I structure, CdSe/CdS/ZnS, the successive ion layer adsoption and reaction mechanism is discussed. Furthermore, alloy structures of CdSe/ZnSe with a radially gradated intermediate shell of CdZnSe are achieved by postsynthetic high temperature treatments. This annealing induces internal diffusion processes and allows exactly adjusting the emission wavelength due to defined shrinkage of the initial core size during the alloying process.
79

POLCA-T Neutron Kinetics Model Benchmarking

Kotchoubey, Jurij January 2015 (has links)
The demand for computational tools that are capable to reliably predict the behavior of a nuclear reactor core in a variety of static and dynamic conditions does inevitably require a proper qualification of these tools for the intended purposes. One of the qualification methods is the verification of the code in question. Hereby, the correct implementation of the applied model as well as its flawless implementation in the code are scrutinized. The present work concerns with benchmarking as a substantial part of the verification of the three-dimensional, multigroup neutron kinetics model employed in the transient code POLCA-T. The benchmarking is done by solving some specified and widely used space-time kinetics benchmark problems and comparing the results to those of other, established and well-proven spatial kinetics codes. It is shown that the obtained results are accurate and consistent with corresponding solutions of other codes. In addition, a sensitivity analysis is carried out with the objective to study the sensitivity of the POLCA-T neutronics to variations in different numerical options. It is demonstrated that the model is numerically stable and provide reproducible results for a wide range of various numerical settings. Thus, the model is shown to be rather insensitive to significant variations in input, for example. The other consequence of this analysis is that, depending on the treated transient, the computing costs can be reduced by, for instance, employing larger time-steps during the time-integration process or using a reduced number of iterations. Based on the outcome of this study, one can finally conclude that the POLCA-T neutron kinetics is modeled and implemented correctly and thus, the model is fully capable to perform the assigned tasks.
80

Thermal Initiation of Energetic Materials Caused by Hot Fragments / Termisk initiering av energetiska material orsakad av heta fragment

Ghebreamlak, Sirak January 2022 (has links)
The cause of unintentional initiations of energetic materials is an important area of study due to the risks that comes with storing energetic materials such as high explosives. The current models used to simulate the process of heating energetic materials by a hot metal fragment do not give reliable predictions. The objective of this thesis is to study the current models in order to get a better understanding of how to improve the accuracy of the simulations. The heat transfer in the fragment and energetic material is modeled using the heat equation and the reaction rates in the chemical decomposition of the energetic material are modeled using Arrhenius equations. This study shows the importance of accurately implementing the contact area and heat transfer coefficient between the fragment and the energetic material. The thermal conductivity has a significantly smaller affect on the initiation time compared to the heat transfer coefficient. Furthermore, the dimensions of the fragment affect the resulting simulations greatly, while the dimensions of the energetic material only does so for sufficiently small dimensions. / Orsaken till oavsiktliga initieringar av energetiska material är ett viktigt studieområde på grund av riskerna som följer med att lagra energiskt material, så som sprängämnen. De nuvarande modellerna som används för att simulera uppvärmningsprocessen av energetiska material med ett hett metallfragment ger inte tillförlitliga förutsägelser. Syftet med denna uppsats är att studera de nuvarande modellerna för att få en bättre förståelse för hur man kan förbättra noggrannheten i simuleringarna. Värmeöverföringen i fragmentet och det energetiska materialet modelleras med hjälp av värmeledningsekvationen och reaktionshastigheterna i den kemiska nedbrytningen av det energetiska materialet modelleras med hjälp av Arrhenius-ekvationer. Denna studie visar vikten av att korrekt implementera kontaktytan och värmeöverföringskoefficient mellan fragmentet och det energetiska materialet. Den termiska konduktiviteten har en betydligt mindre effekt på initieringstiden jämfört med värmeöverförings- koefficienten. Vidare så påverkar fragmentets dimensioner de resulterande simuleringarna i hög grad, medan dimensionerna av det energetiska materialet gör så endast för tillräckligt små dimensioner.

Page generated in 0.0713 seconds