• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 28
  • 10
  • 4
  • Tagged with
  • 90
  • 78
  • 49
  • 40
  • 26
  • 26
  • 21
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vergleichende MR- volumetrische Untersuchung des orbitofrontalen Kortex bei Schizophrenie, bipolarer Störung, Zwangserkrankung und gesunden Kontrollpersonen / Comparative MR- volumetric investigation of the orbitofrontal cortex in schizophrenia, bipolar disorder, obsessive-compulsive disorder and healty control persons

Meyer, Kristina 08 February 2011 (has links)
No description available.
12

Untersuchung der Modulierbarkeit von sensorischen Schmerzschwellen durch schwache transkranielle Gleichstromstimulation / Modulatory effects of transcranial direct current stimulation on acute pain perception

Hillers, Ferdinand 15 August 2012 (has links)
No description available.
13

Die Entwicklung rezeptiver Felder und neuronaler Karten im visuellen Kortex / The development of receptive fields and neural maps in visual cortex

Mayer, Norbert Michael 01 November 2000 (has links)
No description available.
14

Beitrag frontaler und parietaler Hirnregionen zu semantischen und phonologischen Entscheidungen im gesunden Gehirn: Eine Studie mit transkranieller Magnetstimulation

Weigel, Anni 05 December 2017 (has links)
Sprache stellt unsere elementare Fähigkeit zur Kommunikation dar. Durch sie wird die Assoziation von Lauten und Symbolen mit Bedeutungen möglich. Um Sprache jedoch praktisch nutzen zu können, müssen im Gedächtnis sensorische Information mit motorischen Systemen verknüpft werden (Price, 2000). In der vorliegenden Untersuchung wurden zwei für das Sprachverständnis wichtige linguistische Komponenten, die phonologische und semantische Verarbeitung, unterschieden (Poldrack et al., 1999). Die Semantik beschäftigt sich mit der Bedeutungsanalyse, die Phonologie dagegen mit der Lautanalyse. Die Geschichte der modernen Sprachforschung begann im 19. Jahrhundert. Bedeutende erste Erkenntnisse stammen dabei von Wernicke (1874) und Broca (1861). Anhand ihrer Untersuchungen klinischer Läsionen konnte dem ‚Broca-Areal’ im linken IFG eine wichtige Funktion in der Sprachproduktion und dem ‚Wernicke-Areal’ im linken posterioren Gyrus temporalis superior eine wichtige Funktion für das Sprachverständnis zugeschrieben werden. Diese Erkenntnisse wurden durch Lichtheim (1885) im ersten klassischen Sprachmodell zusammengefasst. Anhand neuer Forschungen konnten in den letzten Jahren detailliertere und komplexere Modelle zum Sprachverständnis und zur Sprachproduktion entwickelt werden (z.B. Hickok & Poeppel, 2004), die darauf hinweisen, dass das klassische Broca-Wernicke-Lichtheim Modell zu einfach dargestellt ist (Dronkers et al., 2004; Graves, 1997; Shalom & Poeppel, 2008). Aktuelle Studien zu neurobiologischen Korrelaten für das Verständnis von Sprache basieren zum Teil auf modernen bildgebenden Verfahren wie fMRT und PET, welche die Möglichkeit bieten, ein spezifisches Verhalten mit kortikaler Aktivität zu assoziieren. Zudem boten neue Techniken das Privileg, nicht mehr nur Studien an Patienten mit klinischen Läsionen durchführen zu können, sondern nun auch physiologische Korrelate an gesunden Probanden zu untersuchen (Bookheimer, 2002; Devlin et al., 2002; Zatorre et al., 1996). Dies brachte die Chance hervor, unabhängig von Reorganisationsprozessen klar abgrenzbare Hirnareale, ihre Funktionen und Interaktionen genauer zu untersuchen und damit das bisherige Verständnis der kortikalen Sprachverarbeitung immens zu erweitern (Price, 2000). Eine weitere technische Neuerung wurde 1985 mit der transkraniellen Magnetstimulation (TMS) vorgestellt. Die TMS ist eine einfache, schmerzlose, nichtinvasive Alternative zur elektrischen Stimulation des Gehirns. Über ein zeitlich veränderliches magnetisches Feld in einer Spule wird ein Stromfluss im unterliegenden Gewebe induziert und die kortikale Funktion beeinflusst (Barker et al., 1985). Obwohl diese Technik zunächst vorrangig zur Erforschung motorischer Funktionen genutzt wurde, kann sie heute vor allem auch in Kombination mit der funktionellen Bildgebung und als nicht-invasive Möglichkeit dienen um die Relevanz eines spezifischen Areals für die Durchführung bestimmter (Sprach-)Aufgaben aufzuzeigen (Devlin & Watkins, 2008; Hartwigsen et al., 2010b; Sparing et al., 2001; Tarapore et al., 2013). In der vorliegenden TMS-Studie wurden vier Sprachareale auf ihre Relevanz für die beiden linguistischen Komponenten Phonologie und Semantik untersucht. Dabei wird nicht nur auf die Funktion der einzelnen Regionen für die Bearbeitung phonologischer und semantischer Aufgaben fokussiert, sondern zudem in Zusammenschau mit der Vorstudie (Hartwigsen et al., 2016) die Existenz zweier relevanter Netzwerke postuliert. In Analogie zum visuellen System gingen bereits Hickok & Poeppel (2004) von einem fronto-temporo-parietalen dualen Bahnsystem aus, welches sich in einen dorsalen (sensorisch-motorischen) und einen ventralen (sensorisch-konzeptuellen) Strom gliedern lässt. Die phonologische Sprachverarbeitung wird dabei vom dorsalen Strom verkörpert und der ventrale Strom scheint für die semantischen Bezüge verantwortlich zu sein (Saur et al., 2008). Da vorherige Studien bereits Aktivierungen sowohl im aIFG (Dapretto & Bookheimer, 1999; Gough et al., 2005; Poldrack et al., 1999; Wagner et al., 2000) als auch im ANG (Binder et al., 2009; Mechelli et al., 2007; C J Price, 2000) bei semantischen Aufgabenstellungen aufzeigen konnten und der Beleg für eine Relevanz des pIFG (Martha W Burton et al., 2005; Devlin & Watkins, 2007; Hartwigsen, Price, et al., 2010; Paulesu et al., 1993) und SMG (Hartwigsen et al., 2010a; Sliwinska et al., 2012; Stoeckel et al., 2009; Zatorre et al., 1996) bei phonologischen Analysen gebracht wurde, war das Ziel der vorliegenden Studie, das Vorhandensein zweier Netzwerke aufzuzeigen und die funktionelle Integrität sowie Zusammenarbeit oder Kompensationsmechanismen der Regionen untereinander darzustellen. Die Grundlage für die Untersuchungen bot die Vorstudie von Hartwigsen et al. (2016). Mit Hilfe einer konditionierenden offline Stimulation in Kombination mit akuter online Interferenz wurden hierbei jeweils ein parietales Areal (SMG oder ANG) und ein frontales Areal (aIFG oder pIFG) gleichzeitig in ihrer Funktion beeinträchtigt. Die Ergebnisse belegten allgemein die Hypothesen anderer Autoren, einer semantischen Verarbeitung in den beiden Arealen ANG und aIFG sowie einer Beteiligung von pIFG und SMG an der Lösung phonologischer Aufgaben. Aus der kombinierten Stimulation eines für eine Aufgabe spezifischen Areals mit einem der jeweiligen anderen Aufgabe zugeordneten Kontrollareal (pIFG und ANG, aIFG und SMG) konnten zudem Vermutungen auch über die funktionelle Relevanz der einzelnen Regionen angestellt werden. Die Ergebnisse führten zu den Hypothesen, dass kortikale parieto-frontale Netzwerke für die Verarbeitung semantischer und phonologischer Aufgaben existieren, die Relevanz der Einzelregionen für die Einordnung in semantische und phonologische Kriterien jedoch unterschiedlich ist. Somit bestätigte sich, dass eine multifokale TMS der beiden Areale aIFG und ANG zu einer signifikant verlängerten mittleren Reaktionszeit für die semantische im Vergleich zur phonologischen Aufgabe führt, eine unifokale TMS eines der beiden Areale in Verbindung mit Stimulation eines phonologischen Kontrollareals jedoch keine Beeinträchtigung hervorruft. Die funktionelle Integrität eines der beiden Areale ist somit vermutlich von der funktionellen Integrität des anderen abhängig und bei einer Läsion eines semantischen Areals im Netzwerk erfolgt eine Kompensation durch das jeweils andere. Diese Kompensation ermöglicht es, eine weiterhin korrekte und nicht verlangsamte semantische Entscheidung vornehmen zu können. Andererseits ergaben die Untersuchungen der phonologischen Areale, dass sowohl eine multifokale Stimulation als auch die unifokale Stimulation von pIFG und SMG zu signifikant längeren Reaktionszeiten phonologischer Entscheidungen führten. Dies lässt die Hypothese zu, dass die beiden Areale gemeinsam einen entscheidenden aber unterschiedlichen Beitrag für die Phonologie liefern und beide Regionen wichtig für die Durchführung phonologischer Aufgaben sind. Da in der Vorstudie nicht ausgeschlossen werden konnte, dass auch die aktive Stimulation der gewählten Kontrollareale einen Einfluss auf die Reaktionszeiten und Fehlerraten gehabt haben könnte, wurde in der vorliegenden Untersuchung die jeweilige aktive Stimulation eines Kontrollareals in jeder Sitzung durch eine Placebo-Stimulation ersetzt. Die experimentellen Bedingungen wurden ansonsten möglichst genau an die Vorstudie angepasst. Dies ermöglichte es, jedes Areal einzeln und unabhängig von den Funktionen anderer kortikaler Regionen zu testen. Die 17 hier untersuchten gesunden Probanden mussten in vier Sitzungen mit jeweils einer effektiven Stimulation und einer Placebo-Stimulation insgesamt 60 Wörter nach ihrer Silbenzahl (2 oder 3 Silben) und 60 Wörter anhand ihrer Herkunft (vom Menschen gefertigt/natürlich) einordnen. Alle Probanden erhielten in jeder Sitzung genau über einem der vier Areale eine effektive Stimulation. Die Ergebnisse konnten nun validierte Kenntnisse zur Relevanz der einzelnen Regionen und – gemeinsam mit den Erkenntnissen der Vorstudie - zur gemeinsamen Verarbeitung im phonologischen und semantischen Netzwerk liefern. Insgesamt bestätigten die Resultate der vorliegenden Studie die Hypothesen der Vorstudie. Es wird somit von einem semantischen Netzwerk ausgegangen, in welchem der aIFG und der ANG einen entscheidenden Beitrag leisten. Beide Regionen wirken demnach maßgeblich aber wahrscheinlich auch in ihren spezifischen Aufgaben überschneidend, an der semantischen Verarbeitung mit. Eine Läsion eines der beiden Areale genügt jedoch nicht, um die Prozessierung semantischer Inhalte signifikant zu stören. Dies bestätigt die Hypothese eines Kompensationsmechanismus innerhalb des parieto-frontalen semantischen Netzwerks. Der ANG scheint einerseits für die Integration in den Kontext und den Abruf gespeicherter semantischer Informationen zuständig zu sein (Binder et al., 2009; Geschwind, 1965), aber auch der aIFG hat Aufgaben in der semantischen Wortanalyse (Price, 2010) und verarbeitet vermutlich die Informationen zu den Verhältnissen von Wörtern zueinander (Bookheimer, 2002). Das phonologische Netzwerk hingegen scheint anfälliger für eine Störung durch eine virtuelle Läsion zu sein. Hier zeigten sich signifikante Beeinträchtigungen der Reaktionszeiten sowohl nach unifokalen Stimulationen der vorliegenden Studie als auch nach den multifokalen Stimulationen der Vorstudie. Die Reaktionszeiten waren im Vergleich zur semantischen Aufgabe signifikant verlängert. Dies schließt also Kompensationsmöglichkeiten von Läsionen der Regionen untereinander aus. Vielmehr sprechen die Ergebnisse für die Relevanz jedes einzelnen der beiden Areale pIFG und SMG für die korrekte und effektive Bearbeitung phonologischer Entscheidungen. Es wäre zudem möglich, dass sich eine Stimulation eines Areals über die im Vergleich zur Semantik eher kürzeren strukturellen Verbindungen (vgl. Klein et al., 2013) rasch ausbreitet und so in kurzer Zeit auch eine Störung des anderen Areals, also eine „Doppelläsion“ bewirkt. Vorherige Studien postulierten, dass der SMG eher der Speicherung von Wörtern im Arbeitsgedächtnis dient (Becker et al., 1999; Vigneau et al., 2006), wohingegen dem pIFG eher eine Rolle in der eigentlichen phonologischen Beurteilung und dem ‚Rehearsal’ (inneres Sprechen) zugeordnet wird (Romero et al., 2006). Diese beiden Prozesse stellen zwei gut differenzierte Aufgabenbereiche dar, durch welche nur bei Funktionsfähigkeit beider gemeinsam eine phonologische Entscheidung adäquat vorgenommen werden kann. Zusammenfassend belegen die Ergebnisse beider Studien, dass das semantische Netzwerk, welches insgesamt über weiter ausgebreitete kortikale Verbindungen verknüpft ist als das phonologische Netzwerk, eine stärkere Widerstandsfähigkeit gegenüber unifokalen Läsionen bietet. Semantische Entscheidungen benötigen daher nur ein intaktes Areal (aIFG oder ANG), wohingegen die Störung eines phonologischen Areals bereits zur Beeinträchtigung der phonologischen Aufgabenbearbeitung führt. Es obliegt weiteren Studien, die genauen Funktionen der Regionen im Netzwerk zu untersuchen, um spezifischere Erkenntnisse über die Verknüpfung sprachlicher Areale zu erlangen und Symptome klinischer Läsionen zukünftig noch besser verstehen zu können. Dies bietet die Grundlage für die Entwicklung neuer Therapien und könnte es in Zukunft ermöglichen, beispielsweise Aphasien nach Schlaganfällen oder in Folge von Hirntumoren besser verstehen und behandeln zu können.:1 Einleitung 1.1 Was ist Sprache? Zur Geschichte der Sprachforschung 1.2 Entwicklung der TMS in der Sprachforschung 1.3 Was bedeutet Phonologie? 1.4 Was ist Semantik? 1.5 Relevante Hirnregionen für Phonologie und Semantik 1.5.1 Einzelregionen 1.5.2 Netzwerke 1.6 Ziele der Arbeit und Aufgabenstellung 2 Material und Methoden 2.1 Transkranielle Magnetstimulation (TMS) 2.1.1 repetitive transkranielle Magnestimulation (rTMS) 2.2 Magnetresonanztomographie 2.3 stereotaktische Spulenpositionierung 2.4 Stimuli 2.5 Probanden 2.6 Ablauf 2.7 Hypothesen der Arbeit 2.8 experimentelles Design und statistische Datenauswertung 3 Ergebnisse 3.1 Reaktionszeiten 3.1.1 Phonologie 3.1.2 Semantik 3.2 Fehlerraten 3.3 Auswertung 3.3.1 Phonologie 3.3.2 Semantik 4 Diskussion 4.1 Phonologie 4.1.1 Beitrag des SMG und pIFG zu phonologischen Entscheidungen 4.1.2 TMS-Läsionsausbreitung im phonologischen Netzwerk 4.2 Semantik 4.2.1 gegenseitige Beeinflussung des aIFG und ANG bei der Bearbeitung der semantischen Aufgabe 4.2.2 spezifische Bedeutung des aIFG und ANG für die Semantik 4.2.3 semantisches Netzwerk 4.3 Ausblick 4.3.1 therapeutischer Nutzen 4.3.2 offene Fragen und weitere Forschungsgrundlagen 5 Zusammenfassung 6 Literaturverzeichnis 7 Anlagenverzeichnis 8 Erklärung über die eigenständige Abfassung der Arbeit 9 Publikation 10 Danksagung
15

Structure-function analysis of somatosensory nose and whisker representations

Maier, Eduard 12 January 2022 (has links)
Diese aus drei verschiedenen Studien bestehende Arbeit trägt mittels Verknüpfung von Anatomie (Struktur) und Physiologie oder Verhalten (Funktion) zu einem besseren Verständnis von somatosensorischer Informationsverarbeitung bei. In der ersten Studie untersuchten wir wie das Nervensystem der Ratte sich an das kontinuierliche Nachwachsen und Ausfallen der Tasthaare anpasst. Unsere Ergebnisse zeigen, dass Barrel-Kortex Neurone nach Auslenkung von sowohl jungen oder alten Tasthaaren ähnliche neuronale Antworten aufweisen. Wir konnten auch beobachten, dass junge und alte Tasthaare gemeinsam im Follikel innerviert werden und im Kortex nicht separat topologisch repräsentiert sind. Diese Ergebnisse könnten erklären wie die Stabilität von Wahrnehmung während fortlaufenden körperlich-sensorischen Veränderungen gewährleistet wird. In der zweiten Studie identifizierten wir Details der kortikalen Nasen Repräsentation und konnten zeigen, dass die Organisation von Schicht 4 im Somatosensorischen Kortex in Nagetieren konserviert ist. Wir fanden auch eine Kopplung von Nervenzellaktivität mit der Atmung, was für eine koordinierte Verarbeitung von Tastsinn und Atmung im Nasen-Somatosensorischen Kortex spricht. In der dritten Studie charakterisierten wir die kortikale Repräsentation der Schnauze im Hausschwein und konnten zeigen, dass dessen makroskopische, drei-dimensionale Erscheinung viele Details aufweist, die auch bei der tatsächlichen Schnauze zu finden sind. Ähnlich wie bei unseren histologischen Beobachtungen im Nasen- Somatosensorischen Kortex von Nagern konnten wir im Hausschwein Kortex eine Verjüngung von Schicht 4 der mutmaßlichen Repräsentation des Nasenlochs beobachten. Zusammengefasst zeigt diese Arbeit i) einen potentiellen Mechanismus für Kontinuität der Wahrnehmung während körperlichen Veränderungen ii) Details der kortikalen Nasen-Repräsentation und dessen Verhältnis zur Atmung und iii) isomorphe Eigenschaften der kortikalen Schnauzen-Repräsentation im Hausschwein. / Topological mapping of body part representations in the brain have long been studied in neuroscience. In this thesis, three separate studies investigate such somatosensory representations by relating anatomy (structure) to physiology or behavior (function). In the first study we investigated whether and how the rat nervous system adapts to whiskers regrowth. We found that barrel cortex neurons displayed similar response properties to young and old whisker deflection and that both whiskers share their peripheral innervation in the same follicle. Our results further suggest that young and old whiskers do not form topologically distinct representations in the cortex. Such findings illuminate how perceptual stability is maintained despite the constant change of bodies and sensory structures. In the second study we identified the rodent nose somatosensory cortex and found that its tangential layer 4 organization is conserved across rodents. We also found significant respiration locked neural activity in the rat nose somatosensory cortex, suggesting coordinated processing of touch and respiration. In the third study we characterized the pig rostrum somatosensory cortex and found that its three-dimensional, gross organization matches the detailed structure of the actual rostrum appearance. We also found that layer 4 appears thinner in the putative nostril, similar to our results in the rodent nose somatosensory cortex. Collectively, our data i) reveal potential mechanisms for perceptual stability during bodily changes ii) identify the rodent nose somatosensory cortex and its relationship to respiration and iii) a striking isomorphism of the pig cortical rostrum representation with the pig snout.
16

Neuronale Verteilung des Enzyms Glutaminylzyklase im Kortex und der hippocampalen Formation des humanen Gehirns

Kreuzberger, Moritz 29 November 2012 (has links)
Intra- und extrazelluläre ß-Amyloid-Ablagerungen (Abeta) sind ein neuropathologisches Hauptmerkmal der Alzheimerschen Demenz (AD). Aktuelle Studien belegen, dass nicht Abeta-Plaques, sondern Abeta-Oligomere die Schädigung von Synapsen und Nervenzellen verursachen und dass ihre Konzentration gut mit der Schwere der kognitiven Dysfunktion korreliert. Allerdings sind Abeta-Peptide eine heterogene Gruppe schwer wasserlöslicher Peptide mit zahlreichen C- und N-terminalen Modifikationen. Dabei hängt die Tendenz von Abeta-Peptiden Oligomeren zu bilden, ihre proteolytische Resistenz und ihr neurotoxisches Potential maßgeblich von ihrer N-terminalen Struktur ab. Abeta-Peptide, die N-terminal einen Pyroglutamyl-Laktamring (pE-Abeta) aufweisen, machen einen Hauptbestandteil der Abeta-Last in den frühen Stadien der AD aus. Diese modifizierten Abeta-Peptide aggregieren schneller als unmodifiziertes Abeta, sind gegen Proteolyse geschützt und wirken als Aggregationskeim für andere Abeta-Spezies. Das Enzym Glutaminylzyklase (QC) katalysiert die n-terminale pE-Modifikation von Abeta in vitro und in vivo und wird in Neuronenpopulationen gefunden, für die ein starker Verlust von Synapsen und Neuronen im Zusammenhang mit der AD beschrieben wurde. Diese Arbeit stellt die schichtspezifische Verteilung von QC im temporalen Kortex und der hippocampalen Formation von Alzheimerpatienten und Kontrollen vergleichend dar und zeigt einen direkten Zusammenhang zwischen der Überexpression von QC und der Vulnerabilität betreffender Neuronenpopulationen auf. Darüber hinaus bestätigen die vorgestellten Ergebnisse die These, wonach QC und pE-Abeta das Potential haben, nach axonalem Transport eine Kaskade in efferenten Hirnregionen zu initiieren, an deren Ende der Verlust von Nervenzellen steht. Diese Erkenntnisse unterstützen das Interesse an QC als Gegenstand zukünftiger Grundlagenforschung und Wirkstoffentwicklungen für die Therapie der AD.:1. Einleitung 1 1.1. Fallbeispiel 1 1.2. Epidemiologie der Alzheimerschen Erkrankung 1-2 1.3. Derzeitige Pharmakotherapie 2 1.4. Neuropathologie der Alzheimerschen Demenz 3 1.5. Amyloidprozessierung 3-5 1.6. Das Enzym Glutaminylzyklase 7-8 1.7. Fragestellung 8-9 2. Material und Methoden 10 2.1. Humanes Hirngewebe von Alzheimer- und Kontrollfällen 10-11 2.2. Anfertigung von Gefrierschnitten 11 2.3. Kresylviolett-Färbung nach Nissl 12 2.4. Immunhistochemie 12-16 2.5. Vergleich von vier Anti-QC-Antikörpern 17-18 2.6. Zählmethodik 19-22 2.7. Verwendete Hard- und Software 20 3. Ergebnisse 23 3.1. Neuronendichten der untersuchten Hirnregionen in 23-24 Alzheimer- und Kontrollgehirnen 3.2. QC-Immunreaktivitat in Alzheimer- und Kontrollgehirnen 25 3.2.1. QC-Immunreaktivität im temporalen Kortex 25-26 3.2.2. QC-Immunreaktivität im entorhinalen Kortex 27-28 3.2.3. QC-Immunreaktivität im Subikulum und Ammonshorn 29-31 3.3. Stärke der QC-Immunreaktivität in Alzheimer- und Kontrollgehirnen 32 3.3.1. Stärke der QC-Immunreaktivität im temporalen Kortex 32-33 3.3.2. Stärke der QC-Immunreaktivität im entorhinalen Kortex 34-35 3.4. Schichtspezifische Verteilung der QC-Immunreaktivität im temporalen und entorhinalen Kortex in Alzheimer- und Kontrollgehirnen 36-38 3.5. QC-Immunreaktivität der Ammonshornregionen CA1 – CA4 39-40 4. Diskussion 41 4.1. Abeta-Spezies und QC in der AD 41-42 4.2. QC im temporalen Kortex 42-44 4.3. QC im entorhinalen Kortex 44-47 4.4. QC im Hippocampus 47-49 4.5. Regionale, schichtspezifische und neuronale Verteilung von QC 49-51 4.6. Ausblick 51-53 5. Zusammenfassung (Deutsch und Englisch) 54-55 6. Literaturverzeichnis 56-65 7. Anhang 66 7.1. Färbeprotokoll für Immunhistochemie 66 7.2. Erklärung über die eigenständige Abfassung der Arbeit 67 7.3. Lebenslauf 68 7.4. Danksagung 69 / Intra- and extracellular s-amyloid (Abeta) deposits are a major neuropathological hallmark of Alzheimer\''s disease (AD). Recent studies demonstrate that Abeta oligomers rather than Abeta plaques cause severe damage of synapses and nerve cells and in addition the concentration of Abeta oligomers correlates well with the severity of cognitive dysfunction. However, Abeta peptides are a heterogeneous group of poorly water-soluble peptides with various C- and N-terminal modifications. Biophysical properties of these peptides such as their propensity to form oligomers, their proteolytic resistance and their neurotoxic potential particularly depends on their N-terminal structure. Abeta-peptides that contain a pyroglutamyl-a-lactam ring at their N-Terminus (pE-Abeta) constitute a major component of the Abeta load in the early stages of AD. These modified Abeta-peptides aggregate faster than unmodified Abeta, are protected against proteolysis and act as aggregation seed for other Abeta-species. The enzyme glutaminyl cyclase (QC)catalyzes the cyclization of Abeta to pE-Abeta in vitro and in vivo and is found in neuronal populations for which a strong loss of synapses and neurons in the context of AD is described. This thesis presents the layer-specific distribution of QC in the temporal cortex and the hippocampal formation of Alzheimer\''s patients and controls, showing a direct correlation between the overexpression of QC and the vulnerability of respective neuronal populations. Moreover, the presented results confirm the hypothesis that QC and pE-Abeta have the potential to initiate a cascade leading to the loss of nerve cells due to axonal transport and release in efferent brain regions. These findings support the interest in QC as a subject of fundamental research and future drug developments for the treatment of AD.:1. Einleitung 1 1.1. Fallbeispiel 1 1.2. Epidemiologie der Alzheimerschen Erkrankung 1-2 1.3. Derzeitige Pharmakotherapie 2 1.4. Neuropathologie der Alzheimerschen Demenz 3 1.5. Amyloidprozessierung 3-5 1.6. Das Enzym Glutaminylzyklase 7-8 1.7. Fragestellung 8-9 2. Material und Methoden 10 2.1. Humanes Hirngewebe von Alzheimer- und Kontrollfällen 10-11 2.2. Anfertigung von Gefrierschnitten 11 2.3. Kresylviolett-Färbung nach Nissl 12 2.4. Immunhistochemie 12-16 2.5. Vergleich von vier Anti-QC-Antikörpern 17-18 2.6. Zählmethodik 19-22 2.7. Verwendete Hard- und Software 20 3. Ergebnisse 23 3.1. Neuronendichten der untersuchten Hirnregionen in 23-24 Alzheimer- und Kontrollgehirnen 3.2. QC-Immunreaktivitat in Alzheimer- und Kontrollgehirnen 25 3.2.1. QC-Immunreaktivität im temporalen Kortex 25-26 3.2.2. QC-Immunreaktivität im entorhinalen Kortex 27-28 3.2.3. QC-Immunreaktivität im Subikulum und Ammonshorn 29-31 3.3. Stärke der QC-Immunreaktivität in Alzheimer- und Kontrollgehirnen 32 3.3.1. Stärke der QC-Immunreaktivität im temporalen Kortex 32-33 3.3.2. Stärke der QC-Immunreaktivität im entorhinalen Kortex 34-35 3.4. Schichtspezifische Verteilung der QC-Immunreaktivität im temporalen und entorhinalen Kortex in Alzheimer- und Kontrollgehirnen 36-38 3.5. QC-Immunreaktivität der Ammonshornregionen CA1 – CA4 39-40 4. Diskussion 41 4.1. Abeta-Spezies und QC in der AD 41-42 4.2. QC im temporalen Kortex 42-44 4.3. QC im entorhinalen Kortex 44-47 4.4. QC im Hippocampus 47-49 4.5. Regionale, schichtspezifische und neuronale Verteilung von QC 49-51 4.6. Ausblick 51-53 5. Zusammenfassung (Deutsch und Englisch) 54-55 6. Literaturverzeichnis 56-65 7. Anhang 66 7.1. Färbeprotokoll für Immunhistochemie 66 7.2. Erklärung über die eigenständige Abfassung der Arbeit 67 7.3. Lebenslauf 68 7.4. Danksagung 69
17

Inhibition and loss of information in unsupervised feature extraction

Kermani Kolankeh, Arash 27 March 2018 (has links)
In this thesis inhibition as a means for competition among neurons in an unsupervised learning system is studied. In the first part of the thesis, the role of inhibition in robustness against loss of information in the form of occlusion in visual data is investigated. In the second part, inhibition as a reason for loss of information in the mathematical models of neural system is addressed. In that part, a learning rule for modeling inhibition with lowered loss of information and also a dis-inhibitory system which induces a winner-take-all mechanism are introduced. The models used in this work are unsupervised feature extractors made of biologically plausible neural networks which simulate the V1 layer of the visual cortex.
18

Myeloarchitecture and Intrinsic Functional Connectivity of Auditory Cortex in Musicians with Absolute Pitch

Kim, Seung-Goo 10 February 2017 (has links) (PDF)
Introduction This dissertation studied structures and functions of auditory cortex in musicians with a rare auditory perception called absolute pitch (AP) using an in-vivo neuroimaging technique magnetic resonance imaging (MRI). The absolute pitch is defined as an ability to recognize pitch chroma, which is musical naming in the twelve-tone equal-temperament (12-TET) system (e.g., “C#”), of any given tonal sound without external references. It has been of interest of many psychologists since the experimental methods have been introduced in psychology over a century. Early behavioral experiments reported many findings that were validated in later studies with computerized measurement of behaviors. Over the recent two decades, in-vivo neuroimaging studies have found alteration in structures and functions of the brains of musicians with AP compared to control musicians without AP. However, quantitative models on the behaviors of neural systems behind the AP have not been suggested yet. Of course, neuronal modeling is a challenging problem in cognitive neuroscience studies in general. In order to generate such models to explain auditory perceptions such as AP, detailed information on structures and functions of neural systems must be obtained. In this context, we examined microarchitecture of the auditory cortex in musicians with AP using ultra- high field MRI that currently enables the highest spatial resolution of in-vivo imaging at the moment. In addition, we examined the functional connectivity between the auditory cortex and the other regions of the whole cortex. In the dissertation, detailed introduction of the pitch chroma perception is given throughout the human auditory systems from peripheral apparatus to non-primary auditory cortex in the Chapter I. In-depth discussion on the in-vivo imaging techniques, image processing, and statistical inferences focusing on the strength and potential pitfalls of the methods and their common practice in the Chapter II. In the Chapter III and IV, I explained MRI studies of the PhD project in details with discussions on the findings. Finally in the Chapter V, I summarized the major findings and discuss possible interpretation based on the framework of ‘dual auditory pathway hypothesis’. Study of Myeloarchitecture In the first study (Chapter III), a novel MRI sequence named magnetization-prepared two rapid gradient echo (MP2RAGE) was used to investigate cortical myelination. Myeloarchitecture of cerebral cortex is the one of the important histological concepts to understand organization of cortical column as well as cytoarchitecture. Neurons in the cortex are not only linked to the other distant neurons through the white matter but also connected vertically and horizontally to adjacent neurons. These short/long-distance axonal connections form myeloarchitecture of the cortex. The MP2RAGE sequence estimates a physical quantity called longitudinal relaxation rates (R1), which is sensitive to myelin concentration of the tissue. When compared to control musicians without AP, we found greater R1 in the anterior part of the right supratemporal plane in the musicians with AP. Given the finding was specific to the middle depth of cortex, the finding is unlikely related to long-distance axonal connections but likely to local connections. The precise location of the group difference was determined as the right planum polare in the template brain as well as in all individual brains. Based on the finding, I speculated that the working principles of the AP processes might be related to the dual auditory pathway hypothesis. In the theory, spatial auditory information is processed along the dorsal pathway (from the primary auditory cortex, to planum temporale, supramarginal gyrus, parietal lobules, and dorsolateral prefrontal cortex) whereas non-spatial auditory information is processed along the ventral pathway (from the primary auditory cortex to planum polare, temporal pole, anterior insular, and ventrolateral prefrontal cortex) in analogous to visual system. Because pitch chroma is spatially invariant property of an auditory object, and also it is less useful for auditory scene segregation compared to separation based on general pitch range (i.e., pitch height), I suggested the observation of cortical myelin in the anterior non-primary auditory cortex might be related to the absolute recognition of pitch chroma in AP listeners. Another potential implication of the heavy myelination is the function of myelination in neural development. In a rat model, it was demonstrated that the myelination of cortex triggers protein interactions that greatly restrict neuroplasticity after the ‘critical period’ of normal development. From genetic studies, it has been found that the onset of musical training is crucial in the acquisition of AP. Since the planum polare is related to pitch chroma processing, the increase of myelination in this region might indicate the preservation of the pitch chroma representation. Study of Intrinsic Functional Connectivity In the second study (Chapter IV), to further test the hypothesis that this highly myelinated planum polare works differently in the auditory networks, analysis of intrinsic functional connectivity using functional MRI (fMRI) measurement acquired during resting was performed. Although spontaneous neural activities during resting was once regarded as Gaussian noise without particular information, extensive researches revealed that the resting-state data (fMRI and also M/EEG) bears substantial information on the subnetworks of brain that subserve various perceptual and cognitive functions. Particularly for the perception of AP, it has been known that spontaneous and unintended recognition of pitch chroma from ambient sounds such as the siren of an ambulance. Thus it is reasonable to assume that the AP-specific network would be constantly active even at rest. From the resting-state fMRI data, greater cross-correlations between the right planum polare, which was found to be highly myelinated, and several cortical areas including the right lateral superior temporal gyrus, the anterior insula, and the left inferior frontal cortex were found in musicians with better AP performance. Moreover, greater cross-coherences between the right planum polare and the medial part of superior frontal gyrus, the anterior cingulate cortex, and the left planum polare were found in musicians with greater AP performance. As speculated, the involvement of the ventral auditory pathway in the AP-specific resting state network was strongly suggested from the tightened functional coupling between anterior supratemporal planes and the left inferior frontal cortex. Interestingly, the right planum polare exhibited greater cross-coherence with the important hub regions of the default mode network, i.e., anterior cingulate cortex and medial parts of the superior frontal cortex and the orbitofrontal cortex, implicating a link between the auditory network and default-mode network in AP listeners. This might be related to constant AP processes in AP listeners, which results in spontaneous and unintentional recognition of AP. Conclusion In the dissertation, novel MRI data from musicians with AP were provided adding knowledge of the myeloarchitectonic characteristics and related intrinsic functional connectivity of the auditory cortex to the current understanding on the neural correlates of AP. The findings were in favor of the proposed involvement of the ventral auditory pathway, which is known for processing spatially invariant properties of auditory objects. Further studies on neural behaviors of the auditory cortex in relation to the myeloarchitecture are needed in developing computational models of AP in the future. / Einleitung Diese Dissertation untersucht Strukturen und Funktionen des auditorischen Kortex in Musikern mit einer seltenen auditorischen Wahrnehmen, dem absoluten Gehör (aG), mit Hilfe des in-vivo Bildgebungsfahrens der Magnetresonanztomographie (MRT). Das absolute Gehör bezeichnet die Fähigkeit die Tonklasse (z.B. „C#“) innerhalb des 12-tönigen Systems gleichmäßiger Stimmung (12-TET) ohne externe Referenz benennen zu können. Das Phänomen des absoluten Gehöres ist Gegenstand psychologischer Untersuchungen seitdem die experimentellen Methoden vor über einem Jahrhundert vorgestellt wurden. Erste behaviorale Experimente berichteten zahlreiche Ergebnisse, die später in computer-gestützten Messverfahren validiert werden konnten. In den letzten 20 Jahren konnten Studien, unter Nutzung bildgebender Verfahren, Veränderungen in der Struktur und Funktion in den Gehirnen von Musikern mit absolutem Gehör feststellen. Bisher wurden jedoch noch keine quantitativen Modelle vorgestellt, die das Verhalten neuronaler Systeme beschreiben, die dem absoluten Gehört zugrunde liegen. Die Modellierung neuronaler Systeme stellt ein anspruchsvolles Problem der gesamten kognitiven Neurowissenschaften dar. Detaillierte Informationen bezüglich der Struktur und Funktion des neuronalen Systems müssen gesammelt, um mit Hilfe von Modelle auditorische Empfindungen wie das absolute Gehör erklären zu können. In diesem Zusammenhang haben wir die Mikroarchitektur des auditorischen Kortex von Musiker mit absolutem Gehör mit Hilfe eines ultrahohem Feld-MRTs untersucht; eine Methode mit der derzeit höchsten räumlichen Auflösung aller in-vivo Bildgebungsverfahren. Außerdem wurde die funktionelle Konnektivität zwischen dem auditorischen Kortex und anderen Regionen des gesamten Kortex untersucht. In Kapitel I der Dissertation wird detailliertes Grundwissen zur Empfindung von Tonklassen, vom menschlichen auditorischen System bis zum nicht-primären auditorischen Kortex, vermittelt. Eine vertiefte Diskussion der in-vivo Bildgebungsverfahren, der Bildverarbeitung und den statistischen Rückschlüssen ist Thema von Kapitel II, mit einem Fokus auf der üblichen Verwendung, den Stärken und potentiellen Fehlern der verwendeten Methoden. In den Kapiteln III und IV habe ich die MRT-Studien der Doktorarbeit erklärt und die Ergebnisse diskutiert. Kapitel V fasst die wesentlichen Forschungsergebnisse zusammen und diskutiert eine mögliche Interpretation der Ergebnisse auf Grundlage der Dual Auditory Pathway Hypothese. Untersuchung der Myelinarchitektur In der ersten Studie (Kapitel III) wurde eine neuartige MRT Sequenz, die magnetization-prepared two rapid gradient echo (MP2RAGE) Sequenz, genutzt um die kortikale Myelinisierung zu untersuchen. Die Myelinarchitektur des zerebralen Kortex ist eine der wichtigsten histologischen Konzepte, um sowohl die Organisation einer kortikalen Kolumne als auch die Zytoarchitektur zu verstehen. Die Neuronen des Kortex sind nicht nur an entfernte Neuronen über die weiße Substanz gekoppelt, sondern auch durch vertikale und horizontale Verbindungen an unmittelbar benachbarte Neuronen. Diese kurzen und langen axonalen Verbindungen formen die Myelinarchitektur des Kortex. Die MP2RAGE Sequenz bewertet die longitudinalen Relaxations Raten (R1), welche sensitiv für die Myelinkonzentration des untersuchten Gewebes ist. Verglichen mit einer Kontrollgruppe von Musikern ohne aG konnten wir einen höheren R1- Wert im anterioren Teil der rechten supra-temporalen Ebene in Musikern mit aG feststellen. Da das Ergebnis spezifisch für eine mittlere Tiefe des Kortex war ist es wahrscheinlicher, dies auf lokale Verbindungen als auf lange axonale Verbindungen zurückzuführen. Als genauer Ort der Gruppendifferenz wurde das rechte planum polare sowohl in einem idealisierten Gehirn als auch in den individuellen Gehirnen der Probanden festgestellt. Aufgrund dieses Ergebnisses habe ich die Hypothese aufgestellt, dass die Wirkungsweise des absoluten Gehörs mit der Dual Auditory Pathway-Theorie zusammenhängt. Diese Theorie besagt, dass räumliche auditorische Information entlang einer dorsalen Bahn (vom primären auditorischen Kortex zum planum temporale, supramarginalen Gyrus, Parietallappen und dorsolateralen präfrontalen Kortex) und nicht-räumliche Informationen entlang einer ventralen Bahn (vom primären auditorischen Kortex zum planum polare, Temporalpol, anterior insular und ventrolateralen präfrontalen Kortex), ähnlich dem visuellen System, verarbeitet werden. Da die Tonklasse eine räumlich invariante Eigenschaft eines auditorischen Objektes ist und es zudem für die auditorische Szenenunterscheidung weniger bedeutsam ist als die generelle Tonhöhe, habe ich die Vermutung angestellt, dass das kortikale Myelin im anterioren nicht-primären auditorischen Kortex mit dem absoluten Gehört für die Tonklasse im Zusammenhang steht. Eine weitere Implikation der starken Myelinisierung betrifft die Funktion von Myelin in der neuronalen Entwicklung. Im Tiermodell einer Ratte konnte gezeigt werden, dass die Myelinisierung des Kortex Proteininteraktionen auslöst, die die Neuroplastizität nach einer ‚kritischen Periode‘ der normalen Entwicklung erheblich einschränkt. Genetische Studien haben gezeigt, dass der Beginn der musikalischen Ausbildung für die Entwicklung des absoluten Gehöres entscheidend ist. Da das planum polare mit der Verarbeitung von Tonklassen in Verbindung gebracht wird, könnte ein Anstieg der Myelinisierung in diesem Bereich einen Erhalt der Tonklassenrepräsentation bedeuten. Untersuchung der intrinsischen funktionellen Konnektivität In der zweiten Studie (Kapitel IV) wurde die Hypothese, dass das stark myelinisierte planum polare in den auditorischen Netzwerken verschieden wirkt, mittels funktioneller MRT (fMRT) im entspannten Wachzustand weiter untersucht. Spontane Hirnaktivität wurde lange Zeit als Gaußsches Rauschen ohne spezielle Informationen angesehen. Umfangreiche Studien konnten jedoch zeigen, dass Messungen des Ruhezustandes, sowohl fMRT als auch M/EEG, Information bezüglich der Sub-Netzwerke tragen, die Hirnfunktionen der Wahrnehmung und Kognition unterstützen. Besonders in Bezug auf die Wahrnehmung mit absolutem Gehör konnte festgestellt werden, dass Umgebungstöne wie die Sirene eines Krankenwagens unbewusst hinsichtlich der Tonklasse erkannt werden. Diese Erkenntnis stützt die Annahme, dass das aG-Netzwerk auch im Ruhezustand aktiv ist. Mit Hilfe der fMRT-Daten wurde festgestellt, dass die Kreuzkorrelation zwischen dem stark myelinisierten rechten planum polare und weiteren kortikalen Arealen wie dem rechten lateral- superioren temporalen Gyrus, der anterioren insula und dem linken inferior-frontalen Kortex in Musikern mit besserer aG-Performanz erhöht ist. Weiterhin wurde eine erhöhte Kreuzkorrelation zwischen dem rechten planum polare und dem medialen Teil des superior-frontalen Gyrus, dem anterioren cingulate Kortex und dem linken planum polare in Musikern mit noch besser aG- Performanz festgestellt. Die erhöhte funktionelle Kopplung der anterioren supra-temporalen Ebene mit dem linken inferior-frontalen Kortex bekräftigt die Hypothese, dass der ventrale auditorische Pfad in dem aG- spezifischen Netzwerk des Ruhezustands beteiligt ist. Bemerkenswerterweise zeigte das rechte planum polare eine erhöhte Kreuzkorrelation mit wichtigen Hub-regionen des Default-Mode Netzwerkes, also dem anterioren cingulate Kortex und medialen Teilen des superior-frontalen Kortex, sowie dem orbito-frontalen Kortex. Dies bedeutet eine Verknüpfung des auditorischen Netzwerkes und des Default-Mode Netzwerkes in Menschen mit absolutem Gehör und könnte mit aG-Prozessen zusammenhängen, die die spontane und unbewusste Erkennung des absoluten Gehörs erlauben. Schlussfolgerung In dieser Dissertation wurden MRT-Daten von Musikern mit absolutem Gehör untersucht und damit zur Erweiterung des Wissensstandes bezüglich der Myelinarchitektur und der damit zusammenhängenden funktionellen Konnektivität des auditorischen Kortex beigetragen. Die Ergebnisse sprechen zugunsten der Einbindung des ventralen auditorischen Pfades, bekannt für die Verarbeitung räumlich-invarianter Eigenschaften auditorischer Objekte. Weitere Untersuchungen bezüglich des neuronalen Verhaltens des auditorischen Kortex in Verbindung mit der Myelinarchitektur sind notwendig, um quantitative Modelle des absoluten Gehörs entwickeln zu können.
19

Interaktion zwischen entorhinalem Kortex und Hippokampus bei der Temporallappenepilepsie

Behr, Joachim 28 January 2003 (has links)
1. Interaktion zwischen entorhinalem Kortex und Hippokampus Lernen und Gedächtnis sind auf das engste mit dem Hippokampus und dem entorhinalen Kortex (EC) verbunden. Allerdings sind diese Hirnstrukturen auch an einer der häufigsten und medikamentös oftmals nur schwer therapierbaren fokalen Epilepsien beteiligt: der mesialen Temporallappenepilepsie (TLE). Der EC scheint eine wesentliche Bedeutung in der Generierung extrahippokampaler Temporallappenanfälle zu besitzen. Unsere bisherigen Untersuchungen zur Interaktion zwischen dem EC und dem Hippokampus haben gezeigt, daß unter physiologischen Bedingungen die Area dentata eine Filterfunktion übernimmt und die Übertragung epileptiformer Aktivität vom EC zum Hippokampus unterbindet. Im chronisch epileptischen Tier (Kindling-Modell) kommt es allerdings zu einer Aufhebung dieser Filterfunktion und somit zu einer ungehinderten Ausbreitung epileptiformer Aktivität in den Hippokampus. Da der glutamaterge NMDA-Rezeptor eine zentrale Rolle in der Induktion nutzungsabhängiger Plastizität spielt, ist er von wesentlicher Bedeutung in der Epileptogenese. Untersuchungen an Körnerzellen der Area dentata zeigten wenige Stunden nach dem letzten epileptischen Anfall eine Zunahme der über NMDA-Rezeptoren vermittelten Ströme. Diese führte zu einer Faszilitierung hochfrequenter reizevozierter Potentiale. Dieser Befund zeigt, daß im epileptischen Gewebe hochfrequente Entladungen die Area dentata überwinden können und in den Hippokampus weitergeleitet werden. Vier Wochen nach dem letzten Anfallsereignis waren die beschriebenen Veränderungen allerdings nicht mehr nachweisbar. Diese kurzzeitig veränderte synaptische Transmission der NMDA-Rezeptorkanäle scheint demzufolge eher für die Epileptogenese als für die Ictogenese verantwortlich zu sein. Die Bedeutung der Kainat-Rezeptoren im chronisch epileptischen Gewebe ist aufgrund der bis vor wenigen Jahren fehlenden selektiven Agonisten und Antagonisten kaum untersucht worden. Wir haben gezeigt, daß in der Area dentata des chronisch epileptischen Tieres (Kindling-Modell) die Aktivierung von präsynaptischen Kainat-Rezeptoren inhibitorischer Interneurone sowohl die spontane als auch die reizevozierte GABA-Freisetzung reduziert. Über diesen Mechanismus scheint der während eines epileptischen Anfalls vermehrt freigesetzte exzitatorische Neurotransmitter Glutamat die GABAerge Inhibition zu vermindern und somit die Erregbarkeit der Area dentata zu steigern. 2. Die Rolle des Subikulums in der Temporallappenepilepsie Eine wesentliche Aufgabe des Subikulums ist es, hippokampale Informationen zu verarbeiten und in verschiedene kortikale und subkortikale Hirnregionen weiterzuleiten. Zudem scheint es von besonderer Bedeutung für die Generierung und Ausbreitung hippokampaler Anfälle zu sein. Gestützt wird diese Annahme durch folgende Befunde: Zunächst besitzt das Subikulum Netzwerkeigenschaften, die es ihm im in vitro Epilepsiemodell ermöglichen, spontane epileptiforme Aktivität zu generieren. Darüber hinaus verfügt es über einen hohen Anteil sogenannter burst-spiking Zellen. Deren intrinsische Eigenschaften tragen erheblich zu dem epileptogenen Verhalten des Subikulums bei. Weiterhin erhalten subikuläre Pyramidenzellen exzitatorische Eingänge sowohl aus der Area CA1 als auch aus dem EC, welche bereits bei Ruhemembranpotential aktivierbare NMDA-Rezeptorströme zeigen. Schließlich zeigen burst-spiking Zellen im Vergleich zu regular-spiking Zellen eine ausgeprägte über NMDA-Rezeptoren vermittelte synaptische Plastizität (Langzeit-Potenzierung; LTP). Untersuchungen am chronisch epileptischen Tier (Kindling-Modell) ergaben einen unverändert hohen Anteil an burst-spiking Zellen im Subikulum. Wenige Stunden nach dem letzten epileptischen Anfall fällt bei diesen Neuronen eine fehlende, durch Aktionspotentiale induzierte Nachhyperpolarisation auf. Diese supprimierte intrinsische Hemmung ist jedoch 28 Tage nach dem letzten epileptischen Anfall nicht mehr nachzuweisen und spielt demzufolge insbesondere in der Genese, weniger im chronischen Verlauf der Erkrankung eine Rolle. Neben den exzitatorischen und inhibitorischen Neurotransmittern Glutamat und GABA bestimmen auch körpereigene Amine wie Serotonin und Dopamin über subkortikale Afferenzen das funktionelle Gleichgewicht aus Erregung und Hemmung wesentlich mit. Da die TLE nicht selten mit neurologischen und psychiatrischen Erkrankungen einhergeht, die mit in das Dopamin- und Serotoninsystem eingreifenden Pharmaka therapiert werden, haben wir uns in einigen Arbeiten mit deren modulatorischen Wirkungen auf die Membraneigenschaften und die synaptische Transmission befaßt. Die Wirkungen von Dopamin auf die Neurotransmission sind vielfältig, abhängig von den beteiligten Rezeptoren in der entsprechenden Hirnregion. Das Subikulum, das eine ausgeprägte mesenzephale, dopaminerge Projektion vom ventralen Tegmentum erhält, expremiert sowohl D1- als auch D2-Rezeptoren. Wir konnten zeigen, daß Dopamin primär die glutamaterge synaptische Transmission über einen präsynaptisch lokalisierten D1-Dopaminrezeptor unterdrückt und sekundär über die verminderte Erregung inhibitorischer Interneurone die polysynaptische GABAerge Hemmung reduziert. / 1. Interaction between the entorhinal cortex and the hippocampus The hippocampus and the entorhinal cortex are crucially involved in the acquisition, consolidation and retrieval of long-term memory traces. However, both structures play a critical role in pharmacologically intractable temporal lobe epilepsy. The entorhinal cortex provides the main input to the hippocampus. We have shown that kindling facilitates the propagation of epileptiform activity through the dentate gyrus. Our data are consistent with the normal function of the dentate gyrus as a filter limiting the spread of epileptiform activity within the entorhinal-hippocampal complex. This gating mechanism breaks down after chronic epilepsy induced by kindling. In the mammalian brain, the NMDA subclass of glutamate receptors plays a central role in the induction of several forms of use-dependent plasticity. However, synaptic plasticity can potentially underlie pathological situations, notably in animal and human forms of epilepsy. The enhanced excitability of the kindled dentate gyrus several hours after the last seizure, as well as the breakdown of its gating function, appear to result from transiently enhanced NMDA receptor activation that provides significantly slower EPSC kinetics than those observed in control slices and in slices from kindled animals with a four weeks seizure-free interval. Therefore, NMDA receptors seem to play a critical role in the acute throughput of seizure activity and in the induction of the kindled state but not in the persistence of enhanced seizure susceptibility. The functional involvement of kainate receptors in epileptogenesis gets more and more elucidated. We found that in chronic epileptic rats (kindling-model), activation of presynaptic kainate receptors of inhibitory interneurons depresses spontaneous and stimulus-induced GABA release. The kindling-induced sensitivity of GABA release to kainate receptor activation may produce a use-dependent hyperexcitability in the epileptic dentate gyrus facilitating the spread of limbic seizures through the entorhinal-hippocampal complex in temporal lobe epilepsy. 2. The role of the subiculum in temporal lobe epilepsy The subiculum controls most of the entorhinal-hippocampal output. It receives strong excitatory input from area CA1 and the entorhinal cortex and relays information to a variety of distant cortical and subcortical structures. The subiculum seems to be crucially involved in the generation and propagation of hippocampal seizures. The seizure susceptibility of the subiculum relies (a) on a high fraction of burst-firing principle cells that a capable to undergo synaptic plasticity and (b) on an epilepsy-prone network to generate spontaneous seizures. In both, control and kindled preparations the subiculum contains an extensive sub-population of bursting cells expressing amplifying membrane characteristics. Subicular cells showed a transient depression of the fast and slow afterhyperpolarization in the course of kindling that may contribute to the induction but not permanence of the kindled state. Apart from the excitatory and inhibitory neurotransmission physiological amines like 5-HT and dopamine (DA) may offset the frail balance between excitation and inhibition in the hippocampus. As temporal lobe epilepsy is often associated with diseases that are treated with drugs affecting the 5-HT and DA system, we investigated the effect of these transmitters on intrinsic and synaptic properties of subicular principle cells. The subiculum receives a dense mesencepahalic dopaminergic projection from the ventral tegmental area and expresses high levels of D1- and D2-like DA receptors. Our results indicate that DA strongly suppresses glutamatergic hippocampal and entorhinal neurotransmission onto subicuar neurons by activation of presynaptic D1-like DA receptors. In addition, DA decreases polysynaptic inhibition by attenuating the glutamatergic drive onto subicular interneurons.
20

Functional architecture of the medial entorhinal cortex

Ray, Saikat 05 September 2016 (has links)
Schicht 2 des mediale entorhinale Kortex (MEK) beinhaltet die größte Anzahl von Gitterzellen, welche durch ein hexagonales Aktivitätsmuster während räumlicher Exploration gekennzeichnet sind. In dieser Arbeit wurde gezeigt, dass spezielle Pyramidenzellen, die das Protein Calbindin exprimieren, in einem hexagonalen Gitter im Gehirn der Ratte angeordnet sind und cholinerg innerviert werden. Es ist bekannt, dass die cholinerge Innervation wichtig für die Aktivität von Gitterzellen ist. Weiterhin ergaben neuronale Ableitungen und Methoden zur Identifikaktion einzelner Neurone in frei verhaltenden Ratten, dass Calbindin-positive Pyramidenzellen (Calbindin+) eine große Anzahl von Gitterzellen beinhalten. Reelin-positive Sternzellen (Reelin+) im MEK, zeigten keine anatomische Periodizität und ihre Aktivität orientierte sich an den Begrenzungen der Umgebung. Eine weitere Studie untersucht die Architektur des MEK in verschiedenen Säugetieren, die von der Etrusker Spitzmaus, bis hin zum Menschen ~100 Millionen Jahre evolutionäre Vielfalt und ~20,000 fache Variation der Gehirngröße umfassen. Alle Arten zeigten jeweils eine periodische Anhäufung der Calbindin+ Zellen, was deren evolutive Bedeutung unterstreicht. Eine Studie zur Ontogenese der Calbindin Anhäufungen ergab, dass die periodische Struktur der Calbindin+ Zellen, sowie die verstreute Anordnung der Reelin+ Sternzellen schon zum Zeitpunkt der Geburt erkennbar war. Weitere Ergebnisse zeigen, dass Calbindin+ Zellen strukturell später ausreifen als Reelin+ Sternzellen - passend zu der Erkenntnis, dass Gitterzellen funktionell später reifen als Grenzzellen. Eine Untersuchung des Parasubiculums ergab, dass Verbindungen zum MEK präferiert in die Calbindin Anhäufungen in Schicht 2 projizieren. Zusammenfassend beschreibt diese Doktorarbeit eine Dichotomie von Struktur und Funktion in Schicht 2 des MEK, welche fundamental für das Verständnis von Gedächtnisbildung und deren zugrundeliegenden Mikroschaltkreisen ist. / The medial entorhinal cortex (MEC) is an important hub in the memory circuit in the brain. This thesis comprises of a group of studies which explores the architecture and microcircuits of the MEC. Layer 2 of MEC is home to grid cells, neurons which exhibit a hexagonal firing pattern during exploration of an open environment. The first study found that a group of pyramidal cells in layer 2 of the MEC, expressing the protein calbindin, were clustered in the rat brain. These patches were physically arranged in a hexagonal grid in the MEC and received preferential cholinergic-inputs which are known to be important for grid-cell activity. A combination of identified single-cell and extracellular recordings in freely behaving rats revealed that grid cells were mostly calbindin-positive pyramidal cells. Reelin-positive stellate cells in MEC were scattered throughout layer 2 and contributed mainly to the border cell population– neurons which fire at the borders of an environment. The next study explored the architecture of the MEC across evolution. Five mammalian species, spanning ~100 million years of evolutionary diversity and ~20,000 fold variation in brain size exhibited a conserved periodic layout of calbindin-patches in the MEC, underscoring their importance. An investigation of the ontogeny of the MEC in rats revealed that the periodic structure of the calbindin-patches and scattered layout of reelin-positive stellate cells was present around birth. Further, calbindin-positive pyramidal cells matured later in comparison to reelin-positive stellate cells mirroring the difference in functional maturation profiles of grid and border cells respectively. Inputs from the parasubiculum, selectively targeted calbindin-patches in the MEC indicating its role in shaping grid-cell function. In summary, the thesis uncovered a structure-function dichotomy of neurons in layer 2 of the MEC which is a fundamental aspect of understanding the microcircuits involved in memory formation.

Page generated in 0.0546 seconds