101 |
Polyhydroxybutyrate als Scaffoldmaterial für das Tissue Engineering von KnochenWollenweber, Marcus 10 May 2012 (has links)
In drei inhaltlich abgeschlossen Teilen werden Fragestellungen bearbeitet, die sich mit dem Einsatz von Polyhydroxybutyraten als Scaffoldmaterialien für das Tissue Engioneering von Knochen beschäftigen. Zunächst wird ein Prozess optimiert, in dem mittels Verpressen und Auslösen von Platzhaltern (Porogen) poröse Träger (Scaffolds) aus Poly-3-hydroxybuttersäure (P3HB) sowie aus P3co4HB hergestellt werden. Diese Scaffolds werden in der Folge mechanisch und strukturell charakterisiert, wobei Druckfestigkeit, Dauerfestigkeit und Viskoelastizität untersucht werden. Im Ergebnis finden sich mehrere Kandidaten, die für die weitere Testung im Tierversuch in Frage kommen.
Weiter wird das Abbauverhalten von schmelzgeponnenen P3HB-Fäden untersucht. Dabei wird ein beschleunigtes Modellsystem gewählt, das noch möglichst nahe am physiologischen Fall aber ohne biologisch aktive Komponente (zB. Enzyme) definiert wurde. Die Charakterisierung bedient sich hier der Gelpermeationschromatographie (GPC), des gasgestützten Elektronenrastermikroskops (ESEM), der differentiellen Thermoanalyse (DSC) und der Rasterkraftmikroskopie. Als Ergebnis zeichnete sich ab, dass neben der hydrolytischen Degradation im Gegensatz zu PHB mit kleinerer spezifischer Oberfläche bei den Fäden auch Erosion zum Abbau beiträgt. Eine partikuläre Freisetzung wird nicht beobachtet.
Im dritten Teil werden textile Scaffolds aus P3HB mit einer künstlichen extrazellulären Matrix aus Chondroitinsulfaten (CS) und Kollagen versehen. Dem CS kann hier ein positiver Einfluss auf die osteogene Differenzierung von humanen mesenchymalen Stammzellen (hMSC) nachgewiesen werden. Dies wird zum einen durch die verstärkte Expression der alkalischen Phosphatase (ALP) sowie durch die Hochregulation von Proteinen ersichtlich, die bei der osteogenen Differenzierung essentiell sind. In wenigen Gene-Arrays lässt sich ebenfalls erkennen, dass die osteogene Differenzierung durch CS positiv beeinflusst wird. Insbesondere frühe Marker wie ZBTB16 und IGFBPs werden hier identifiziert.
Basierend auf den Teilergebnissen wird am Ende ein Beitrag geliefert, der das Tissue Engineering insbesondere für überkritische Röhrenknochendefekte als Methode interessant erscheinen lässt. Dabei werden mechanische Lasten durch konventionelle Fixateure aufgenommen und der Defektraum durch den mehrfachen Einsatz von bio-funktionalisierten flachen Scaffolds gefüllt.:1. Vorwort 3
2. Allgemeine Einführung 5
2.1 Der Knochen 5
2.1.1 Die Knochenbildung 5
2.1.2 Zur Anatomie und Physiologie des Knochens 7
2.2 Tissue Engineering 11
2.2.1 Zelltypen für das Tissue Engineering von Knochen 12
2.2.2 Scaffold Design im Tissue Engineering von Knochen 13
2.3 Polyhydroxyalkanoate 13
2.4 Tissue Engineering am Röhrenknochen 16
2.4.1 Poly(3-hydroxybutyrat)-Scaffolds für das Tissue Engineering von Knochenersatz 17
2.4.2 Matrix Engineering 18
2.5 Ziel der Arbeit 19
3. Mechanik poröser PHB-Scaffolds 21
3.1 Einleitung 21
3.2 Materialien und Methoden 23
3.2.1 Polyhydroxybutyrate und Porogene 23
3.2.2 Uniaxiales Heißpressen 24
3.2.3 Mikrographie 26
3.2.4 Dynamische Differenzkalorimetrie (DSC) 26
3.2.5 Mechanische Druckversuche 26
3.2.6 Mikrocomputertomographie (μCT) 27
3.2.7 Zellviabilität auf den Scaffolds 28
3.3 Ergebnisse 29
3.3.1 Mikrographie 29
3.3.2 Mikrocomputertomographie (μCT) 33
3.3.3 Druckversuche 37
3.3.4 Dynamische Differenzkalorimetrie (DSC) 40
3.3.5 Zellviabilität 40
3.4 Diskussion 40
3.5 Schlussfolgernde Zusammenfassung 46
4. Degradation von P3HB-Fasern 47
4.1 Degradation von Polyhydroxyalkanoaten 47
4.2 Materialien und Methoden 49
4.2.1 Herstellung und Vorbehandlung textiler P3HB-Konstrukte 49
4.2.2 Mechanische Prüfung 50
4.2.3 Beschleunigte Degradation 50
4.2.4 Untersuchung der Oberfläche 50
4.2.5 Dynamische Differenzkalorimetrie (DSC) 51
4.2.6 Gel-Permeations-Chromatographie (GPC) 51
4.3 Ergebnisse 52
4.3.1 Mechanische Tests 52
4.3.2 Die Charakterisierung der Oberfläche 52
4.3.3 Thermische Fasereigenschaften.55
4.3.4 Untersuchung der Molekulargewichte in der GPC 58
4.4 Diskussion 60
4.5 Schlussfolgernde Zusammenfassung 64
5. hMSC auf textilen Scaffolds 67
5.1 Einleitung 67
5.2 Material und Methoden 68
5.2.1 Erzeugung der P3HB-Scaffolds 68
5.2.2 Die Immobilisierung der EZM-Komponenten auf den Scaffolds 69
5.2.3 Isolation, Vorkultur, Besiedlung und Kultur der humanen mesenchymalen Vorläuferzellen 69
5.2.4 Kombinierte Bestimmung von ALP, MTT und Proteingehalt 71
5.2.5 Mikroskopische Untersuchungen 72
5.2.6 Nachweis der Kalziummineralisierung 73
5.2.7 Quantitative real time reverse transcribing polymerase chain reaction (rt-PCR) 73
5.2.8 cRNA Microarray-Untersuchung 74
5.2.9 Zusätzliche Experimente 75
5.3 Ergebnisse 76
5.3.1 Vorhergehende Untersuchung 76
5.3.2 Rasterelektronen-Mikroskopie 77
5.3.3 Konfokale Laser-Scanning-Mikroskopie 79
5.3.4 ALP-Aktivität, SDH-Aktivität und Proteingehalt 82
5.3.5 Mineralisierende Kalziumabscheidung 86
5.3.6 rt-PCR 87
5.3.7 cRNA Microarray-Untersuchung 90
5.3.8 Kulturen von hMSC mit Chondroitinsulfat als gelöstem Zusatz 93
5.4 Diskussion 93
5.5 Schlussfolgernde Zusammenfassung 98
6. Zusammenfassung 101
|
102 |
Healing properties of surface-coated polycaprolactone-co-lactide scaffolds: A pilot study in sheepRentsch, Claudia, Schneiders, Wolfgang, Hess, Ricarda, Rentsch, Barbe, Bernhardt, Ricardo, Spekl, Kathrin, Schneider, Konrad, Scharnweber, Dieter, Biewener, Achim, Rammelt, Stefan 11 October 2019 (has links)
The aim of this pilot study was to evaluate the bioactive, surface-coated polycaprolactone-co-lactide scaffolds as bone implants in a tibia critical size defect model. Polycaprolactone-co-lactide scaffolds were coated with collagen type I and chondroitin sulfate and 30 piled up polycaprolactone-co-lactide scaffolds were implanted into a 3 cm sheep tibia critical size defect for 3 or 12 months (n¼5 each). Bone healing was estimated by quantification of bone volume in the defects on computer tomography and microcomputer tomography scans, plain radiographs, biomechanical testing as well as by histological evaluations. New bone formation occurred at the proximal and distal ends of the tibia in both groups. The current pilot study revealed a mean new bone formation of 63% and 172% after 3 and 12 months, respectively. The bioactive, surface coated, highly porous three-dimensional polycaprolactone-co-lactide scaffold stack itself acted as a guide rail for new bone formation along and into the implant. These preliminary data are encouraging for future experiments with a larger group of animals.
|
103 |
Distinct contributions of ECM proteins to basement membrane mechanical properties in DrosophilaTöpfer, Uwe, Santillán, Karla Yanín Guerra, Fischer-Friedrich, Elisabeth, Dahmann, Christian 01 March 2024 (has links)
The basement membrane is a specialized extracellular matrix (ECM) that is crucial for the development of epithelial tissues and organs. In Drosophila, the mechanical properties of the basement membrane play an important role in the proper elongation of the developing egg chamber; however, the molecular mechanisms contributing to basement membrane mechanical properties are not fully understood. Here, we systematically analyze the contributions of individual ECM components towards the molecular composition and mechanical properties of the basement membrane underlying the follicle epithelium of Drosophila egg chambers. We find that the Laminin and Collagen IV networks largely persist in the absence of the other components. Moreover, we show that Perlecan and Collagen IV, but not Laminin or Nidogen, contribute greatly towards egg chamber elongation. Similarly, Perlecan and Collagen, but not Laminin or Nidogen, contribute towards the resistance of egg chambers against osmotic stress. Finally, using atomic force microscopy we show that basement membrane stiffness mainly depends on Collagen IV. Our analysis reveals how single ECM components contribute to the mechanical properties of the basement membrane controlling tissue and organ shape.
|
104 |
Molecular Control of Extracellular Matrix-inspired Biohybrid HydrogelsSong, Geonho 03 April 2023 (has links)
Das Verständnis natürlicher biologischen Materialien für die Entwicklung neuer biomimetischer Materialien ist von großem Interesse in der Chemie und den Materialwissenschaften. In vielen komplexen biomolekularen Materialien ist die Etablierung der Struktur-Funktionsbeziehungen von Proteinbausteine notwendig, um die Eigenschaften der daraus aufgebauten weichen, biologischen Materialien zu verstehen, wie z. B. die extrazelluläre Matrix. Inspiriert durch bekannte Faltungsmotive von ECM-Proteinen, wurden vereinfachte Modellpeptide entwickelt, um deren Funktion zu untersuchen oder diese als biomimetische Bausteine für synthetische Biomaterialien zu verwenden.
Ziel dieser Arbeit war die Synthese von hybriden Hydrogelen, die aus einem synthetischen Polymer und ECM-inspirierten Modellpeptiden zusammengesetzt sind. Insbesondere Kollagen-mimetische Peptide und Coiled-Coil-formende Peptide wurden benutzt, um das biokompatible und hydrophile Polymer Polyethyleneglykol zu vernetzen. Dabei wurde von der Fähigkeit dieser Peptide zur dynamischen Selbstassemblierung Gebrauch gemacht. Unter Verwendung von Kollagen-mimetischen Peptiden mit langsamer Dissoziationskinetik wurden Hydrogele synthetisiert, die weichen, glasartigen Materialien mit einem gestauchten exponentiellen Relaxationsverhalten entsprechen und auch einen Alterungsprozess zeigen. Darüber hinaus wurde gezeigt, dass Netzwerkkonnektivität ein bis dato selten gebrauchter Designparameter ist, um die rheologischen Eigenschaften von Hydrogelen nach Wunsch zu kontrollieren. Die Kombination molekular einstellbarer Vernetzer mit einem Fluoreszenz-Reportersystem, welches deren Zustand auslesen kann, kann detaillierte Einblicke in das Reaktionsvermögen solcher Netzwerke auf mechanische Stimuli ermöglichen. Das Verständnis molekularer Prozesse erlaubt langfristig die Synthese von ECM-inspirierten Biomaterialien, deren Eigenschaften nach Wunsch einstellbar sind und die selbst ihren mikroskopischen und mesoskopischen Zustand anzeigen. / Understanding natural biological materials for the development of novel biomimetic materials has drawn enormous attention from the areas of chemistry and material science. In many complex biomolecular materials, establishing molecular structure-function relationships of proteins forms the basis for understanding the emerging properties of various biological soft materials, such as the extracellular matrix (ECM). Inspired by common association motifs of ECM proteins, simplified model peptides have been developed for functional studies and as biomimetic building blocks for synthetic biomaterials.
The aim of this thesis was to utilize ECM-inspired and molecularly controlled model peptides for the synthesis of peptide-polymer hybrid hydrogels. Specifically, collagen-mimetic peptides (CMPs) and coiled coil (CC)-forming peptides were utilized to crosslink the biocompatible and hydrophilic polymer poly(ethylene glycol) (PEG), making use of the ability of these peptides to dynamically self-assemble. Employing CMPs with slow dissociation kinetics, hydrogels have been synthesized that resemble soft glassy materials with compressed exponential relaxation and aging. Furthermore, network connectivity has been shown to be an underutilized design parameter for tuning the rheological properties of hydrogels. Combining molecularly controlled crosslinks with a fluorescence reporter system that allows to read out crosslink status will ultimately allow for more detailed insights into the response of such networks to mechanical perturbation and thus aid the synthesis of ECM-inspired biomaterials with tunable and self-reporting properties.
|
105 |
Zur Calciumphosphatprazipitation mit Phosphoserin, Fetuin, Osteocalcin, Kollagen und in Vesikeln / On the precipitation of calcium phosphate with phosphoserine, fetuine, osteocalcine, collagen and in vesiclesRühl, Ralf 15 December 2011 (has links) (PDF)
Der hierarchisch strukturierte und hoch geordnete Aufbau von Calciumphosphat und Kollagen in Knochen und Zähnen wird von den Zellen mit Hilfe bestimmter Moleküle erreicht. Diese organischen Moleküle, zumeist Proteine, beeinflussen durch die räumliche Anordnung ihrer Ladung das Präzipitations- und Wachstumsverhalten der mineralischen Phase.
Die in dieser Arbeit beschriebenen Computersimulationen zeigen, dass ein Calciumphosphatkomplex mit deprotoniertem Phosphat am stabilsten ist. Vermutlich nimmt die Bindungsenergie pro Oberfläche des Komplexes mit wachsender Größe bis zu einem Ca9(PO4)6 -Komplex (Posner Klaster) linear zu. Die Präzipitation von Calciumphosphat aus wässriger Lösung führt häufig zu amorphen Kugeln mit 50-500 nm Durchmesser, die sphärische Unterstrukturen von ca. 5 nm Durchmesser zeigen und bei großer Dichte zu einer amorphen Schicht verschmelzen. Geringe Unterschiede in der Präparation können aber schon zu stäbchenförmigen oder plättchenartigen Kristalliten führen.
Phosphoserin ist eine der wichtigsten Aminosäuren bei der Anbindung von Proteinen an Calciumphosphat. Das Computermodell zeigt an der gesamten Oberfläche dieser Aminosäure ein deutliches elektrisches Potential, dies begünstigt die Wechselwirkung mit Ionen. FT-IR- und NMR-Untersuchungen zeigen, dass Phosphoserin bei Kopräzipitation mit Calciumphosphat höchstwahrscheinlich in die mineralische Phase eingebaut wird. Serin zeigt bei der Kopräzipitation ab 1 mM einen Einfluss auf die Morphologie von Calciumphosphat, während Phosphoserin schon bei 0,01 mM einen deutlichen Einfluss zeigt. Elektronenspray-Ionisations-Massenspektroskopie (ESI-MS) bestätigt die relativ zum Serin intensivere Wechselwirkung von Phosphoserin mit Calciumphosphat.
Das wichtigste Protein zur Vermeidung ektopischer Mineralisierung ist Fetuin. Dieses Protein stabilisiert die transient auftretenden amorphen Calciumphosphatkugeln (ACP-Kugeln) und erlaubt so dem Körper deren Entsorgung. Fetuin verhindert das Verschmelzen von ACP-Kugeln, wenn diese in großer Dichte auftreten, wobei deren feine Unterstruktur erhalten bleibt. Trotz des starken inhibitorischen Verhaltens wird das Auflösen von Brushit durch die Anwesenheit von Fetuin praktisch nicht beschleunigt. Auch auf die Kinetik der Assemblierung von Kollagen zeigt Fetuin praktisch keinen Einfluss.
Des Weiteren wurde das Nukleationsverhalten des häufigsten, nichtkollagenen Knochenproteins, dem Osteocalcin (OC), mittels ESI-MS beobachtet. Die Untersuchungen von Osteocalcin in Calciumphosphatlösung zeigten Komplexe mit bis zu 8 Ca2+, der größte identifizierbare Komplex bestand aus [OC Ca2 (PO4 )2 Na4 ]+.
Um die Mineralisierung von Kollagen genauer zu untersuchen, wurden assemblierte Kollagenfibrillen in der Flüssigzelle eines Atomkraftmikroskops (AFM) mit Calciumphosphat nachmineralisiert. Hierbei wurde eine gleichmäßige Anlagerung der offenbar amorphen mineralischen Phase beobachtet. Die Inkubation der Fibrillen mit Phospholipidvesikeln führte zu einem Aufweichen der Fibrillen.
Des Weiteren wurden Phospholipidvesikel hergestellt, um den Calciumphosphatniederschlag in einem räumlich stark begrenzten Abschnitt zu untersuchen. Die Vesikel wurden mit REM und AFM abgebildet und so verschiedene Präparationsmethoden verglichen. Es konnten plättchenförmige Kristallite an der Vesikelmembran gezüchtet werden, während bei Anwesenheit von Phosphoserin globuläre Objekte auftraten.
Eine Arbeitshypothese wurde entwickelt, die das unterschiedliche Wachstumsverhalten von Calciumphosphat in wässriger Lösung mit einer positiv geladenen Hydrathülle um den Calciumphosphatkeim erklärt. Die Protonen stammen vom deprotonierten Phosphat des Mineralkeims und können sich auf Grund der adsorbierten Wassermoleküle nicht sofort in der Lösung verteilen. Diese Hülle aus H3O+ verhindert das beliebige Anlagern von Ionen an den Mineralkeim und lenkt so dessen Morphologie.
|
106 |
Zur Calciumphosphatprazipitation mit Phosphoserin, Fetuin, Osteocalcin, Kollagen und in VesikelnRühl, Ralf 17 October 2011 (has links)
Der hierarchisch strukturierte und hoch geordnete Aufbau von Calciumphosphat und Kollagen in Knochen und Zähnen wird von den Zellen mit Hilfe bestimmter Moleküle erreicht. Diese organischen Moleküle, zumeist Proteine, beeinflussen durch die räumliche Anordnung ihrer Ladung das Präzipitations- und Wachstumsverhalten der mineralischen Phase.
Die in dieser Arbeit beschriebenen Computersimulationen zeigen, dass ein Calciumphosphatkomplex mit deprotoniertem Phosphat am stabilsten ist. Vermutlich nimmt die Bindungsenergie pro Oberfläche des Komplexes mit wachsender Größe bis zu einem Ca9(PO4)6 -Komplex (Posner Klaster) linear zu. Die Präzipitation von Calciumphosphat aus wässriger Lösung führt häufig zu amorphen Kugeln mit 50-500 nm Durchmesser, die sphärische Unterstrukturen von ca. 5 nm Durchmesser zeigen und bei großer Dichte zu einer amorphen Schicht verschmelzen. Geringe Unterschiede in der Präparation können aber schon zu stäbchenförmigen oder plättchenartigen Kristalliten führen.
Phosphoserin ist eine der wichtigsten Aminosäuren bei der Anbindung von Proteinen an Calciumphosphat. Das Computermodell zeigt an der gesamten Oberfläche dieser Aminosäure ein deutliches elektrisches Potential, dies begünstigt die Wechselwirkung mit Ionen. FT-IR- und NMR-Untersuchungen zeigen, dass Phosphoserin bei Kopräzipitation mit Calciumphosphat höchstwahrscheinlich in die mineralische Phase eingebaut wird. Serin zeigt bei der Kopräzipitation ab 1 mM einen Einfluss auf die Morphologie von Calciumphosphat, während Phosphoserin schon bei 0,01 mM einen deutlichen Einfluss zeigt. Elektronenspray-Ionisations-Massenspektroskopie (ESI-MS) bestätigt die relativ zum Serin intensivere Wechselwirkung von Phosphoserin mit Calciumphosphat.
Das wichtigste Protein zur Vermeidung ektopischer Mineralisierung ist Fetuin. Dieses Protein stabilisiert die transient auftretenden amorphen Calciumphosphatkugeln (ACP-Kugeln) und erlaubt so dem Körper deren Entsorgung. Fetuin verhindert das Verschmelzen von ACP-Kugeln, wenn diese in großer Dichte auftreten, wobei deren feine Unterstruktur erhalten bleibt. Trotz des starken inhibitorischen Verhaltens wird das Auflösen von Brushit durch die Anwesenheit von Fetuin praktisch nicht beschleunigt. Auch auf die Kinetik der Assemblierung von Kollagen zeigt Fetuin praktisch keinen Einfluss.
Des Weiteren wurde das Nukleationsverhalten des häufigsten, nichtkollagenen Knochenproteins, dem Osteocalcin (OC), mittels ESI-MS beobachtet. Die Untersuchungen von Osteocalcin in Calciumphosphatlösung zeigten Komplexe mit bis zu 8 Ca2+, der größte identifizierbare Komplex bestand aus [OC Ca2 (PO4 )2 Na4 ]+.
Um die Mineralisierung von Kollagen genauer zu untersuchen, wurden assemblierte Kollagenfibrillen in der Flüssigzelle eines Atomkraftmikroskops (AFM) mit Calciumphosphat nachmineralisiert. Hierbei wurde eine gleichmäßige Anlagerung der offenbar amorphen mineralischen Phase beobachtet. Die Inkubation der Fibrillen mit Phospholipidvesikeln führte zu einem Aufweichen der Fibrillen.
Des Weiteren wurden Phospholipidvesikel hergestellt, um den Calciumphosphatniederschlag in einem räumlich stark begrenzten Abschnitt zu untersuchen. Die Vesikel wurden mit REM und AFM abgebildet und so verschiedene Präparationsmethoden verglichen. Es konnten plättchenförmige Kristallite an der Vesikelmembran gezüchtet werden, während bei Anwesenheit von Phosphoserin globuläre Objekte auftraten.
Eine Arbeitshypothese wurde entwickelt, die das unterschiedliche Wachstumsverhalten von Calciumphosphat in wässriger Lösung mit einer positiv geladenen Hydrathülle um den Calciumphosphatkeim erklärt. Die Protonen stammen vom deprotonierten Phosphat des Mineralkeims und können sich auf Grund der adsorbierten Wassermoleküle nicht sofort in der Lösung verteilen. Diese Hülle aus H3O+ verhindert das beliebige Anlagern von Ionen an den Mineralkeim und lenkt so dessen Morphologie.:1 Einführung
1.1 Biomineralisation
1.2 Calciumphosphat
1.3 Phosphoserin
1.4 Kollagen
1.5 Osteocalcin
1.6 Fetuin
1.7 Matrixvesikel
1.8 Fragestellung der Dissertation
2 Material und Methoden
2.1 Computermodellierung
2.2 Chemikalien und Lösungen
2.3 FT-IR-Messungen
2.4 UV/Vis-Messungen
2.5 Massenspektroskopische Experimente
2.6 REM
2.7 TEM
2.8 AFM
2.9 NMR
2.10 XRD
3 Ergebnisse und Interpretation
3.1 Calciumphosphat
3.2 Phosphoserin
3.3 Fetuin
3.4 Osteocalcin
3.5 Kollagen
3.6 Künstliche Vesikel
4 Abschließende Zusammenfassung
Anhang
Erläuterungen zu den Ergebnissen
Glossar
Abbildungsverzeichnis
Tabellenverzeichnis
Literaturverzeichnis
Erklärung, Danke
Publikationen
Lebenslauf
Index
|
107 |
Untersuchungen zum Einfluss von artifiziellen extrazellulären Matrizes und elektrischen Feldern auf humane mesenchymale Stammzellen / Influence of artificial extracellular matrices and electric fields on human mesenchymal stem cellsHeß, Ricarda 31 July 2013 (has links) (PDF)
Eine bevorzugte Zellquelle für den Einsatz im Tissue Engineering sind mesenchymale Stammzellen (MSZ). Diese besitzen, neben einer hohen Proliferationsrate, die Fähigkeit, sich in verschiedene Zellen des mesodermen Ursprungs und in die entsprechenden Gewebetypen zu entwickeln. Um ein funktionales Gewebe zu erhalten ist es Ziel, sich bereits in vitro den in vivo Bedingungen anzunähern. Hierbei spielen neben der dreidimensionalen Struktur der Scaffolds auch die biochemische Mikroumgebung der Zellen in Form der unlöslichen extrazellulären Matrix (EZM) und den löslichen Mediatorproteinen wie Wachstums- und Differenzierungsfaktoren, sowie die physikalische Stimulation der Zellen eine wichtige Rolle. Während sich gegenwärtige Untersuchungen im TE vorwiegend mit den alleinigen Einflussfaktoren beschäftigen, verfolgt die vorliegende Arbeit das Ziel, die Auswirkungen kombinierter Stimuli durch Verwendung einer artifiziellen EZM, bestehend aus definierten Komponenten der nativen EZM, und physikalischer Stimuli durch elektrische Felder zu untersuchen. Letzteres erfolgte mit einem innerhalb der Arbeitsgruppe neu entwickelten System, dass die Stimulation von Zellen mit ausschließlich elektrischen Feldern, ohne störende Nebeneinflüsse, erlaubt.
|
108 |
Die Bedeutung des Kollagens für die Regeneration der Rotatorenmanschette: Histologische und immunhistologische Untersuchung der Verteilung der Kollagene Typ I, Typ II und Typ III nach single- und double-row-Naht-Anker-Rekonstruktion / The importance of collagen for rotator cuff regeneration: Histological and immunohistochemical study of the distribution of collagens type I, type II and type III after single-and double-row suture anchor reconstructionPosmyk, Andrea 15 March 2011 (has links)
No description available.
|
109 |
Prävention des Nierenversagens und der Nierenfibrose bei hereditären Erkrankungen der glomerulären Basalmembran (Alport-Syndrom) bei COL4A3-Knockout-Mäusen mit dem Reninantagonisten Aliskiren / Prevention of renal failure and renal fibrosis in hereditary diseases of glomerular basement membrane (Alport-Syndrome) in COL4A3 knockout mice with Aliskiren a direct renin inhibitorTheisen, Stephanie 04 June 2012 (has links)
No description available.
|
110 |
Gene expression of tendon markers in mesenchymal stromal cells derived from different sourcesBurk, Janina, Gittel, Claudia, Heller, Sandra, Pfeiffer, Bastian, Paebst, Felicitas, Ahrberg, Annette B., Brehm, Walter January 2014 (has links)
Background: Multipotent mesenchymal stromal cells (MSC) can be recovered from a variety of tissues in the body. Yet, their functional properties were shown to vary depending on tissue origin. While MSC have emerged as a favoured cell type for tendon regenerative therapies, very little is known about the influence of the MSC source on
their properties relevant to tendon regeneration. The aim of this study was to assess and compare the expression of tendon extracellular matrix proteins and tendon differentiation markers in MSC derived from different sources as well as in native tendon tissue. MSC isolated from equine bone marrow, adipose tissue, umbilical cord tissue, umbilical cord blood and tendon tissue were characterized and then subjected to mRNA analysis by real-time polymerase chain reaction. Results: MSC derived from adipose tissue displayed the highest expression of collagen 1A2, collagen 3A1 and decorin compared to MSC from all other sources and native tendon tissue (p < 0.01). Tenascin-C and scleraxis
expressions were highest in MSC derived from cord blood compared to MSC derived from other sources, though both tenascin-C and scleraxis were expressed at significantly lower levels in all MSC compared to native tendon tissue (p < 0.01). Conclusions: These findings demonstrate that the MSC source impacts the cell properties relevant to tendon regeneration. Adipose derived MSC might be superior regarding their potential to positively influence tendon matrix reorganization.
|
Page generated in 0.0519 seconds